Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Ecol ; 33(8): e17329, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533805

RESUMO

Patterns of pathogen prevalence are, at least partially, the result of coevolutionary host-pathogen interactions. Thus, exploring the distribution of host genetic variation in relation to infection by a pathogen within and across populations can provide important insights into mechanisms of host defence and adaptation. Here, we use a landscape genomics approach (Bayenv) in conjunction with genome-wide data (ddRADseq) to test for associations between avian malaria (Plasmodium) prevalence and host genetic variation across 13 populations of the island endemic Berthelot's pipit (Anthus berthelotii). Considerable and consistent spatial heterogeneity in malaria prevalence was observed among populations over a period of 15 years. The prevalence of malaria infection was also strongly positively correlated with pox (Avipoxvirus) prevalence. Multiple host loci showed significant associations with malaria prevalence after controlling for genome-wide neutral genetic structure. These sites were located near to or within genes linked to metabolism, stress response, transcriptional regulation, complement activity and the inflammatory response, many previously implicated in vertebrate responses to malarial infection. Our findings identify diverse genes - not just limited to the immune system - that may be involved in host protection against malaria and suggest that spatially variable pathogen pressure may be an important evolutionary driver of genetic divergence among wild animal populations, such as Berthelot's pipit. Furthermore, our data indicate that spatio-temporal variation in multiple different pathogens (e.g. malaria and pox in this case) may have to be studied together to develop a more holistic understanding of host pathogen-mediated evolution.


Assuntos
Malária Aviária , Passeriformes , Plasmodium , Animais , Malária Aviária/epidemiologia , Malária Aviária/genética , Plasmodium/genética , Deriva Genética , Passeriformes/genética , Genótipo
2.
J Hered ; 114(4): 326-340, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-36869776

RESUMO

The unprecedented rise in the number of new and emerging infectious diseases in the last quarter century poses direct threats to human and wildlife health. The introduction to the Hawaiian archipelago of Plasmodium relictum and the mosquito vector that transmits the parasite has led to dramatic losses in endemic Hawaiian forest bird species. Understanding how mechanisms of disease immunity to avian malaria may evolve is critical as climate change facilitates increased disease transmission to high elevation habitats where malaria transmission has historically been low and the majority of the remaining extant Hawaiian forest bird species now reside. Here, we compare the transcriptomic profiles of highly susceptible Hawai'i 'amakihi (Chlorodrepanis virens) experimentally infected with P. relictum to those of uninfected control birds from a naïve high elevation population. We examined changes in gene expression profiles at different stages of infection to provide an in-depth characterization of the molecular pathways contributing to survival or mortality in these birds. We show that the timing and magnitude of the innate and adaptive immune response differed substantially between individuals that survived and those that succumbed to infection, and likely contributed to the observed variation in survival. These results lay the foundation for developing gene-based conservation strategies for Hawaiian honeycreepers by identifying candidate genes and cellular pathways involved in the pathogen response that correlate with a bird's ability to recover from malaria infection.


Assuntos
Malária Aviária , Passeriformes , Animais , Humanos , Malária Aviária/genética , Malária Aviária/epidemiologia , Malária Aviária/parasitologia , Havaí/epidemiologia , Passeriformes/genética , Expressão Gênica , Imunidade
3.
Mol Ecol ; 32(4): 904-919, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36448733

RESUMO

Plasmodium relictum is the most widespread avian malaria parasite in the world. It is listed as one of the 100 most dangerous invasive species, having been responsible for the extinction of several endemic bird species, and the near-demise of several others. Here we present the first transcriptomic study focused on the effect of P. relictum on the immune system of its vector (the mosquito Culex quinquefasciatus) at different times post-infection. We show that over 50% of immune genes identified as being part of the Toll pathway and 30%-40% of the immune genes identified within the Imd pathway are overexpressed during the critical period spanning the parasite's oocyst and sporozoite formation (8-12 days), revealing the crucial role played by both these pathways in this natural mosquito-Plasmodium combination. Comparison of infected mosquitoes with their uninfected counterparts also revealed some unexpected immune RNA expression patterns earlier and later in the infection: significant differences in expression of several immune effectors were observed as early as 30 min after ingestion of the infected blood meal. In addition, in the later stages of the infection (towards the end of the mosquito lifespan), we observed an unexpected increase in immune investment in uninfected, but not in infected, mosquitoes. In conclusion, our work extends the comparative transcriptomic analyses of malaria-infected mosquitoes beyond human and rodent parasites and provides insights into the degree of conservation of immune pathways and into the selective pressures exerted by Plasmodium parasites on their vectors.


Assuntos
Culex , Malária Aviária , Plasmodium , Animais , Humanos , Malária Aviária/genética , Malária Aviária/parasitologia , Culex/genética , Mosquitos Vetores/genética , Plasmodium/genética , Expressão Gênica
4.
Genomics ; 113(4): 2327-2337, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34023365

RESUMO

The malaria parasite Plasmodium relictum is one of the most widespread species of avian malaria. As in the case of its human counterparts, bird Plasmodium undergoes a complex life cycle infecting two hosts: the arthropod vector and the vertebrate host. In this study, we examined transcriptomes of P. relictum (SGS1) during crucial timepoints within its vector, Culex pipiens quinquefasciatus. Differential gene-expression analyses identified genes linked to the parasites life-stages at: i) a few minutes after the blood meal is ingested, ii) during peak oocyst production phase, iii) during peak sporozoite phase and iv) during the late-stages of the infection. A large amount of genes coding for functions linked to host-immune invasion and multifunctional genes was active throughout the infection cycle. One gene associated with a conserved Plasmodium membrane protein with unknown function was upregulated throughout the parasite development in the vector, suggesting an important role in the successful completion of the sporogonic cycle. Gene expression analysis further identified genes, with unknown functions to be significantly differentially expressed during the infection in the vector as well as upregulation of reticulocyte-binding proteins, which raises the possibility of the multifunctionality of these RBPs. We establish the existence of highly stage-specific pathways being overexpressed during the infection. This first study of gene-expression of a non-human Plasmodium species in its vector provides a comprehensive insight into the molecular mechanisms of the common avian malaria parasite P. relictum and provides essential information on the evolutionary diversity in gene regulation of the Plasmodium's vector stages.


Assuntos
Culex , Malária Aviária , Parasitos , Plasmodium , Animais , Culex/genética , Culex/parasitologia , Malária Aviária/genética , Mosquitos Vetores/parasitologia , Plasmodium/genética
5.
Malar J ; 18(1): 129, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30971233

RESUMO

BACKGROUND: Avian haemosporidia are obligate blood parasites with an ample range of hosts worldwide. To understand how host communities may influence the diversity of parasites of the neotropics, the spatial genetic variation of avian Plasmodium, Haemoproteus, and Leucocytozoon was examined between areas of host endemism and along the elevational gradient in the tropical Andes. METHODS: A total of 1686 accessions of the cytochrome b gene of avian haemosporidia were selected from 43 publications, that further provides additional information on 14.2% of bird species in the Neotropics. Haplotype groups were identified using a similarity-based clustering of sequences using a cut-off level ≥ 99.3% of sequence identity. Phylogenetic-based analyses were implemented to examine the spatial genetic structure of avian haemosporidia among areas of host endemism and the elevation gradient in the tropical Andes. RESULTS: The areas of avian endemism, including the tropical Andes, can explain the differential distribution of the haemosporidia cytochrome b gene variation. In the tropical Andes region, the total number of avian haemosporidia haplotypes follows a unimodal pattern that peaks at mid-elevation between 2000 and 2500 m above sea level. Furthermore, the haplotype assemblages of obligate blood parasites tend to overlap towards mid-elevation, where avian host diversity tends to be maximized. CONCLUSIONS: Spatial analyses revealed that richness and turnover in haemosporidia suggest an association with montane host diversity, according to elevation in the tropical Andes. In addition, the spatial distribution of haemosporidia diversity is closely associated with patterns of host assemblages over large geographical scale in the tropical Andes and areas of avian endemism nearby.


Assuntos
Aves , Variação Genética , Haemosporida/genética , Malária Aviária/genética , Altitude , Animais , Biota , Plasmodium/genética , América do Sul
6.
Naturwissenschaften ; 106(1-2): 6, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30701351

RESUMO

Parasitic infections potentially drive host's life-histories since they can have detrimental effects on host's fitness. Telomere dynamics is a candidate mechanism to underlie life-history trade-offs and as such may correlate with observed fitness reduction in infected animals. We examined the relationship of chronic infection with two genera of haemosporidians causing avian malaria and malaria-like disease with host's telomere length (TL) in a longitudinal study of free-ranging blue tits. The observed overall infection prevalence was 80% and increased with age, constituting a potentially serious selective pressure in our population. We found longer telomeres in individuals infected with a parasite causing lesser blood pathologies i.e. Haemoproteus compared to Plasmodium genus, but this only held true among males. Female TL was independent of the infection type. Our results indicate that parasitic infections could bring about other types of costs to females than to males with respect to TL. Additionally, we detected linear telomere loss with age, however a random regression analysis did not confirm significant heterogeneity in TL of first breeders and telomere shortening rates in further life.


Assuntos
Haemosporida/fisiologia , Malária Aviária/fisiopatologia , Passeriformes/genética , Infecções Protozoárias em Animais/fisiopatologia , Telômero/fisiologia , Fatores Etários , Envelhecimento/fisiologia , Animais , Feminino , Ilhas/epidemiologia , Modelos Lineares , Estudos Longitudinais , Malária Aviária/epidemiologia , Malária Aviária/genética , Malária Aviária/parasitologia , Masculino , Prevalência , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/genética , Infecções Protozoárias em Animais/parasitologia , Análise de Regressão , Fatores Sexuais , Suécia/epidemiologia
7.
Mol Ecol ; 28(3): 568-583, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30298567

RESUMO

Adaptation in nature is ubiquitous, yet characterizing its genomic basis is difficult because population demographics cause correlations with nonadaptive loci. Introduction events provide opportunities to observe adaptation over known spatial and temporal scales, facilitating the identification of genes involved in adaptation. The pathogen causing avian malaria, Plasmodium relictum, was introduced to Hawai'i in the 1930s and elicited extinctions and precipitous population declines in native honeycreepers. After a sharp initial population decline, the Hawai'i 'amakihi (Chlorodrepanis virens) has evolved tolerance to the parasite at low elevations where P. relictum exists, and can sustain infection without major fitness consequences. High-elevation, unexposed populations of 'amakihi display little to no tolerance. To explore the genomic basis of adaptation to P. relictum in low-elevation 'amakihi, we genotyped 125 'amakihi from the island of Hawai'i via hybridization capture to 40,000 oligonucleotide baits containing SNPs and used the reference 'amakihi genome to identify genes potentially under selection from malaria. We tested for outlier loci between low- and high-elevation population pairs and identified loci with signatures of selection within low-elevation populations. In some cases, genes commonly involved in the immune response (e.g., major histocompatibility complex) were associated with malaria presence in the population. We also detected several novel candidate loci that may be implicated in surviving malaria infection (e.g., beta-defensin, glycoproteins and interleukin-related genes). Our results suggest that rapid adaptation to pathogens may occur through changes in different immune genes, but in the same classes of genes, across populations.


Assuntos
Evolução Molecular , Genética Populacional , Malária Aviária/genética , Passeriformes/genética , Passeriformes/parasitologia , Adaptação Biológica/genética , Altitude , Animais , Resistência à Doença/genética , Aptidão Genética , Genótipo , Havaí , Polimorfismo de Nucleotídeo Único , Seleção Genética
8.
Genomics ; 111(6): 1815-1823, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30553810

RESUMO

Parasites of the genus Plasmodium infect a wide array of hosts, causing malaria in all major groups of terrestrial vertebrates including primates, reptiles, and birds. Molecular mechanisms explaining why some Plasmodium species are virulent, while other closely related malaria pathogens are relatively benign in the same hosts, remain unclear. Here, we present the RNA sequencing and subsequent transcriptome assembly of two avian Plasmodium parasites which can eventually be used to better understand the genetic mechanisms underlying Plasmodium species pathogenicity in an avian host. Plasmodium homocircumflexum, a cryptic, pathogenic species that often causes mortality and Plasmodium delichoni, a newly described, relatively benign malaria parasite that does not kill its hosts, were used to experimentally infect two Eurasian siskins (Carduelis spinus). RNA extractions were performed and RNA sequencing was completed using high throughput Illumina sequencing. Using established bioinformatics pipelines, the sequencing data from both species were used to generate transcriptomes using published Plasmodium species genomes as a scaffold. The finalized transcriptome of P. homocircumflexum contained 21,612 total contigs while that of P. delichoni contained 12,048 contigs. We were able to identify many genes implicated in erythrocyte invasion actively expressed in both P. homocircumflexum and P. delichoni, including the well described vaccine candidates Apical Membrane Antigen-1 (AMA-1) and Merozoite Surface Protein 1 (MSP1). This work acts as a stepping stone to increase available data on avian Plasmodium parasites, thus enabling future research into the evolution of pathogenicity in malaria.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Malária Aviária/genética , Plasmodium/genética , RNA de Protozoário/genética , Análise de Sequência de RNA , Transcriptoma , Animais , Aves/parasitologia
9.
Genome Res ; 28(4): 547-560, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29500236

RESUMO

Avian malaria parasites are prevalent around the world and infect a wide diversity of bird species. Here, we report the sequencing and analysis of high-quality draft genome sequences for two avian malaria species, Plasmodium relictum and Plasmodium gallinaceum We identify 50 genes that are specific to avian malaria, located in an otherwise conserved core of the genome that shares gene synteny with all other sequenced malaria genomes. Phylogenetic analysis suggests that the avian malaria species form an outgroup to the mammalian Plasmodium species, and using amino acid divergence between species, we estimate the avian- and mammalian-infective lineages diverged in the order of 10 million years ago. Consistent with their phylogenetic position, we identify orthologs of genes that had previously appeared to be restricted to the clades of parasites containing Plasmodium falciparum and Plasmodium vivax, the species with the greatest impact on human health. From these orthologs, we explore differential diversifying selection across the genus and show that the avian lineage is remarkable in the extent to which invasion-related genes are evolving. The subtelomeres of the P. relictum and P. gallinaceum genomes contain several novel gene families, including an expanded surf multigene family. We also identify an expansion of reticulocyte binding protein homologs in P. relictum, and within these proteins, we detect distinct regions that are specific to nonhuman primate, humans, rodent, and avian hosts. For the first time in the Plasmodium lineage, we find evidence of transposable elements, including several hundred fragments of LTR-retrotransposons in both species and an apparently complete LTR-retrotransposon in the genome of P. gallinaceum.


Assuntos
Malária Aviária/genética , Plasmodium falciparum/genética , Plasmodium vivax/genética , Plasmodium/genética , Animais , Aves/parasitologia , Evolução Molecular , Humanos , Malária Aviária/parasitologia , Mamíferos/parasitologia , Filogenia , Plasmodium/patogenicidade , Plasmodium falciparum/patogenicidade , Plasmodium vivax/patogenicidade
10.
Avian Dis ; 62(4): 351-354, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31119918

RESUMO

Domesticated Australian and Timor zebra finches (Taeniopygia guttata castanotis and Taeniopygia guttata guttata, respectively) were inoculated with canary (Serinus canaria) blood containing a Hawaiian isolate of Plasmodium relictum (lineage GRW04), a hemoparasite that causes avian malaria. In two experimental trials, TZFs but not AZFs developed parasitemia that was detected by microscopic examination of blood smears. In the second trial, in which molecular detection methods were used, a single AZF and five of six challenged TZFs were positive for the parasite. Additionally, P. relictum DNA was detected in multiple blood samples obtained from TZFs over the 28 days following challenge. TZFs may provide a useful, easily maintained, laboratory model for the study of Plasmodium interactions in passerines but are still inferior to canaries, the traditionally used model of avian malaria infection, in terms of supporting high-parasitemia infections.


Nota de investigación- Diferencias poblacionales en la susceptibilidad a Plasmodium relictum en diamantes cebra Taeniopygia guttata. Se inocularon diamantes cebra de Australia y de Timor (Taeniopygia guttata castanotis y Taeniopygia guttata guttata, respectivamente) con sangre de canario silvestre (Serinus canaria) que contenía un aislado hawaiano de Plasmodium relictum (linaje GRW04), que es un hemoparásito que causa la malaria aviar. En dos ensayos experimentales, los diamantes cebra de Timor desarrollaron una parasitemia detectada mediante un examen microscópico de frotis de sangre, pero los diamantes cebra australianos no desarrollaron dicha parasitemia. En el segundo ensayo, en el que se utilizaron métodos de detección molecular, un solo pinzón australiano y cinco de las seis aves de Timor desafiadas resultaron positivas para el parásito. Además, se detectó el ADN de P. relictum en múltiples muestras de sangre obtenidas de las aves de Timor durante 28 días posteriores al desafío. Los diamantes cebra de Timor pueden proporcionar un modelo de laboratorio útil y de fácil mantenimiento para el estudio de las interacciones de Plasmodium en passeriformes, pero áun son inferiores en comparación con los canarios, que son utilizados como modelo de infección por malaria aviar tradicionalmente usado en términos de apoyo a las infecciones con alta parasitemia.


Assuntos
Tentilhões/genética , Predisposição Genética para Doença , Malária Aviária/genética , Malária Aviária/parasitologia , Plasmodium , Animais , DNA de Protozoário/sangue , DNA de Protozoário/isolamento & purificação , Malária Aviária/sangue , Parasitemia/sangue , Parasitemia/parasitologia , Parasitemia/veterinária
11.
Biol Lett ; 12(12)2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28003524

RESUMO

Individual genetic diversity is predicted to influence host-parasite interactions. Together with the genes directly associated with immune responses, variation in genes regulating vertebrate melanin-based pigmentation may play an important role in these interactions, mainly through the pleiotropic effects that affect colour-specific physiology, behaviour and immunity. Here, we test the hypothesis that the prevalence of avian malarial parasites differs between phenotypes in a raptor species in which the genetic basis of colour polymorphism and its pleiotropic effects over immune functions are known. We found that dark morphs had a higher prevalence of Plasmodium parasites than pale ones but detected no such association for Haemoproteus This pattern may be associated with unequal exposure to vectors or, as suggested by our circumstantial evidence, to a differential ability to mount an immune response against blood parasites.


Assuntos
Falconiformes/genética , Falconiformes/parasitologia , Malária Aviária/parasitologia , Plasmodium/genética , Animais , Falconiformes/imunologia , Feminino , Genoma de Protozoário , Haemosporida/genética , Malária Aviária/epidemiologia , Malária Aviária/genética , Masculino , Pigmentação/genética , Polimorfismo Genético , Prevalência , Espanha
12.
Mol Ecol ; 25(17): 4234-46, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27411090

RESUMO

Understanding the spatial scale at which selection acts upon adaptive genetic variation in natural populations is fundamental to our understanding of evolutionary ecology, and has important ramifications for conservation. The environmental factors to which individuals of a population are exposed can vary at fine spatial scales, potentially generating localized patterns of adaptation. Here, we compared patterns of neutral and major histocompatibility complex (MHC) variation within an island population of Berthelot's pipit (Anthus berthelotii) to assess whether landscape-level differences in pathogen-mediated selection generate fine-scale spatial structuring in these immune genes. Specifically, we tested for spatial associations between the distribution of avian malaria, and the factors previously shown to influence that distribution, and MHC variation within resident individuals. Although we found no overall genetic structure across the population for either neutral or MHC loci, we did find localized associations between environmental factors and MHC variation. One MHC class I allele (ANBE48) was directly associated with malaria infection risk, while the presence of the ANBE48 and ANBE38 alleles within individuals correlated (positively and negatively, respectively) with distance to the nearest poultry farm, an anthropogenic factor previously shown to be an important determinant of disease distribution in the study population. Our findings highlight the importance of considering small spatial scales when studying the patterns and processes involved in evolution at adaptive loci.


Assuntos
Evolução Molecular , Variação Genética , Genética Populacional , Malária Aviária/genética , Passeriformes/genética , Passeriformes/imunologia , Animais , Meio Ambiente , Ilhas , Complexo Principal de Histocompatibilidade/genética , Seleção Genética
13.
Mol Biol Evol ; 32(5): 1255-67, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25636457

RESUMO

Malaria parasites are highly virulent pathogens which infect a wide range of vertebrates. Despite their importance, the way different hosts control and suppress malaria infections remains poorly understood. With recent developments in next-generation sequencing techniques, however, it is now possible to quantify the response of the entire transcriptome to infections. We experimentally infected Eurasian siskins (Carduelis spinus) with avian malaria parasites (Plasmodium ashfordi), and used high-throughput RNA-sequencing to measure the avian transcriptome in blood collected before infection (day 0), during peak parasitemia (day 21 postinfection), and when parasitemia was decreasing (day 31). We found considerable differences in the transcriptomes of infected and uninfected individuals, with a large number of genes differentially expressed during both peak and decreasing parasitemia stages. These genes were overrepresented among functions involved in the immune system, stress response, cell death regulation, metabolism, and telomerase activity. Comparative analyses of the differentially expressed genes in our study to those found in other hosts of malaria (human and mouse) revealed a set of genes that are potentially involved in highly conserved evolutionary responses to malaria infection. By using RNA-sequencing we gained a more complete view of the host response, and were able to pinpoint not only well-documented host genes but also unannotated genes with clear significance during infection, such as microRNAs. This study shows how the avian blood transcriptome shifts in response to malaria infection, and we believe that it will facilitate further research into the diversity of molecular mechanisms that hosts utilize to fight malaria infections.


Assuntos
Malária Aviária/genética , MicroRNAs/biossíntese , Transcriptoma/genética , Animais , Regulação da Expressão Gênica , Malária Aviária/sangue , Malária Aviária/parasitologia , MicroRNAs/sangue , MicroRNAs/genética , Passeriformes/sangue , Passeriformes/genética , Passeriformes/parasitologia , Plasmodium/genética , Plasmodium/patogenicidade
15.
Science ; 347(6220): 436-8, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613889

RESUMO

Recovery from infection is not always complete, and mild chronic infection may persist. Although the direct costs of such infections are apparently small, the potential for any long-term effects on Darwinian fitness is poorly understood. In a wild population of great reed warblers, we found that low-level chronic malaria infection reduced life span as well as the lifetime number and quality of offspring. These delayed fitness effects of malaria appear to be mediated by telomere degradation, a result supported by controlled infection experiments on birds in captivity. The results of this study imply that chronic infection may be causing a series of small adverse effects that accumulate and eventually impair phenotypic quality and Darwinian fitness.


Assuntos
Envelhecimento/genética , Aptidão Genética , Malária Aviária/genética , Malária Aviária/fisiopatologia , Malária/veterinária , Aves Canoras/parasitologia , Homeostase do Telômero/genética , Animais , Cruzamento , Malária/genética , Malária/fisiopatologia , Plasmodium , Aves Canoras/genética , Aves Canoras/fisiologia
16.
Am Nat ; 184(5): 624-35, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25325746

RESUMO

How specialization of consumers with respect to resources varies with respect to latitude is poorly understood. Coexistence of many species in the tropics might be possible only if specialization also increases. Alternatively, lower average abundance of more diverse biotic resources in the tropics might force consumers to become more generalized foragers. We examine levels of reciprocal specialization in an antagonistic system-avian malaria-to determine whether the number of host species used and/or parasite lineages harbored differ between a temperate and a tropical assemblage. We evaluate the results of network analysis, which can incorporate both bird and parasite perspectives on specialization in one quantitative index, in comparison to null models. Specialization was significantly greater in both sample sites than predicted from null models. We found evidence for lower per-host species parasite diversity in temperate compared to tropical birds. However, specialization did not differ between the tropical and temperate sites from the parasite perspective. We supplemented the network analysis with estimates of specialization that incorporate phylogenetic relationships of associates and found no differences between sites. Thus, our analyses indicate that specialization within an antagonistic host-parasite (resource-consumer) system varies little between tropical and temperate localities.


Assuntos
Aves/parasitologia , Haemosporida/genética , Malária Aviária/epidemiologia , Animais , Equador , Variação Genética , Malária Aviária/genética , Missouri , Filogenia , Especificidade da Espécie , Clima Tropical
17.
J Evol Biol ; 27(11): 2468-82, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25264126

RESUMO

Understanding the importance of host genetic diversity for coping with parasites and infectious diseases is a long-standing goal in evolutionary biology. Here, we study the association between probability of infection by avian malaria (Plasmodium relictum) and individual genetic diversity in three blue tit (Cyanistes caeruleus) populations that strongly differ in prevalence of this parasite. For this purpose, we screened avian malaria infections and genotyped 789 blue tits across 26 microsatellite markers. We used two different arrays of markers: 14 loci classified as neutral and 12 loci classified as putatively functional. We found a significant relationship between probability of infection and host genetic diversity estimated at the subset of neutral markers that was not explained by strong local effects and did not differ among the studied populations. This relationship was not linear, and probability of infection increased up to values of homozygosity by locus (HL) around 0.15, reached a plateau at values of HL from 0.15 to 0.40 and finally declined among a small proportion of highly homozygous individuals (HL > 0.4). We did not find evidence for significant identity disequilibrium, which may have resulted from a low variance of inbreeding in the study populations and/or the small power of our set of markers to detect it. A combination of subtle positive and negative local effects and/or a saturation threshold in the association between probability of infection and host genetic diversity in combination with increased resistance to parasites in highly homozygous individuals may explain the observed negative quadratic relationship. Overall, our study highlights that parasites play an important role in shaping host genetic variation and suggests that the use of large sets of neutral markers may be more appropriate for the study of heterozygosity-fitness correlations.


Assuntos
Malária Aviária/genética , Passeriformes/genética , Passeriformes/parasitologia , Animais , Evolução Molecular , Feminino , Variação Genética , Genética Populacional , Genótipo , Heterozigoto , Interações Hospedeiro-Parasita/genética , Endogamia , Masculino , Repetições de Microssatélites , Dados de Sequência Molecular , Plasmodium/patogenicidade , Espanha
18.
J Anim Ecol ; 83(5): 1091-102, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24527958

RESUMO

How the environment influences the transmission and prevalence of disease in a population of hosts is a key aspect of disease ecology. The role that environmental factors play in host-pathogen systems has been well studied at large scales, that is, differences in pathogen pressures among separate populations of hosts or across land masses. However, despite considerable understanding of how environmental conditions vary at fine spatial scales, the effect of these parameters on host-pathogen dynamics at such scales has been largely overlooked. Here, we used a combination of molecular screening and GIS-based analysis to investigate how environmental factors determine the distribution of malaria across the landscape in a population of Berthelot's pipit (Anthus berthelotii, Bolle 1862) on the island of Tenerife (Canary Islands, Spain) using spatially explicit models that account for spatial autocorrelation. Minimum temperature of the coldest month was found to be the most important predictor of malaria infection at the landscape scale across this population. Additionally, anthropogenic factors such as distance to artificial water reservoirs and distance to poultry farms were important predictors of malaria. A model including these factors, and the interaction between distance to artificial water reservoirs and minimum temperature, best explained the distribution of malaria infection in this system. These results suggest that levels of malaria infection in this endemic species may be artificially elevated by the impact of humans. Studies such as the one described here improve our understanding of how environmental factors, and their heterogeneity, affect the distribution of pathogens within wild populations. The results demonstrate the importance of measuring fine-scale variation - and not just regional effects - to understand how environmental variation can influence wildlife diseases. Such understanding is important for predicting the future spread and impact of disease and may help inform disease management programmes as well as the conservation of specific host species.


Assuntos
Doenças das Aves/parasitologia , Clima , Haemosporida/isolamento & purificação , Malária Aviária/epidemiologia , Passeriformes/parasitologia , Plasmodium/isolamento & purificação , Criação de Animais Domésticos , Animais , Ecossistema , Feminino , Sistemas de Informação Geográfica , Haemosporida/genética , Atividades Humanas , Malária Aviária/genética , Masculino , Passeriformes/genética , Plasmodium/genética , Lagoas , Aves Domésticas , Espanha , Temperatura
19.
Evolution ; 67(12): 3488-500, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24299402

RESUMO

Individuals are typically not randomly distributed in space; consequently ecological and evolutionary theory depends heavily on understanding the spatial structure of populations. The central challenge of landscape genetics is therefore to link spatial heterogeneity of environments to population genetic structure. Here, we employ multivariate spatial analyses to identify environmentally induced genetic structures in a single breeding population of 1174 great tits Parus major genotyped at 4701 single-nucleotide polymorphism (SNP) loci. Despite the small spatial scale of the study relative to natal dispersal, we found multiple axes of genetic structure. We built distance-based Moran's eigenvector maps to identify axes of pure spatial variation, which we used for spatial correction of regressions between SNPs and various external traits known to be related to fitness components (avian malaria infection risk, local density of conspecifics, oak tree density, and altitude). We found clear evidence of fine-scale genetic structure, with 21, seven, and nine significant SNPs, respectively, associated with infection risk by two species of avian malaria (Plasmodium circumflexum and P. relictum) and local conspecific density. Such fine-scale genetic structure relative to dispersal capabilities suggests ecological and evolutionary mechanisms maintain within-population genetic diversity in this population with the potential to drive microevolutionary change.


Assuntos
Migração Animal , Passeriformes/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Meio Ambiente , Evolução Molecular , Malária Aviária/epidemiologia , Malária Aviária/genética , Modelos Genéticos , Passeriformes/parasitologia , Filogeografia , Plasmodium/patogenicidade , Fatores de Risco
20.
PLoS One ; 8(8): e72647, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023631

RESUMO

Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC) molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load) and infection status (infected or not). It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Interações Hospedeiro-Parasita/imunologia , Malária Aviária/imunologia , Malária Aviária/parasitologia , Passeriformes/imunologia , Passeriformes/parasitologia , Envelhecimento/imunologia , Alelos , Animais , Frequência do Gene/genética , Antígenos de Histocompatibilidade Classe I/genética , Malária Aviária/epidemiologia , Malária Aviária/genética , Passeriformes/genética , Passeriformes/crescimento & desenvolvimento , Suécia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA