Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58.034
Filtrar
1.
Methods Mol Biol ; 2854: 143-151, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192126

RESUMO

Protein lysine acetylation involved in the antiviral innate immunity contributes to the regulation of antiviral inflammation responses, including type 1 interferon production and interferon-stimulated gene expression. Thus, investigation of acetylated antiviral proteins is vital for the complete understanding of inflammatory responses to viral infections. Immunoprecipitation (IP) assay with anti-targeted-protein antibody or with acetyl-lysine affinity beads followed by immunoblot provides a classical way to determine the potential modified protein in the antiviral innate pathways, whereas mass spectrometry can be utilized to identify the accurate acetylation lysine residues or explore the acetyl-proteomics. We demonstrate here comprehensive methods of protein lysine acetylation determination in virus-infected macrophages and embryonic fibroblast cells or proteins-overexpressed HEK 293 T cells in the context of antiviral innate immunity.


Assuntos
Imunidade Inata , Lisina , Humanos , Acetilação , Lisina/metabolismo , Células HEK293 , Imunoprecipitação/métodos , Macrófagos/imunologia , Macrófagos/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Animais , Espectrometria de Massas/métodos , Camundongos , Fibroblastos/metabolismo , Fibroblastos/imunologia , Fibroblastos/virologia
2.
Methods Mol Biol ; 2854: 171-175, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192128

RESUMO

Phagocytosis is a central process by which macrophage cells internalize and eliminate microbes as well as apoptotic cells. The nascent phagosome undergoes a complex maturation process involving sequential fusion with endosomal compartments. The endosomal TLRs, including TLR3, -7, -8, and -9, play a critical role in innate immunity by sensing bacterial or viral nucleic acids and are preferentially transported to the phagosomal membrane of innate immune cells upon activation. Therefore, phagosome isolation is helpful for studies on pathogenic invasion and the functions of phagosome proteins, including endosomal TLRs.


Assuntos
Fagossomos , Receptores Toll-Like , Fagossomos/metabolismo , Receptores Toll-Like/metabolismo , Animais , Fagocitose , Camundongos , Humanos , Imunidade Inata , Macrófagos/metabolismo , Macrófagos/imunologia
3.
J Ethnopharmacol ; 336: 118733, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39181281

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Smilax glabra rhizome has a long history been used for clinical purposes in traditional Chinese medicinal for treating various inflammatory conditions. Engeletin1 (ENG) is one of the most abundant bioactive compounds found in Smilax glabra rhizome, with anti-inflammatory, antioxidant, and ulcer-preventing activities. AIM OF THE STUDY: The purpose of this study was to investigate the ability of ENG to alleviate inflammatory symptoms and improve epithelial barrier integrity utilize a 2,4,6-trinitrobenzene sulfonic acid2 (TNBS)-induced murine model in Crohn's disease3 (CD)-like colitis, and to characterize the underlying anti-inflammatory mechanisms of action. MATERIALS AND METHODS: A colitis model was established in BALB/c mice and treated with ENG for 7 days. RAW264.7 macrophages were pre-treated with ENG and lipopolysaccharide4 (LPS) stimulation. The mice's weight and colon length were assessed. qPCR and Western blotting were used to analyze gene expression and TLR4-NFκB pathway. Flow cytometry was used to analyze the polarization states of the macrophages. RESULTS: Treatment with ENG was sufficient to significantly alleviate symptoms of inflammation and colonic epithelial barrier integrity in treated mice. Significant inhibition of TNF-α, IL-1ß, and IL-6 expression was observed following ENG treatment in vivo and in vitro. ENG was also determined to be capable of inhibiting the expression of iNOS and CD86, inhibited M1 macrophage polarization in vitro, as well as the TLR4-NFκB signaling pathway. Molecular docking showed a highly stable binding between ENG and TLR4. CONCLUSION: ENG has been proven to alleviate inflammation and ameliorate the damage of epithelial barrier in CD-like colitis. ENG also suppressed the M1 macrophages polarization and the inhibited inflammatory cytokines. TLR4-NFκB signaling pathway, especially TLR4, may be the target of ENG. These data offer a new insight into the therapeutic mechanisms of ENG.


Assuntos
Anti-Inflamatórios , Colite , Doença de Crohn , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Ácido Trinitrobenzenossulfônico , Animais , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/metabolismo , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Doença de Crohn/tratamento farmacológico , Citocinas/metabolismo , Modelos Animais de Doenças , Flavonóis , Glicosídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Smilax/química , Receptor 4 Toll-Like/metabolismo
4.
J Ethnopharmacol ; 336: 118704, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39182703

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Viral pneumonia is the leading cause of death after SARS-CoV-2 infection. Despite effective at early stage, long-term treatment with glucocorticoids can lead to a variety of adverse effects and limited benefits. The Chinese traditional herb Pogostemonis Herba is the aerial part of Pogostemon Cablin (Blanco) Benth., which has potent antiviral, antibacterial, anti-inflammatory, and anticancer effects. It was used widely for treating various throat and respiratory diseases, including COVID-19, viral infection, cough, allergic asthma, acute lung injury and lung cancer. AIM OF THE STUDY: To investigate the antiviral and anti-inflammatory effects of chemical compounds from Pogostemonis Herba in SARS-CoV-2-infected hACE2-overexpressing mouse macrophage RAW264.7 cells and hACE2 transgenic mice. MATERIALS AND METHODS: The hACE2-overexpressing RAW264.7 cells were exposed with SARS-CoV-2. The cell viability was detected by CCK8 assay and cell apoptotic rate was by flow cytometric assay. The expressions of macrophage M1 phenotype markers (TNF-α and IL-6) and M2 markers (IL-10 and Arg-1) as well as the viral loads were detected by qPCR. The mice were inoculated intranasally with SARS-CoV-2 omicron variant to induce viral pneumonia. The levels of macrophages, neutrophils, and T cells in the lung tissues of infected mice were analyzed by full spectrum flow cytometry. The expressions of key proteins were detected by Western blot assay. RESULTS: Diosmetin-7-O-ß-D-glucopyranoside (DG) presented the strongest anti-SARS-CoV-2 activity. Intervention with DG at the concentrations of 0.625-2.5 µM not only reduced the viral replication, cell apoptosis, and the productions of inflammatory cytokines (IL-6 and TNF-α) in SARS-CoV-2-infected RAW264.7 cells, but also reversed macrophage polarity from M1 to M2 phenotype. Furthermore, treatment with DG (25-100 mg/kg) alleviated acute lung injury, and reduced macrophage infiltration in SARS-COV-2-infected mice. Mechanistically, DG inhibited SARS-COV-2 gene expression and HK3 translation via targeting YTHDF1, resulting in the inactivation of glycolysis-mediated NF-κB pathway. CONCLUSIONS: DG exerted the potent antiviral and anti-inflammatory activities. It reduced pneumonia in SARS-COV-2-infected mice via inhibiting the viral replication and accelerating M2 macrophage polarization via targeting YTHDF1, indicating its potential for COVID-19 treatment.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Macrófagos , SARS-CoV-2 , Replicação Viral , Animais , Camundongos , Células RAW 264.7 , Replicação Viral/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/virologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Camundongos Transgênicos , Pogostemon/química , Citocinas/metabolismo , Apoptose/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/virologia , Pulmão/patologia , Glucosídeos/farmacologia , Glucosídeos/isolamento & purificação , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Flavonoides/uso terapêutico , Enzima de Conversão de Angiotensina 2/metabolismo , Anti-Inflamatórios/farmacologia , Masculino , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Humanos
5.
Biomaterials ; 312: 122739, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39096840

RESUMO

The biofilm-induced "relatively immune-compromised zone" creates an immunosuppressive microenvironment that is a significant contributor to refractory infections in orthopedic endophytes. Consequently, the manipulation of immune cells to co-inhibit or co-activate signaling represents a crucial strategy for the management of biofilm. This study reports the incorporation of Mn2+ into mesoporous dopamine nanoparticles (Mnp) containing the stimulator of interferon genes (STING) pathway activator cGAMP (Mncp), and outer wrapping by M1-like macrophage cell membrane (m-Mncp). The cell membrane enhances the material's targeting ability for biofilm, allowing it to accumulate locally at the infectious focus. Furthermore, m-Mncp mechanically disrupts the biofilm through photothermal therapy and induces antigen exposure through photodynamic therapy-generated reactive oxygen species (ROS). Importantly, the modulation of immunosuppression and immune activation results in the augmentation of antigen-presenting cells (APCs) and the commencement of antigen presentation, thereby inducing biofilm-specific humoral immunity and memory responses. Additionally, this approach effectively suppresses the activation of myeloid-derived suppressor cells (MDSCs) while simultaneously boosting the activity of T cells. Our study showcases the efficacy of utilizing m-Mncp immunotherapy in conjunction with photothermal and photodynamic therapy to effectively mitigate residual and recurrent infections following the extraction of infected implants. As such, this research presents a viable alternative to traditional antibiotic treatments for biofilm that are challenging to manage.


Assuntos
Biofilmes , Indóis , Proteínas de Membrana , Polímeros , Biofilmes/efeitos dos fármacos , Polímeros/química , Animais , Indóis/química , Indóis/farmacologia , Camundongos , Proteínas de Membrana/metabolismo , Nanopartículas/química , Fotoquimioterapia/métodos , Porosidade , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Feminino , Transdução de Sinais/efeitos dos fármacos , Terapia Fototérmica , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/efeitos dos fármacos , Camundongos Endogâmicos C57BL
6.
Proc Natl Acad Sci U S A ; 121(38): e2411747121, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39254994

RESUMO

Detection of cytosolic DNA by the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway provides immune defense against pathogens and cancer but can also cause autoimmunity when overactivated. The exonuclease three prime repair exonuclease 1 (TREX1) degrades DNA in the cytosol and prevents cGAS activation by self-DNA. Loss-of-function mutations of the TREX1 gene are linked to autoimmune diseases such as Aicardi-Goutières syndrome, and mice deficient in TREX1 develop lethal inflammation in a cGAS-dependent manner. In order to determine the type of cells in which cGAS activation drives autoinflammation, we generated conditional cGAS knockout mice on the Trex1-/- background. Here, we show that genetic ablation of the cGAS gene in classical dendritic cells (cDCs), but not in macrophages, was sufficient to rescue Trex1-/- mice from all observed disease phenotypes including lethality, T cell activation, tissue inflammation, and production of antinuclear antibodies and interferon-stimulated genes. These results show that cGAS activation in cDC causes autoinflammation in response to self-DNA accumulated in the absence of TREX1.


Assuntos
Autoimunidade , Células Dendríticas , Exodesoxirribonucleases , Camundongos Knockout , Nucleotidiltransferases , Fosfoproteínas , Animais , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/deficiência , Exodesoxirribonucleases/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/deficiência , Células Dendríticas/imunologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/imunologia , Camundongos , Autoimunidade/imunologia , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/imunologia , Doenças Autoimunes do Sistema Nervoso/imunologia , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/patologia , Inflamação/imunologia , Inflamação/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Doenças Autoimunes/imunologia , Doenças Autoimunes/genética
7.
Proc Natl Acad Sci U S A ; 121(38): e2405474121, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39255000

RESUMO

Endometriosis negatively impacts the health-related quality of life of 190 million women worldwide. Novel advances in nonhormonal treatments for this debilitating condition are desperately needed. Macrophages play a vital role in the pathophysiology of endometriosis and represent a promising therapeutic target. In the current study, we revealed the full transcriptomic complexity of endometriosis-associated macrophage subpopulations using single-cell analyses in a preclinical mouse model of experimental endometriosis. We have identified two key lesion-resident populations that resemble i) tumor-associated macrophages (characterized by expression of Folr2, Mrc1, Gas6, and Ccl8+) that promoted expression of Col1a1 and Tgfb1 in human endometrial stromal cells and increased angiogenic meshes in human umbilical vein endothelial cells, and ii) scar-associated macrophages (Mmp12, Cd9, Spp1, Trem2+) that exhibited a phenotype associated with fibrosis and matrix remodeling. We also described a population of proresolving large peritoneal macrophages that align with a lipid-associated macrophage phenotype (Apoe, Saa3, Pid1) concomitant with altered lipid metabolism and cholesterol efflux. Gain of function experiments using an Apoe mimetic resulted in decreased lesion size and fibrosis, and modification of peritoneal macrophage populations in the preclinical model. Using cross-species analysis of mouse and human single-cell datasets, we determined the concordance of peritoneal and lesion-resident macrophage subpopulations, identifying key similarities and differences in transcriptomic phenotypes. Ultimately, we envisage that these findings will inform the design and use of specific macrophage-targeted therapies and open broad avenues for the treatment of endometriosis.


Assuntos
Endometriose , Macrófagos , Análise de Célula Única , Feminino , Análise de Célula Única/métodos , Animais , Humanos , Endometriose/metabolismo , Endometriose/patologia , Endometriose/genética , Camundongos , Macrófagos/metabolismo , Fenótipo , Endométrio/metabolismo , Endométrio/patologia , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transcriptoma
8.
Mol Biol Rep ; 51(1): 948, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222287

RESUMO

BACKGROUND: African swine fever (ASF) is a viral disease that affects pigs and wild boars providing economic burden in swine industry. METHODS AND RESULTS: In this study, we investigated the effect of deleting the ASFV multigene family 110 (MGF110) fragment (1 L-5-6 L) on apoptosis modulation and the expression of proinflammatory cytokines. Gene expression in swine peripheral blood macrophages infected with either the parental "Volgograd/14c" strain or the gene-deleted "Volgograd/D(1L-5-6L) MGF110" strain was analyzed. Caspase-3 activity was 1.15 times higher in macrophages infected with the parental ASFV strain compared to the gene-deleted strain. Gene expression analysis of Caspase-3 (Cas-3), Interferon-A (IFN-A), Tumor Necrosis Factor A (TNF-A), B-cell Lymphoma-2 (Bcl-2), Nuclear Factor Kappa B (NF-kB), Interleukin-12 (IL-12), and Heat Shock Protein-70 (HSP-70) using RT-qPCR at various time points after infection revealed significant differences in expression profiles between the strains. The peak expression of cytokines (except NF-kB) occurred at 24 h post-infection with the "Volgograd/D(1L-5-6L) MGF110" strain. In samples infected with the ASFV "Volgograd/14c" strain, the most intense expression was observed at 72 and 96 h, except for Bcl-2 and NF-kB, which peaked at 6 h post-infection. The cytokine expression trend for the "Volgograd/D(1L-5-6L) MGF110" strain was more stable with higher expression values. CONCLUSION: The expression trend for the parental strain increased over time, reaching maximum values at 72 and 96 h post-infection, but the overall expression level was lower than that of the gene-deleted strain. These findings suggest that deleting the multigene family 110 members (1 L-5-6 L) contributes to ASFV attenuation without affecting virus replication kinetics.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Citocinas , Macrófagos , Família Multigênica , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Animais , Suínos , Citocinas/metabolismo , Citocinas/genética , Febre Suína Africana/virologia , Febre Suína Africana/genética , Febre Suína Africana/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Apoptose/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Regulação da Expressão Gênica
9.
Sci Rep ; 14(1): 21220, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261560

RESUMO

One of the most common causes of peritoneal dialysis withdrawal is ultrafiltration failure which is characterized by peritoneal membrane thickening and fibrosis. Although previous studies have demonstrated the inhibitory effect of p38 MAPK inhibitors on peritoneal fibrosis in mice, it was unclear which specific cells contribute to peritoneal fibrosis. To investigate the role of p38 MAPK in peritoneal fibrosis more precisely, we examined the expression of p38 MAPK in human peritoneum and generated systemic inducible p38 MAPK knockout mice and macrophage-specific p38 MAPK knockout mice. Furthermore, the response to lipopolysaccharide (LPS) was assessed in p38 MAPK-knocked down RAW 264.7 cells to further explore the role of p38 MAPK in macrophages. We found that phosphorylated p38 MAPK levels were increased in the thickened peritoneum of both human and mice. Both chlorhexidine gluconate (CG)-treated systemic inducible and macrophage-specific p38 MAPK knockout mice ameliorated peritoneal thickening, mRNA expression related to inflammation and fibrosis, and the number of αSMA- and MAC-2-positive cells in the peritoneum compared to CG control mice. Reduction of p38 MAPK in RAW 264.7 cells suppressed inflammatory mRNA expression induced by LPS. These findings suggest that p38 MAPK in macrophages plays a critical role in peritoneal inflammation and thickening.


Assuntos
Inflamação , Macrófagos , Diálise Peritoneal , Fibrose Peritoneal , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Humanos , Masculino , Camundongos , Clorexidina/análogos & derivados , Clorexidina/farmacologia , Inflamação/patologia , Inflamação/metabolismo , Inflamação/genética , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos Knockout , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Diálise Peritoneal/efeitos adversos , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/genética , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/patologia , Peritônio/patologia , Células RAW 264.7
10.
BMC Pulm Med ; 24(1): 444, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261812

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a group of chronic interstitial pulmonary diseases characterized by myofibroblast proliferation and extracellular matrix (ECM) deposition. However, current treatments are not satisfactory. Therefore, more effective therapies need to be explored. Cepharanthine (CEP) is a naturally occurring alkaloid that has recently been reported to have multiple pharmacological effects, particularly in chronic inflammation. METHODS: For in vivo experiments, first, a pulmonary fibrosis murine model was generated via tracheal injection of bleomycin (BLM). Second, the clinical manifestations and histopathological changes of the mice were used to verify that treatment with CEP might significantly reduce BLM-induced fibrosis. Furthermore, flow cytometric analysis was used to analyze the changes in the number of M2 macrophages in the lung tissues before and after treatment with CEP to explore the relationship between macrophage M2 polarization and pulmonary fibrosis. In vitro, we constructed two co-culture systems (THP-1 and MRC5 cells, RAW264.7 and NIH 3T3 cells), and measured the expression of fibrosis-related proteins to explore whether CEP could reduce pulmonary fibrosis by regulating macrophage M2 polarization and fibroblast activation. RESULTS: The results showed that the intranasal treatment of CEP significantly attenuated the symptoms of pulmonary fibrosis induced by BLM in a murine model. Our findings also indicated that CEP treatment markedly reduced the expression of fibrosis markers, including TGF-ß1, collagen I, fibronectin and α-SMA, in the mouse lung. Furthermore, in vitro studies demonstrated that CEP attenuated pulmonary fibrosis by inhibiting fibroblast activation through modulating macrophage M2 polarization and reducing TGF-ß1 expression. CONCLUSIONS: This study demonstrated the potential and efficacy of CEP in the treatment of pulmonary fibrosis. In particular, this study revealed a novel mechanism of CEP in inhibiting fibroblast activation by regulating macrophage M2 polarization and reducing the expression of fibrosis-associated factors. Our findings open a new direction for future research into the treatment of pulmonary fibrosis.


Assuntos
Benzilisoquinolinas , Bleomicina , Modelos Animais de Doenças , Macrófagos , Animais , Benzilisoquinolinas/farmacologia , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/tratamento farmacológico , Pulmão/patologia , Pulmão/efeitos dos fármacos , Humanos , Células RAW 264.7 , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Fator de Crescimento Transformador beta1/metabolismo , Células NIH 3T3 , Benzodioxóis
11.
BMC Oral Health ; 24(1): 1070, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261847

RESUMO

BACKGROUND: Periodontitis is a dental disease characterized by inflammation of periodontal tissues and loss of the periodontal ligaments and alveolar bone. Exosomes are a class of extracellular vesicles that are involved in a variety of diseases by releasing active substances. In this study, we aimed to investigate the effect and mechanism of exosomes from M2 polarized macrophages (M2-exos) on osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs). METHODS: M2-exos were isolated from IL-4-induced RAW264.7 cells (M2 macrophages) and then treated on hPDLSCs. Osteogenic differentiation was assessed by alkaline phosphatase (ALP) staining, alizarin red S (ARS) staining, measurement of osteogenic differentiation-related genes and proteins, and inflammation was evaluated by measuring the levels of inflammatory factors. The mechanism of M2-exo was confirmed through qPCR, western blot, ALP and ARS staining. RESULTS: Results suggested that M2-exo improved osteogenic differentiation and inhibited inflammation in LPS-induced hPDLSCs. CXCL12 expression was elevated in M2 macrophages, but decreased in LPS-induced hPDLSCs. Moreover, the effect of M2-exo on osteogenic differentiation and inflammation in LPS-induced hPDLSCs was reversed by CXCL12 knockdown. CONCLUSION: We demonstrated that M2-exo facilitated osteogenic differentiation and suppressed inflammation in LPS-induced hPDLSCs through promotion of CXCL12 expression. These results suggested the potential of M2-exo in the treatment of periodontitis, which may provide a new theoretical basis for M2-exo treatment of periodontitis.


Assuntos
Diferenciação Celular , Quimiocina CXCL12 , Exossomos , Inflamação , Macrófagos , Osteogênese , Ligamento Periodontal , Células-Tronco , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Humanos , Exossomos/metabolismo , Macrófagos/metabolismo , Células-Tronco/metabolismo , Quimiocina CXCL12/metabolismo , Inflamação/metabolismo , Camundongos , Animais , Células Cultivadas , Periodontite/metabolismo , Células RAW 264.7
12.
Sci Rep ; 14(1): 21029, 2024 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251671

RESUMO

Benign prostatic hyperplasia (BPH) is a prevalent age-related condition often characterized by debilitating urinary symptoms. Its etiology is believed to stem from hormonal imbalance, particularly an elevated estradiol-to-testosterone ratio and chronic inflammation. Our previous studies using a mouse steroid hormone imbalance model identified a specific increase in macrophages that migrated and accumulated in the prostate lumen where they differentiated into lipid-laden foam cells in mice implanted with testosterone and estradiol pellets, but not in sham animals. The current study focused on further characterizing the cellular heterogeneity of the prostate in this model as well as identifying the specific transcriptomic signature of the recruited foam cells. Moreover, we aimed to identify epithelia-derived signals that drive macrophage infiltration and luminal translocation. Male C57BL/6J mice were implanted with slow-release testosterone and estradiol pellets (T + E2) or sham surgery was performed and the ventral prostates were harvested two weeks later for scRNA-seq analysis. We identified Ear2 + and Cd72 + macrophages that were elevated in response to steroid hormone imbalance, whereas a Mrc1 + resident macrophage population did not change. In addition, an Spp1 + foam cell cluster was almost exclusively found in T + E2 mice. Further markers of foam cells were also identified, including Gpnmb and Trem2, and GPNMB was confirmed as a novel histological marker with immunohistochemistry. Foam cells were also shown to express known pathological factors Vegf, Tgfb1, Ccl6, Cxcl16 and Mmp12. Intriguingly, a screen for chemokines identified the upregulation of epithelia-derived Cxcl17, a known monocyte attractant, in T + E2 prostates suggesting that it might be responsible for the elevated macrophage number as well as their translocation to the lumen. Our study identified macrophage subsets that responded to steroid hormone imbalance as well as further confirmed a potential pathological role of luminal foam cells in the prostate. These results underscore a potential pathological role of the identified prostate foam cells and suggests CXCL17-mediated macrophage migration as a critical initiating event.


Assuntos
Estradiol , Células Espumosas , Macrófagos , Camundongos Endogâmicos C57BL , Próstata , Testosterona , Animais , Masculino , Camundongos , Testosterona/metabolismo , Macrófagos/metabolismo , Próstata/metabolismo , Próstata/patologia , Estradiol/farmacologia , Células Espumosas/metabolismo , Modelos Animais de Doenças , Quimiocinas CXC/metabolismo , Quimiocinas CXC/genética , Biomarcadores/metabolismo , Regulação para Cima
13.
Sci Rep ; 14(1): 20949, 2024 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251681

RESUMO

The interplay between crystals and epithelial cells forms the cornerstone of kidney stone development, communication between epithelial cells and macrophages emerging as a pivotal role in this process. We conducted next-generation sequencing on the secreted exosomes of TCMK-1 cells treated with calcium oxalate monohydrate (OX_EXO) or controls (NC_EXO), and on the macrophage cell line RAW264.7 stimulated with OX_EXO or NC_EXO, followed by validation of differentially expressed target proteins and miRNAs through Western blot and PCR. UPSET plots were employed to identify genes co-targeted by exosomal miRNAs. Various bioinformatic analyses were employed to predict potential mechanisms of the dysregulated genes. We integrated sequencing data from the GEO database, and validated findings using clinical patient urine and kidney tissues. We identified 665 differentially expressed exosomal miRNAs between OX_EXO and NC_EXO. Among the top 10 down-regulated miRNAs, the most targeted genes were AAK1 and NUFIP2, whereas PLCB1 was significantly targeted among the top 10 up-regulated miRNAs. In clinical specimens, we confirmed the differential expressions of five homologous miRNAs, as well as CNOT3, CNCNA1C, APEX1, and TMEM199. In conclusion, treatment of TCMK-1 cells with calcium oxalate significantly alerted the expression profile of exosomal miRNAs, subsequently influencing gene expression in macrophages, thereby modulating the processes of kidney stone formation.


Assuntos
Oxalato de Cálcio , Exossomos , Macrófagos , MicroRNAs , Oxalato de Cálcio/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Camundongos , Animais , Cálculos Renais/metabolismo , Cálculos Renais/genética , Células RAW 264.7 , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos
14.
BMC Cancer ; 24(1): 1117, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251966

RESUMO

BACKGROUND/AIMS: Gastric cancer (GC) ranks among the prevalent types of cancer, and its progression is influenced by the tumor microenvironment (TME). A comprehensive comprehension of the TME associated with GC has the potential to unveil therapeutic targets of significance. METHODS: The complexity and heterogeneity of TME interactions were revealed through our investigation using an integrated analysis of single-cell and bulk-tissue sequencing data. RESULTS: We constructed a single-cell transcriptomic atlas of 150,913 cells isolated from GC patients. Our analysis revealed the intricate nature and heterogeneity of the GC TME and the metabolic properties of major cell types. Furthermore, two cell subtypes, LOX+ Fibroblasts and M2 Macrophages, were enriched in tumor tissue and related to the outcome of GC patients. In addition, LOX+ Fibroblasts were significantly associated with M2 macrophages. immunofluorescence double labeling indicated LOX+ Fibroblasts and M2 Macrophages were tightly localized in GC tissue. The two cell subpopulations strongly interacted in a hypoxic microenvironment, yielding an immunosuppressive phenotype. Our findings further suggest that LOX+ Fibroblasts may act as a trigger for inducing the differentiation of monocytes into M2 Macrophages via the IL6-IL6R signaling pathway. CONCLUSIONS: Our study revealed the intricate and interdependent communication network between the fibroblast and macrophage subpopulations, which could offer valuable insights for targeted manipulation of the tumor microenvironment.


Assuntos
Fibroblastos , Macrófagos , Análise de Célula Única , Neoplasias Gástricas , Microambiente Tumoral , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Humanos , Microambiente Tumoral/imunologia , Análise de Célula Única/métodos , Macrófagos/metabolismo , Macrófagos/imunologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Receptores Depuradores Classe E/metabolismo , Receptores Depuradores Classe E/genética , Comunicação Celular/imunologia , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Transcriptoma , Transdução de Sinais
15.
J Transl Med ; 22(1): 829, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252063

RESUMO

BACKGROUND: CT-detected Extramural venous invasion (EMVI) is known as an independent risk factor for distant metastasis in patients with advanced gastric cancer (GC). However, the molecular basis is not clear. In colorectal cancer, M2 macrophages plays a vital role in determining EMVI. This study aimed to investigate the relationship between CT-detected EMVI and the M2 macrophages as well as prognosis predictionusing a radiogenomic approach. METHOD: We utilized EMVI-related genes (from mRNA sequencing of 13 GC samples correlated with EMVI score by spearman analysis, P < 0.01) to overlap the co-expression genes of WGCNA module and M2 macrophages related genes (from mRNA data of 371 GC patients in TCGA database), generating a total of 136 genes. An EMVI-M2-prognosis-related hub gene signature was constructed by COX and least absolute shrinkage and selection operator (LASSO) analysis from a training cohort TCGA database (n = 371) and validated it in a validation cohort from GEO database (n = 357). High- and low-risk groups were divided by hub gene (EGFLAM and GNG11) signature-derived risk scores. We assessed its predictive ability through Kaplan-Meier (K-M) curve and COX analysis. Furthermore, we utilized ESTIMATE to detect tumor mutation burden (TMB) and evaluate sensitivity to immune checkpoint inhibitors (ICIs). Expression of hub genes was tested using western blotting and immunohistochemistry (IHC) analysis. RESULTS: The overall survival (OS) was significantly reduced in the high-risk group (Training/Validation: AUC = 0.701/0.620; P < 0.001/0.003). Furthermore, the risk score was identified as an independent predictor of OS in multivariate COX regression analyses (Training/Validation: HR = 1.909/1.928; 95% CI: 1.225-2.974/1.308-2.844). The low-risk group exhibited significantly higher TMB levels (P = 1.6e- 07) and greater sensitivity to ICIs. Significant higher expression of hub-genes was identified on multiple GC cell lines and original samples. Hub-genes knockdown in gastric cancer cell lines inhibited their proliferation, metastatic and invasive capacity to varying degrees. In vivo experiments indicate that EGFLAM, as one of the hub genes, its high expression can serve as a biomarker for low response to immunotherapy. CONCLUSION: Our study demonstrated EMVI-M2 gene signature could effectively predict the prognosis of GC tissue, reflecting the relationship between EMVI and M2 macrophages.


Assuntos
Regulação Neoplásica da Expressão Gênica , Macrófagos , Invasividade Neoplásica , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Estimativa de Kaplan-Meier , Análise de Sobrevida , Transcriptoma/genética , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Reprodutibilidade dos Testes , Idoso
16.
Front Immunol ; 15: 1455603, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253079

RESUMO

The successful pulmonary metastasis of malignant cancer cells depends on the survival of circulating tumor cells in a distant and hostile microenvironment. The formation of a pre-metastatic niche (PMN) creates a supportive environment for subsequent metastasis. Circular RNAs (circRNAs) are increasingly acknowledged as crucial elements in the mechanisms of metastasis due to their stable structures and functions, making them promising early metastasis detection markers. However, the specific expression patterns and roles of circRNAs in the lungs before metastasis remain largely unexplored. Our research aims to chart the circRNA expression profile and assess their impact on the lung PMN. We developed a lung PMN model and employed comprehensive RNA sequencing to analyze the differences in circRNA expression between normal and pre-metastatic lungs. We identified 38 significantly different circRNAs, primarily involved in metabolism, apoptosis, and inflammation pathways. We then focused on one specific circRNA, circ:chr4:150406196 - 150406664 (circRERE-PMN), which exhibited a significant change in expression and was prevalent in myeloid-derived suppressor cells (MDSCs), alveolar epithelial cells, and macrophages within the pre-metastatic lung environment. CircRERE-PMN was found to potentially regulate apoptosis and the expression of cytokines and chemokines through its interaction with the downstream target HUR in alveolar epithelial cells. Overall, our study highlights the crucial role of circRNAs in the formation of lung PMNs, supporting their potential as diagnostic or therapeutic targets for lung metastasis.


Assuntos
Neoplasias Pulmonares , RNA Circular , RNA Circular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Animais , Camundongos , Humanos , Microambiente Tumoral , Pulmão/patologia , Pulmão/metabolismo , Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Transcriptoma , Metástase Neoplásica , Citocinas/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia
17.
Int J Nanomedicine ; 19: 9175-9193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39263632

RESUMO

Purpose: Ischemic stroke is a refractory disease wherein the reperfusion injury caused by sudden restoration of blood supply is the main cause of increased mortality and disability. However, current therapeutic strategies for the inflammatory response induced by cerebral ischemia-reperfusion (I/R) injury are unsatisfactory. This study aimed to develop a functional nanoparticle (MM/ANPs) comprising apelin-13 (APNs) encapsulated in macrophage membranes (MM) modified with distearoyl phosphatidylethanolamine-polyethylene glycol-RVG29 (DSPE-PEG-RVG29) to achieve targeted therapy against ischemic stroke. Methods: MM were extracted from RAW264.7. PLGA was dissolved in dichloromethane, while Apelin-13 was dissolved in water, and CY5.5 was dissolved in dichloromethane. The precipitate was washed twice with ultrapure water and then resuspended in 10 mL to obtain an aqueous solution of PLGA nanoparticles. Subsequently, the cell membrane was evenly dispersed homogeneously and mixed with PLGA-COOH at a mass ratio of 1:1 for the hybrid ultrasound. DSPE-PEG-RVG29 was added and incubated for 1 h to obtain MM/ANPs. Results: In this study, we developed a functional nanoparticle delivery system (MM/ANPs) that utilizes macrophage membranes coated with DSPE-PEG-RVG29 peptide to efficiently deliver Apelin-13 to inflammatory areas using ischemic stroke therapy. MM/ANPs effectively cross the blood-brain barrier and selectively accumulate in ischemic and inflamed areas. In a mouse I/R injury model, these nanoparticles significantly improved neurological scores and reduced infarct volume. Apelin-13 is gradually released from the MM/ANPs, inhibiting NLRP3 inflammasome assembly by enhancing sirtuin 3 (SIRT3) activity, which suppresses the inflammatory response and pyroptosis. The positive regulation of SIRT3 further inhibits the NLRP3-mediated inflammation, showing the clinical potential of these nanoparticles for ischemic stroke treatment. The biocompatibility and safety of MM/ANPs were confirmed through in vitro cytotoxicity tests, blood-brain barrier permeability tests, biosafety evaluations, and blood compatibility studies. Conclusion: MM/ANPs offer a highly promising approach to achieve ischemic stroke-targeted therapy inhibiting NLRP3 inflammasome-mediated pyroptosis.


Assuntos
Inflamassomos , AVC Isquêmico , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nanopartículas , Piroptose , Animais , Camundongos , AVC Isquêmico/tratamento farmacológico , Células RAW 264.7 , Piroptose/efeitos dos fármacos , Nanopartículas/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Masculino , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Polietilenoglicóis/química , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/tratamento farmacológico , Fosfatidiletanolaminas/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo
18.
Int J Nanomedicine ; 19: 8751-8768, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220194

RESUMO

Purpose: Periodontitis is a chronic infectious disease characterized by progressive inflammation and alveolar bone loss. Forkhead box O1 (FoxO1), an important regulator, plays a crucial role in maintaining bone homeostasis and regulating macrophage energy metabolism and osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, FoxO1 was overexpressed into small extracellular vesicles (sEV) using engineering technology, and effects of FoxO1-overexpressed sEV on periodontal tissue regeneration as well as the underlying mechanisms were investigated. Methods: Human periodontal ligament stem cell (hPDLSCs)-derived sEV (hPDLSCs-sEV) were isolated using ultracentrifugation. They were then characterized using transmission electron microscopy, Nanosight, and Western blotting analyses. hPDLSCs were treated with hPDLSCs-sEV in vitro after stimulation with lipopolysaccharide, and osteogenesis was evaluated. The effect of hPDLSCs-sEV on the polarization phenotype of THP-1 macrophages was also evaluated. In addition, we measured the reactive oxygen species (ROS) levels, adenosine triphosphate (ATP) production, mitochondrial characteristics, and metabolism of hPDLSCs and THP-1 cells. Experimental periodontitis was established in vivo in mice. HPDLSCs-sEV or phosphate-buffered saline (PBS) were injected into periodontal tissues for four weeks, and the maxillae were collected and assessed by micro-computed tomography, histological staining, and small animal in vivo imaging. Results: In vitro, FoxO1-overexpressed sEV promoted osteogenic differentiation of hPDLSCs in the inflammatory environment and polarized THP-1 cells from the M1 phenotype to the M2 phenotype. Furthermore, FoxO1-overexpressed sEV regulated the ROS level, ATP production, mitochondrial characteristics, and metabolism of hPDLSCs and THP-1 cells in the inflammatory environment. In the in vivo analyses, FoxO1-overexpressed sEV effectively promoted bone formation and inhibited inflammation. Conclusion: FoxO1-overexpressed sEV can regulate osteogenesis and immunomodulation. The ability of FoxO1-overexpressed sEV to regulate inflammation and osteogenesis can pave the way for the establishment of a therapeutic approach for periodontitis.


Assuntos
Vesículas Extracelulares , Proteína Forkhead Box O1 , Mitocôndrias , Osteogênese , Ligamento Periodontal , Periodontite , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Osteogênese/efeitos dos fármacos , Animais , Humanos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Mitocôndrias/metabolismo , Periodontite/terapia , Periodontite/metabolismo , Camundongos , Ligamento Periodontal/citologia , Células THP-1 , Espécies Reativas de Oxigênio/metabolismo , Inflamação/metabolismo , Masculino , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Macrófagos/metabolismo , Regeneração , Células Cultivadas
19.
Ann Med ; 56(1): 2398195, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39221762

RESUMO

BACKGROUND: Prostate cancer (PCa) has become the highest incidence of malignant tumor among men in the world. Tumor microenvironment (TME) is necessary for tumor growth. M2 macrophages play an important role in many solid tumors. This research aimed at the role of M2 macrophages' prognosis value in PCa. METHODS: Single-cell RNA-seq (scRNA-seq) data and mRNA expression data were obtained from the Gene Expression Omnibus database (GEO) and The Cancer Genome Atlas (TCGA). Quality control, normalization, reduction, clustering, and cell annotation of scRNA-seq data were preformed using the Seruat package. The sub-populations of the tumor-associated macrophages (TAMs) were analysis and the marker genes of M2 macrophage were selected. Differentially expressed genes (DEGs) in PCa were identified using limma and the immune infiltration was detected using CIBERSORTx. Then, a weighted correlation network analysis (WGCNA) was constructed to identify the M2 macrophage-related modules and genes. Integration of the marker genes of M2 macrophage from scRNA-seq data analysis and hub genes from WGCNA to select the prognostic gene signature based on Univariate and LASSO regression analysis. The risk score was calculated, and the DEGs, biological function, immune characteristics related to risk score were explored. And a predictive nomogram was constructed. CCK8, Transwell, and wound healing were used to verify cell phenotype changes after co-cultured. RESULTS: A total of 2431 marker genes of M2 macrophage and 650 hub M2 macrophage-related genes were selected based on scRNA-seq data and WGCNA. Then, 113 M2 macrophage-related genes were obtained by overlapping the scRNA-seq data and WGCNA results. Nine M2 macrophage-related genes (SMOC2, PLPP1, HES1, STMN1, GPR160, ABCG1, MAZ, MYC, and EPCAM) were screened as prognostic gene signatures. M2 risk score was calculated, the DEGs, Immune score, stromal score, ESTIMATE score, tumor purity, and immune cell infiltration, immune checkpoint expression, and responses of immunotherapy and chemotherapy were identified. And a predictive nomogram was constructed. CCK8, Transwell invasion, and wound healing further verified that M2 macrophages promoted the proliferation, invasion, and migration of PCa (p < 0.05). CONCLUSIONS: We uncovered that M2 macrophages and relevant genes played key roles in promoting the occurrence, development, and metastases of PCa and played as convincing predictors in PCa.


Assuntos
Biomarcadores Tumorais , Macrófagos , Neoplasias da Próstata , Análise de Célula Única , Microambiente Tumoral , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Análise de Célula Única/métodos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Macrófagos/metabolismo , Macrófagos/imunologia , RNA-Seq , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica/métodos , Nomogramas , Análise de Sequência de RNA , Análise da Expressão Gênica de Célula Única
20.
Cell Mol Life Sci ; 81(1): 380, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222120

RESUMO

The cytokine IFNγ is a principal effector of macrophage activation and immune resistance to mycobacterial infection; however, pathogenic mycobacteria are capable of surviving in IFNγ-activated macrophages by largely unknown mechanisms. In this study, we find that pathogenic mycobacteria, including M. bovis BCG and M. tuberculosis can sense IFNγ to promote their proliferative activity and virulence phenotype. Moreover, interaction with the host intracellular environment increases the susceptibility of mycobacteria to IFNγ through upregulating expression of mmpL10, a mycobacterial IFNγ receptor, thereby facilitating IFNγ-dependent survival and growth of mycobacteria in macrophages. Transmission electron microscopy analysis reveals that IFNγ triggers the secretion of extracellular vesicles, an essential virulence strategy of intracellular mycobacteria, while proteomics identifies numerous pivotal IFNγ-induced effectors required for mycobacterial infection in macrophages. Our study suggests that sensing host IFNγ is a crucial virulence mechanism used by pathogenic mycobacteria to survive and proliferate inside macrophages.


Assuntos
Interferon gama , Macrófagos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis , Interferon gama/metabolismo , Interferon gama/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Macrófagos/imunologia , Animais , Camundongos , Mycobacterium tuberculosis/patogenicidade , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/metabolismo , Mycobacterium bovis/imunologia , Mycobacterium bovis/metabolismo , Humanos , Interações Hospedeiro-Patógeno/imunologia , Virulência , Receptores de Interferon/metabolismo , Receptores de Interferon/genética , Receptor de Interferon gama , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Ativação de Macrófagos , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/metabolismo , Infecções por Mycobacterium/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA