Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
J Neurosci Methods ; 406: 110131, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583588

RESUMO

BACKGROUND: The spinal cord and its interactions with the brain are fundamental for movement control and somatosensation. However, brain and spinal electrophysiology in humans have largely been treated as distinct enterprises, in part due to the relative inaccessibility of the spinal cord. Consequently, there is a dearth of knowledge on human spinal electrophysiology, including the multiple pathologies that affect the spinal cord as well as the brain. NEW METHOD: Here we exploit recent advances in the development of wearable optically pumped magnetometers (OPMs) which can be flexibly arranged to provide coverage of both the spinal cord and the brain in relatively unconstrained environments. This system for magnetospinoencephalography (MSEG) measures both spinal and cortical signals simultaneously by employing custom-made scanning casts. RESULTS: We evidence the utility of such a system by recording spinal and cortical evoked responses to median nerve stimulation at the wrist. MSEG revealed early (10 - 15 ms) and late (>20 ms) responses at the spinal cord, in addition to typical cortical evoked responses (i.e., N20). COMPARISON WITH EXISTING METHODS: Early spinal evoked responses detected were in line with conventional somatosensory evoked potential recordings. CONCLUSION: This MSEG system demonstrates the novel ability for concurrent non-invasive millisecond imaging of brain and spinal cord.


Assuntos
Magnetoencefalografia , Medula Espinal , Humanos , Medula Espinal/fisiologia , Medula Espinal/diagnóstico por imagem , Magnetoencefalografia/instrumentação , Magnetoencefalografia/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto , Masculino , Feminino , Nervo Mediano/fisiologia , Nervo Mediano/diagnóstico por imagem , Potenciais Somatossensoriais Evocados/fisiologia , Magnetometria/instrumentação , Magnetometria/métodos , Adulto Jovem , Estimulação Elétrica/instrumentação
2.
IEEE Trans Biomed Eng ; 71(5): 1640-1650, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38133972

RESUMO

In the current study we propose a magneto-optical system for registration and analysis of magnetic nano- and microparticles magnetic relaxation. The core of our system is the novel compact magnetometer based on an yttrium-iron garnet film and working at room temperature. The sensor demonstrates sensitivity of 35 pT/√{Hz} at 79 Hz and recovery time less than 100 µs, which allows to register quite fast magnetic relaxations of a low amplitude. All these facts make the system feasible for usage in biological magnetorelaxometry and theranostics. Statistical processing of the relaxation curves allowed us to estimate both amplitudes and relaxation times for various biocompatible magnetic particles at the amount of 100 µg in the test tubes experiments. The system has a great potential of further development for usage in the areas of targeted drug delivery, hyperthermia, magnetic imaging. Being comparatively cheap, the system potentially is of a great interest in the fields of biomedicine and nanomedicine.


Assuntos
Desenho de Equipamento , Magnetometria , Magnetometria/instrumentação , Magnetometria/métodos , Nanopartículas de Magnetita/química
3.
Opt Lett ; 47(5): 1230-1233, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230334

RESUMO

Light-atom interactions during spin preparation and readout in optically pumped magnetometers can lead to inaccuracies. We demonstrate a novel, to the best of our knowledge, detection strategy that exploits an interrogation sequence in the pulsed free-induction-decay modality to suppress these systematic errors. The technique is predicated on monitoring the dynamics of preoriented atomic spins as they evolve unperturbed during a dark interval, by subsequently applying a time-delayed optical pulse to infer the spin state's phase. This detection mode reduced light shift inaccuracies to within 0.6 nT, and could be employed in a wide variety of high-precision atomic magnetometry experiments.


Assuntos
Magnetometria , Magnetometria/métodos
4.
PLoS One ; 17(1): e0262669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35045107

RESUMO

Optically pumped magnetometers (OPMs) have recently become so sensitive that they are suitable for use in magnetoencephalography (MEG). These sensors solve operational problems of the current standard MEG, where superconducting quantum interference device (SQUID) gradiometers and magnetometers are being used. The main advantage of OPMs is that they do not require cryogenics for cooling. Therefore, they can be placed closer to the scalp and are much easier to use. Here, we measured auditory evoked fields (AEFs) with both SQUID- and OPM-based MEG systems for a group of subjects to better understand the usage of a limited sensor count OPM-MEG. We present a theoretical framework that transforms the within subject data and equivalent simulation data from one MEG system to the other. This approach works on the principle of solving the inverse problem with one system, and then using the forward model to calculate the magnetic fields expected for the other system. For the source reconstruction, we used a minimum norm estimate (MNE) of the current distribution. Two different volume conductor models were compared: the homogeneous conducting sphere and the three-shell model of the head. The transformation results are characterized by a relative error and cross-correlation between the measured and the estimated magnetic field maps of the AEFs. The results for both models are encouraging. Since some commercial OPMs measure multiple components of the magnetic field simultaneously, we additionally analyzed the effect of tangential field components. Overall, our dual-axis OPM-MEG with 15 sensors yields similar information to a 62-channel SQUID-MEG with its field of view restricted to the right hemisphere.


Assuntos
Magnetoencefalografia/métodos , Magnetometria/métodos , Animais , Encéfalo/fisiologia , Simulação por Computador , Desenho de Equipamento , Humanos , Campos Magnéticos , Óptica e Fotônica , Supercondutividade
5.
Neuroimage ; 244: 118484, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34418526

RESUMO

Here we propose that much of the magnetic interference observed when using optically pumped magnetometers for MEG experiments can be modeled as a spatially homogeneous magnetic field. We show that this approximation reduces sensor level variance and substantially improves statistical power. This model does not require knowledge of the underlying neuroanatomy nor the sensor positions. It only needs information about the sensor orientation. Due to the model's low rank there is little risk of removing substantial neural signal. However, we provide a framework to assess this risk for any sensor number, design or subject neuroanatomy. We find that the risk of unintentionally removing neural signal is reduced when multi-axis recordings are performed. We validated the method using a binaural auditory evoked response paradigm and demonstrated that removing the homogeneous magnetic field increases sensor level SNR by a factor of 3. Considering the model's simplicity and efficacy, we suggest that this homogeneous field correction can be a powerful preprocessing step for arrays of optically pumped magnetometers.


Assuntos
Campos Magnéticos , Magnetometria/métodos , Adulto , Cognição , Potenciais Evocados Auditivos , Olho , Humanos , Conhecimento , Masculino , Neuroanatomia , Propriocepção , Projetos de Pesquisa
6.
Clin Neurophysiol ; 132(10): 2681-2684, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34274216

RESUMO

OBJECTIVE: This proof-of-principle-study evaluated the extent to which spontaneous activity (SA) of the muscle can be detected via non-invasive magnetomyography (MMG) with optically pumped magnetometers (OPM). METHODS: Five patients, who together exhibited all forms of SA (fibrillations, positive sharp waves, fasciculations, myotonic discharges, complex-repetitive discharges) with conventional needle electromyography (EMG), were studied by OPM-MMG and simultaneous surface EMG (sEMG) while at rest, during light muscle activation, and when a muscle stretch reflex was elicited. Three healthy subjects were measured as controls. SA was considered apparent in the OPM-MMG if a signal could be visually detected that corresponded in shape and frequency to the SA in the respective needle EMG. RESULTS: SA in the context of fasciculations could be detected in 2 of 5 patients by simultaneous OPM-MMG/sEMG. Other forms of SA could not be detected at rest, during light muscle activation, or after provocation of a muscle stretch reflex. CONCLUSIONS: Results show that fasciculations could be detected non-invasively via a new method (OPM). SIGNIFICANCE: We show that other forms of SA are not detectable with current OPM and propose necessary technical solutions to overcome this circumstance. Our results motivate to pursue OPM-MMG as a new clinical neurophysiological diagnostic.


Assuntos
Eletromiografia/métodos , Fasciculação/diagnóstico , Fasciculação/fisiopatologia , Magnetoencefalografia/métodos , Magnetometria/métodos , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/fisiopatologia , Estudo de Prova de Conceito
7.
Neuroimage ; 241: 118401, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34273527

RESUMO

Optically-pumped magnetometers (OPMs) are highly sensitive, compact magnetic field sensors, which offer a viable alternative to cryogenic sensors (superconducting quantum interference devices - SQUIDs) for magnetoencephalography (MEG). With the promise of a wearable system that offers lifespan compliance, enables movement during scanning, and provides higher quality data, OPMs could drive a step change in MEG instrumentation. However, this potential can only be realised if background magnetic fields are appropriately controlled, via a combination of optimised passive magnetic screening (i.e. enclosing the system in layers of high-permeability materials), and electromagnetic coils to further null the remnant magnetic field. In this work, we show that even in an OPM-optimised passive shield with extremely low (<2 nT) remnant magnetic field, head movement generates significant artefacts in MEG data that manifest as low-frequency interference. To counter this effect we introduce a magnetic field mapping technique, in which the participant moves their head to sample the background magnetic field using a wearable sensor array; resulting data are compared to a model to derive coefficients representing three uniform magnetic field components and five magnetic field gradient components inside the passive shield. We show that this technique accurately reconstructs the magnitude of known magnetic fields. Moreover, by feeding the obtained coefficients into a bi-planar electromagnetic coil system, we were able to reduce the uniform magnetic field experienced by the array from a magnitude of 1.3±0.3 nT to 0.29±0.07 nT. Most importantly, we show that this field compensation generates a five-fold reduction in motion artefact at 0‒2 Hz, in a visual steady-state evoked response experiment using 6 Hz stimulation. We suggest that this technique could be used in future OPM-MEG experiments to improve the quality of data, especially in paradigms seeking to measure low-frequency oscillations, or in experiments where head movement is encouraged.


Assuntos
Encéfalo/fisiologia , Potenciais Evocados Visuais/fisiologia , Movimentos da Cabeça/fisiologia , Campos Magnéticos , Magnetoencefalografia/métodos , Dispositivos Eletrônicos Vestíveis , Desenho de Equipamento/instrumentação , Desenho de Equipamento/métodos , Dispositivos de Proteção da Cabeça , Humanos , Magnetoencefalografia/instrumentação , Magnetometria/instrumentação , Magnetometria/métodos
8.
Hum Brain Mapp ; 42(15): 4869-4879, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34245061

RESUMO

Optically pumped magnetometers (OPMs) are quickly widening the scopes of noninvasive neurophysiological imaging. The possibility of placing these magnetic field sensors on the scalp allows not only to acquire signals from people in movement, but also to reduce the distance between the sensors and the brain, with a consequent gain in the signal-to-noise ratio. These advantages make the technique particularly attractive to characterise sources of brain activity in demanding populations, such as children and patients with epilepsy. However, the technology is currently in an early stage, presenting new design challenges around the optimal sensor arrangement and their complementarity with other techniques as electroencephalography (EEG). In this article, we present an optimal array design strategy focussed on minimising the brain source localisation error. The methodology is based on the Cramér-Rao bound, which provides lower error bounds on the estimation of source parameters regardless of the algorithm used. We utilise this framework to compare whole head OPM arrays with commercially available electro/magnetoencephalography (E/MEG) systems for localising brain signal generators. In addition, we study the complementarity between EEG and OPM-based MEG, and design optimal whole head systems based on OPMs only and a combination of OPMs and EEG electrodes for characterising deep and superficial sources alike. Finally, we show the usefulness of the approach to find the nearly optimal sensor positions minimising the estimation error bound in a given cortical region when a limited number of OPMs are available. This is of special interest for maximising the performance of small scale systems to ad hoc neurophysiological experiments, a common situation arising in most OPM labs.


Assuntos
Mapeamento Encefálico/instrumentação , Encéfalo/fisiologia , Eletroencefalografia/instrumentação , Magnetoencefalografia/instrumentação , Magnetometria/instrumentação , Adulto , Mapeamento Encefálico/métodos , Mapeamento Encefálico/normas , Eletroencefalografia/métodos , Eletroencefalografia/normas , Humanos , Magnetoencefalografia/métodos , Magnetoencefalografia/normas , Magnetometria/métodos , Magnetometria/normas
9.
Neuroimage ; 230: 117815, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33524584

RESUMO

Optically-pumped magnetometers (OPMs) offer the potential for a step change in magnetoencephalography (MEG) enabling wearable systems that provide improved data quality, accommodate any subject group, allow data capture during movement and potentially reduce cost. However, OPM-MEG is a nascent technology and, to realise its potential, it must be shown to facilitate key neuroscientific measurements, such as the characterisation of brain networks. Networks, and the connectivities that underlie them, have become a core area of neuroscientific investigation, and their importance is underscored by many demonstrations of their disruption in brain disorders. Consequently, a demonstration of network measurements using OPM-MEG would be a significant step forward. Here, we aimed to show that a wearable 50-channel OPM-MEG system enables characterisation of the electrophysiological connectome. To this end, we measured connectivity in the resting state and during a visuo-motor task, using both OPM-MEG and a state-of-the-art 275-channel cryogenic MEG device. Our results show that resting-state connectome matrices from OPM and cryogenic systems exhibit a high degree of similarity, with correlation values >70%. In addition, in task data, similar differences in connectivity between individuals (scanned multiple times) were observed in cryogenic and OPM-MEG data, again demonstrating the fidelity of the OPM-MEG device. This is the first demonstration of network connectivity measured using OPM-MEG, and results add weight to the argument that OPMs will ultimately supersede cryogenic sensors for MEG measurement.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Magnetoencefalografia/métodos , Magnetometria/métodos , Desempenho Psicomotor/fisiologia , Dispositivos Eletrônicos Vestíveis , Adulto , Desenho de Equipamento/instrumentação , Desenho de Equipamento/métodos , Feminino , Humanos , Magnetoencefalografia/instrumentação , Magnetometria/instrumentação , Masculino , Adulto Jovem
10.
J Electromyogr Kinesiol ; 56: 102490, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33259993

RESUMO

AIM: Aiming at analysing the signal conduction in muscular fibres, the spatio-temporal dynamics of the magnetic field generated by the propagating muscle action potential (MAP) is studied. METHOD: In this prospective, proof of principle study, the magnetic activity of the intrinsic foot muscle after electric stimulation of the tibial nerve was measured using optically pumped magnetometers (OPMs). A classical biophysical electric dipole model of the propagating MAP was implemented to model the source of the data. In order to account for radial currents of the muscular tubules system, a magnetic dipole oriented along the direction of the muscle was added. RESULTS: The signal profile generated by the activity of the intrinsic foot muscles was measured by four OPM devices. Three OPM sensors captured the spatio-temporal magnetic field pattern of the longitudinal intrinsic foot muscles. Changes of the activation pattern reflected the propagating muscular action potential along the muscle. A combined electric and magnetic dipole model could explain the recorded magnetic activity. INTERPRETATION: OPM devices allow for a new, non-invasive way to study MAP patterns. Since magnetic fields are less altered by the tissue surrounding the dipole source compared to electric activity, a precise analysis of the spatial characteristics and temporal dynamics of the MAP is possible. The classic electric dipole model explains major but not all aspects of the magnetic field. The field has longitudinal components generated by intrinsic structures of the muscle fibre. By understanding these magnetic components, new methods could be developed to analyse the muscular signal transduction pathway in greater detail. The approach has the potential to become a promising diagnostic tool in peripheral neurological motor impairments.


Assuntos
Potenciais de Ação/fisiologia , Campos Magnéticos , Magnetometria/métodos , Músculo Esquelético/fisiologia , Adulto , Estimulação Elétrica/métodos , Pé/inervação , Pé/fisiologia , Humanos , Masculino , Estudo de Prova de Conceito , Estudos Prospectivos , Nervo Tibial/fisiologia
11.
Hong Kong Med J ; 26(6): 500-509, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33303700

RESUMO

INTRODUCTION: A magnetic seed marker system (Magseed, Endomagnetics, Cambridge, United Kingdom) is used as a localisation method for non-palpable breast lesions in the United States, Europe, and Hong Kong. It overcomes many limitations of conventional techniques and allows scheduling flexibility. We sought to evaluate its efficacy and safety in the Chinese population. METHODS: We retrospectively reviewed all Chinese women who underwent magnetic seed marker-guided breast lesion excision from June 2019 to February 2020 at a single institution. Placement success (final target-to-seed distance <10 mm) was evaluated by imaging on the day of surgery. Specimen radiographs and pathology reports were reviewed for magnetic seed markers and target removal. Margin clearance and re-excision rates were analysed. RESULTS: Twenty two magnetic seed markers were placed in 21 patients under sonographic or stereotactic guidance to localise 21 target lesions. One target lesion required two magnetic seed markers for bracketing. There was no migration of nine markers placed 6 to 56 days before the day of surgery. Placement success was achieved in 20 (90.9%) cases. Mean final target-to-seed distance was 3.1 mm. Two out of 21 (9.5%) lesions required alternative localisation due to marker migration ≥10 mm, while 19 (90.5%) lesions underwent successful magnetic seed marker-guided excision. Three of these 19 lesions (15.8%) were excised with therapeutic intent, one of which (33%) required re-excision due to a close margin. All 22 magnetic seed markers were successfully removed. No complications were reported. CONCLUSION: Magnetic seed markers demonstrated safety and efficacy in Chinese women for breast lesion localisation and excision.


Assuntos
Neoplasias da Mama/diagnóstico , Detecção Precoce de Câncer/métodos , Magnetometria/métodos , Adulto , Idoso , China , Detecção Precoce de Câncer/instrumentação , Feminino , Humanos , Fenômenos Magnéticos , Magnetometria/instrumentação , Imãs , Mamografia , Pessoa de Meia-Idade , Projetos Piloto , Estudos Retrospectivos
12.
Exp Oncol ; 42(3): 204-207, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32996742

RESUMO

AIM: In order to develop fundamentally new technologies for non-invasive and safer diagnosis of cancer, we aimed to detect non-contact magnetic signals from a malignant tumor in animals treated or not-treated with the ferromagnetic nanocomposite Ferroplat. MATERIALS AND METHODS: Guerin's carcinoma was used as a model of tumor growth. The biomagnetism of the tumor was evaluated in the dynamics of its growth. Ten days after tumor transplantation, Ferroplat was administered intravenously to half of the animals with the tumor and to half of the control animals. The magnitude of the magnetic signals was determined 1 h and every two days after administration of the nanocomposite using a Superconducting Quantum Interference Device magnetometer of the original design. RESULTS: We have found that the magnetic signals coming from the tumor are significantly higher compared to control tumor-free animals. Intravenous administration of a ferromagnetic nanocomposite (Ferroplat: Fe3O4 + cisplatinum) led to a significant increase of the magnetic signal, especially in the tumor tissue, and inhibition of Guerin's carcinoma growth. Ferromagnetic nanoparticles (32.7 nm) are retained in malignant cells for a longer time than in normal ones. CONCLUSION: Tumor cells accumulate iron nanoparticles more intensively than normal ones. Nanocomposite Ferroplat can be used for a targeted delivery of cisplatin to malignant cells.


Assuntos
Fenômenos Biofísicos , Carcinoma/diagnóstico , Imãs , Nanocompostos , Animais , Carcinoma/tratamento farmacológico , Cisplatino/química , Feminino , Magnetometria/instrumentação , Magnetometria/métodos , Magnetometria/normas , Neoplasias Experimentais , Radiossensibilizantes/química , Ratos , Razão Sinal-Ruído
13.
Sci Rep ; 10(1): 8344, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433580

RESUMO

Hallucinogens induce the head-twitch response (HTR), a rapid reciprocal head movement, in mice. Although head twitches are usually identified by direct observation, they can also be assessed using a head-mounted magnet and a magnetometer. Procedures have been developed to automate the analysis of magnetometer recordings by detecting events that match the frequency, duration, and amplitude of the HTR. However, there is considerable variability in the features of head twitches, and behaviors such as jumping have similar characteristics, reducing the reliability of these methods. We have developed an automated method that can detect head twitches unambiguously, without relying on features in the amplitude-time domain. To detect the behavior, events are transformed into a visual representation in the time-frequency domain (a scalogram), deep features are extracted using the pretrained convolutional neural network (CNN) ResNet-50, and then the images are classified using a Support Vector Machine (SVM) algorithm. These procedures were used to analyze recordings from 237 mice containing 11,312 HTR. After transformation to scalograms, the multistage CNN-SVM approach detected 11,244 (99.4%) of the HTR. The procedures were insensitive to other behaviors, including jumping and seizures. Deep learning based on scalograms can be used to automate HTR detection with robust sensitivity and reliability.


Assuntos
Técnicas de Observação do Comportamento/métodos , Alucinógenos/farmacologia , Movimentos da Cabeça/efeitos dos fármacos , Máquina de Vetores de Suporte , Animais , Técnicas de Observação do Comportamento/instrumentação , Comportamento Animal/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Magnetometria/instrumentação , Magnetometria/métodos , Imãs , Masculino , Camundongos , Modelos Animais , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Postgrad Med J ; 96(1141): 674-679, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32041826

RESUMO

BACKGROUND: Small peripheral pulmonary nodules, which are usually deep-seated with no visual markers on the pleural surface, are often difficult to locate during surgery. At present, CT-guided percutaneous techniques are used to locate pulmonary nodules, but this method has many limitations. Thus, we aimed to evaluate the accuracy and feasibility of electromagnetic navigational bronchoscopy (ENB) with pleural dye to locate small peripheral pulmonary nodules before video-associated thoracic surgery (VATS). METHODS: The ENB localisation procedure was performed under general anaesthesia in an operating room. Once the locatable guide wire, covered with a sheath, reached the ideal location, it was withdrawn and 0.2-1.0 mL of methylene blue/indocyanine green was injected through the guide sheath. Thereafter, 20-60 mL of air was instilled to disperse the dye to the pleura near the nodules. VATS was then performed immediately. RESULTS: Study subjects included 25 patients with 28 nodules. The mean largest diameter of the pulmonary nodules was 11.8 mm (range, 6.0-24.0 mm), and the mean distance from the nearest pleural surface was 13.4 mm (range, 2.5-34.9 mm). After the ENB-guided localisation procedure was completed, the dye was visualised in 23 nodules (82.1%) using VATS. The average duration of the ENB-guided pleural dye marking procedure was 12.6 min (range, 4-30 min). The resection margins were negative in all malignant nodules. Complications unrelated to the ENB-guided localisation procedure occurred in two patients, including one case of haemorrhage and one case of slow intraoperative heart rate. CONCLUSION: ENB can be used to safely and accurately locate small peripheral pulmonary nodules and guide surgical resection. TRIAL REGISTRATION NUMBER: ChiCTR1900021963.


Assuntos
Broncoscopia , Magnetometria/métodos , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulo Pulmonar Solitário/diagnóstico por imagem , Cirurgia Assistida por Computador/métodos , Cirurgia Torácica Vídeoassistida/métodos , Broncoscopia/instrumentação , Broncoscopia/métodos , Corantes/farmacologia , Precisão da Medição Dimensional , Campos Eletromagnéticos , Feminino , Humanos , Índigo Carmim/farmacologia , Masculino , Azul de Metileno/farmacologia , Pessoa de Meia-Idade , Nódulos Pulmonares Múltiplos/cirurgia , Cuidados Pré-Operatórios/métodos , Reprodutibilidade dos Testes , Nódulo Pulmonar Solitário/cirurgia
15.
Int J Mol Sci ; 21(3)2020 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-32024227

RESUMO

We report a highly compliant process for patterning nanoparticle arrays on micro- and nanomechanical devices. The distinctive step involves the single layer self-assembled nanoparticles on top of released nanomechanical devices. We demonstrate the process by fabricating sizable arrays of nanomechanical devices on silicon-on-insulator substrates, acting as nanomechanical torque magnetometers. Later, the nanoparticles were self-assembled in geometrical shapes on top of the devices by a unique combination of top-down and bottom-up methods. The self-assembled array of nanoparticles successfully showed a magnetic torque signal by magnetic actuation of the magnetometer. This patterning process can be generalized for any shape and for a wide range of nanoparticles on the nanomechanical resonators.


Assuntos
Nanopartículas de Magnetita/química , Magnetometria/instrumentação , Magnetometria/métodos , Nanotecnologia/métodos , Compostos de Silício/química , Torque , Nanotecnologia/instrumentação , Semicondutores
16.
Neuropharmacology ; 167: 107933, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31917152

RESUMO

Serotonergic hallucinogens such as lysergic acid diethylamide (LSD) induce head twitches in rodents via 5-HT2A receptor activation. The goal of the present investigation was to determine whether a correlation exists between the potency of hallucinogens in the mouse head-twitch response (HTR) paradigm and their reported potencies in other species, specifically rats and humans. Dose-response experiments were conducted with phenylalkylamine and tryptamine hallucinogens in C57BL/6J mice, enlarging the available pool of HTR potency data to 41 total compounds. For agents where human data are available (n = 36), a strong positive correlation (r = 0.9448) was found between HTR potencies in mice and reported hallucinogenic potencies in humans. HTR potencies were also found to be correlated with published drug discrimination ED50 values for substitution in rats trained with either LSD (r = 0.9484, n = 16) or 2,5-dimethoxy-4-methylamphetamine (r = 0.9564, n = 21). All three of these behavioral effects (HTR in mice, hallucinogen discriminative stimulus effects in rats, and psychedelic effects in humans) have been linked to 5-HT2A receptor activation. We present evidence that hallucinogens induce these three effects with remarkably consistent potencies. In addition to having high construct validity, the HTR assay also appears to show significant predictive validity, confirming its translational relevance for predicting subjective potency of hallucinogens in humans. These findings support the use of the HTR paradigm as a preclinical model of hallucinogen psychopharmacology and in structure-activity relationship studies of hallucinogens. Future investigations with a larger number of test agents will evaluate whether the HTR assay can be used to predict the hallucinogenic potency of 5-HT2A agonists in humans. "This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.


Assuntos
Aprendizagem por Discriminação/efeitos dos fármacos , Alucinógenos/administração & dosagem , Movimentos da Cabeça/efeitos dos fármacos , Magnetometria/métodos , Agonistas do Receptor 5-HT2 de Serotonina/administração & dosagem , Animais , Aprendizagem por Discriminação/fisiologia , Relação Dose-Resposta a Droga , Movimentos da Cabeça/fisiologia , Humanos , Magnetometria/instrumentação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Receptor 5-HT2A de Serotonina/fisiologia , Especificidade da Espécie
17.
IEEE Trans Med Imaging ; 39(4): 922-933, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31478841

RESUMO

We introduce a Magnetic Particle Imaging Susceptometer (MPIS) that uses a high-sensitivity atomic magnetometer (AM) for recording the spatial distribution of fluid-suspended magnetic nanoparticles. We have evaluated the MPIS performance by one-dimensional scans of structured nanoparticle phantoms, demonstrating, in particular, resolutions of ≈2.5 mm prior to deconvolution and << 1 mm after deconvolution. Our instrument conceptually follows the general principle of Magnetic Particle Imaging (MPI) for encoding spatial distributions into magnetic flux density variations. Conversely to previously demonstrated MPI methods, MPIS works in time-space by recording time series of the sample's magnetic response including all Fourier components. The device deploys a specifically designed system of coils, a low-frequency excitation scheme, and a simple source localization algorithm. The difference of the AM's frequency response with respect to the conventional receive coil detection allows us to work at much lower driving frequencies. We demonstrate operation at frequencies on the order of 100 Hz, enabling the beneficial use of larger nanoparticles. The spatial distribution encoded into the particles' susceptibility needs a much lower excitation field amplitude compared to conventional MPI scanners. These two features make MPIS least harmful for biological samples and subjects compared to conventional MPI scanners. We also address performance characteristics and other possible applications of MPIS.


Assuntos
Diagnóstico por Imagem/métodos , Nanopartículas de Magnetita/química , Magnetometria/métodos , Algoritmos , Desenho de Equipamento , Imagens de Fantasmas
18.
Clin Neurophysiol ; 130(11): 2114-2123, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31542709

RESUMO

OBJECTIVE: To visualize neural activity in the brachial plexus using magnetoneurography (MNG). METHODS: Using a 124- or 132-channel biomagnetometer system with a superconducting quantum interference device, neuromagnetic fields above the clavicle and neck region were recorded in response to electrical stimulation of the median and ulnar nerves in five asymptomatic volunteers (four men and one woman; age, 27-45 years old). Equivalent currents were computationally reconstructed from neuromagnetic fields and visualized as pseudocolor maps. Reconstructed currents at the depolarization site and compound nerve action potentials (CNAPs) at Erb's point were compared. RESULTS: Neuromagnetic fields were recorded in all subjects. The reconstructed equivalent currents propagated into the vertebral foramina, and the main inflow levels differed between the median nerve (C5/C6-C7/T1 vertebral foramen) and the ulnar nerve (C7/T1-T1/T2). The inward current peaks at the depolarization site and CNAPs showed high linear correlation. CONCLUSIONS: MNG visualizes neural activity in the brachial plexus and can differentiate the conduction pathways after median and ulnar nerve stimulations. In addition, it can visualize not only the leading and trailing components of intra-axonal currents, but also inward currents at the depolarization site. SIGNIFICANCE: MNG is a novel and promising functional imaging modality for the brachial plexus.


Assuntos
Plexo Braquial/diagnóstico por imagem , Magnetometria/métodos , Nervo Mediano/diagnóstico por imagem , Neurônios/fisiologia , Nervo Ulnar/diagnóstico por imagem , Potenciais de Ação/fisiologia , Adulto , Estimulação Elétrica , Feminino , Humanos , Campos Magnéticos , Masculino , Nervo Mediano/fisiologia , Pessoa de Meia-Idade , Condução Nervosa/fisiologia , Nervo Ulnar/fisiologia
19.
Hum Brain Mapp ; 40(15): 4357-4369, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31294909

RESUMO

Optically pumped magnetometers (OPMs) have reached sensitivity levels that make them viable portable alternatives to traditional superconducting technology for magnetoencephalography (MEG). OPMs do not require cryogenic cooling and can therefore be placed directly on the scalp surface. Unlike cryogenic systems, based on a well-characterised fixed arrays essentially linear in applied flux, OPM devices, based on different physical principles, present new modelling challenges. Here, we outline an empirical Bayesian framework that can be used to compare between and optimise sensor arrays. We perturb the sensor geometry (via simulation) and with analytic model comparison methods estimate the true sensor geometry. The width of these perturbation curves allows us to compare different MEG systems. We test this technique using simulated and real data from SQUID and OPM recordings using head-casts and scanner-casts. Finally, we show that given knowledge of underlying brain anatomy, it is possible to estimate the true sensor geometry from the OPM data themselves using a model comparison framework. This implies that the requirement for accurate knowledge of the sensor positions and orientations a priori may be relaxed. As this procedure uses the cortical manifold as spatial support there is no co-registration procedure or reliance on scalp landmarks.


Assuntos
Magnetometria/instrumentação , Modelos Teóricos , Algoritmos , Teorema de Bayes , Simulação por Computador , Estimulação Elétrica , Desenho de Equipamento , Potenciais Somatossensoriais Evocados/fisiologia , Cabeça/anatomia & histologia , Humanos , Funções Verossimilhança , Magnetoencefalografia/instrumentação , Magnetometria/métodos , Magnetometria/estatística & dados numéricos , Manequins , Cadeias de Markov , Nervo Mediano/fisiologia , Dispositivos Ópticos
20.
Epilepsy Res ; 155: 106151, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31247475

RESUMO

OBJECTIVE: Resective surgery is the most effective treatment option for patients with refractory epilepsy; however identification of patients who will benefit from epilepsy surgery remains challenging. Synthetic aperture magnetometry and excess kurtosis mapping (SAM(g2)) of magnetoencephalography (MEG) is a non-invasive tool that warrants further examination in the pediatric epilepsy population. Here, we examined the utility of MEG with SAM(g2) to determine if MEG epileptiform foci correlates with surgical outcome and to develop a predictive model incorporating MEG information to best assess likelihood of seizure improvement/freedom from resective surgery. METHODS: 564 subjects who had MEG at the Children's Hospital of Philadelphia between 2010-2015 were screened. Clinical epilepsy history and prior electrographic records were extracted and reviewed and correlated with MEG findings. MEG assessments were made by both a neurologist and neuroradiologist. Predictive models were developed to assess the utility of MEG in determining Engel class at one year and five years after resective epilepsy surgery. RESULTS: The number of MEG spike foci was highly associated with Engel class outcome at both one year and five years; however, using MEG data in isolation was not significantly predictive of 5 year surgical outcome. When combined with clinical factors; scalp EEG (single ictal onset zone), MRI (lesional or not), age and sex in a logistic regression model MEG foci was significant for Engel class outcome at both 1 year (p = 0.03) and 5 years (0.02). The percent correctly classified for Engel class at one year was 78.43% and the positive predictive value was 71.43. SIGNIFICANCE: MEG using SAM(g2) analysis in an important non-invasive tool in the identification of those patients who will benefit most from surgery. Integrating MEG data analysis into pre-surgical evaluation can help to predict epilepsy outcome after resective surgery in the pediatric population if utilized with skilled interpretation.


Assuntos
Encéfalo/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Magnetoencefalografia/métodos , Magnetometria/métodos , Adolescente , Encéfalo/cirurgia , Criança , Pré-Escolar , Epilepsia/cirurgia , Feminino , Humanos , Masculino , Procedimentos Neurocirúrgicos , Prognóstico , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA