Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.131
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2401738121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743623

RESUMO

Studies have determined that nonredox enzymes that are cofactored with Fe(II) are the most oxidant-sensitive targets inside Escherichia coli. These enzymes use Fe(II) cofactors to bind and activate substrates. Because of their solvent exposure, the metal can be accessed and oxidized by reactive oxygen species, thereby inactivating the enzyme. Because these enzymes participate in key physiological processes, the consequences of stress can be severe. Accordingly, when E. coli senses elevated levels of H2O2, it induces both a miniferritin and a manganese importer, enabling the replacement of the iron atom in these enzymes with manganese. Manganese does not react with H2O2 and thereby preserves enzyme activity. In this study, we examined several diverse microbes to identify the metal that they customarily integrate into ribulose-5-phosphate 3-epimerase, a representative of this enzyme family. The anaerobe Bacteroides thetaiotaomicron, like E. coli, uses iron. In contrast, Bacillus subtilis and Lactococcus lactis use manganese, and Saccharomyces cerevisiae uses zinc. The latter organisms are therefore well suited to the oxidizing environments in which they dwell. Similar results were obtained with peptide deformylase, another essential enzyme of the mononuclear class. Strikingly, heterologous expression experiments show that it is the metal pool within the organism, rather than features of the protein itself, that determine which metal is incorporated. Further, regardless of the source organism, each enzyme exhibits highest turnover with iron and lowest turnover with zinc. We infer that the intrinsic catalytic properties of the metal cannot easily be retuned by evolution of the polypeptide.


Assuntos
Escherichia coli , Ferro , Manganês , Manganês/metabolismo , Ferro/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Peróxido de Hidrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Zinco/metabolismo , Lactococcus lactis/enzimologia , Lactococcus lactis/metabolismo , Oxirredução , Metais/metabolismo
2.
Nat Commun ; 15(1): 4012, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740774

RESUMO

cGAS activates innate immune responses against cytosolic double-stranded DNA. Here, by determining crystal structures of cGAS at various reaction stages, we report a unifying catalytic mechanism. apo-cGAS assumes an array of inactive conformations and binds NTPs nonproductively. Dimerization-coupled double-stranded DNA-binding then affixes the active site into a rigid lock for productive metal•substrate binding. A web-like network of protein•NTP, intra-NTP, and inter-NTP interactions ensures the stepwise synthesis of 2'-5'/3'-5'-linked cGAMP while discriminating against noncognate NTPs and off-pathway intermediates. One divalent metal is sufficient for productive substrate binding, and capturing the second divalent metal is tightly coupled to nucleotide and linkage specificities, a process which manganese is preferred over magnesium by 100-fold. Additionally, we elucidate how mouse cGAS achieves more stringent NTP and linkage specificities than human cGAS. Together, our results reveal that an adaptable, yet precise lock-and-key-like mechanism underpins cGAS catalysis.


Assuntos
Nucleotídeos Cíclicos , Nucleotidiltransferases , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/química , Animais , Humanos , Camundongos , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/química , DNA/metabolismo , DNA/química , Magnésio/metabolismo , Magnésio/química , Domínio Catalítico , Cristalografia por Raios X , Manganês/química , Manganês/metabolismo , Especificidade por Substrato , Modelos Moleculares , Ligação Proteica
3.
Mar Genomics ; 75: 101107, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735672

RESUMO

Previously studies have reported that MAGs (Metagenome-assembled genomes) belong to "Candidatus Manganitrophaceae" of phylum Nitrospirota with chemolithoautotrophic manganese oxidation potential exist in freshwater and hydrothermal environments. However, Nitrospirota members with chemolithoautotrophic manganese oxidation potential have not been reported in other marine environments. Through metagenomic sequencing, assembly and binning, nine metagenome-assembled genomes belonging to Nitrospirota are recovered from sediment of different depths in the polymetallic nodule area. Through the key functional genes annotation results, we find that these Nitrospirota have limited potential to oxidize organic carbon because of incomplete tricarboxylic acid cycle and most of them (6/9) have carbon dioxide fixation potential through different pathway (rTCA, WL or CBB). One MAG belongs to order Nitrospirales has the potential to use manganese oxidation to obtain energy for carbon fixation. In addition to manganese ions, the oxidation of inorganic nitrogen, sulfur, hydrogen and carbon monoxide may also provide energy for the growth of these Nitrospirota. In addition, different metal ion transport systems can help those Nitrospirota to resist heavy metal in sediment. Our work expands the understanding of the metabolic potential of Nitrospirota in sediment of polymetallic nodule region and may contributes to promoting the study of chemolithoautotrophic manganese oxidation.


Assuntos
Genoma Bacteriano , Sedimentos Geológicos , Metagenoma , Sedimentos Geológicos/microbiologia , Oceano Pacífico , Manganês/metabolismo , Bactérias/genética , Bactérias/classificação
4.
Nat Commun ; 15(1): 3955, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729929

RESUMO

Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.


Assuntos
RNA Polimerases Dirigidas por DNA , Regulação Bacteriana da Expressão Gênica , Lactococcus lactis , Conformação de Ácido Nucleico , RNA Bacteriano , Riboswitch , Transcrição Gênica , Riboswitch/genética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Bacteriano/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/química , Manganês/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Imagem Individual de Molécula
5.
Food Chem ; 448: 139170, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579558

RESUMO

Current nanozyme applications rely heavily on peroxidase-like nanozymes and are limited to a specific temperature range, despite notable advancements in nanozyme development. In this work, we designed novel Mn-based metal organic frameworks (UoZ-4), with excellent oxidase mimic activity towards common substrates. UoZ-4 showed excellent oxidase-like activity (with Km 0.072 mM) in a wide range of temperature, from 10 °C to 100 °C with almost no activity loss, making it a very strong candidate for psychrophilic and thermophilic applications. Ascorbic acid, cysteine, and glutathione could quench the appearance of the blue color of oxTMB, led us to design a visual-based sensing platform for detection of total antioxidant capacity (TAC) in cold, mild and hot conditions. The visual mode successfully assessed TAC in citrus fruits with satisfactory recovery and precisions. Cold/hot adapted and magnetic property will broaden the horizon of nanozyme applications and breaks the notion of the temperature limitation of enzymes.


Assuntos
Antioxidantes , Citrus , Frutas , Manganês , Estruturas Metalorgânicas , Oxirredutases , Temperatura , Citrus/química , Citrus/metabolismo , Antioxidantes/metabolismo , Antioxidantes/química , Antioxidantes/análise , Frutas/química , Frutas/metabolismo , Manganês/metabolismo , Manganês/química , Manganês/análise , Estruturas Metalorgânicas/química , Oxirredutases/metabolismo , Oxirredutases/química
6.
J Phys Chem B ; 128(16): 3870-3884, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38602496

RESUMO

The O2-evolving Mn4CaO5 cluster in photosystem II is ligated by six carboxylate residues. One of these is D170 of the D1 subunit. This carboxylate bridges between one Mn ion (Mn4) and the Ca ion. A second carboxylate ligand is D342 of the D1 subunit. This carboxylate bridges between two Mn ions (Mn1 and Mn2). D170 and D342 are located on opposite sides of the Mn4CaO5 cluster. Recently, it was shown that the D170E mutation perturbs both the intricate networks of H-bonds that surround the Mn4CaO5 cluster and the equilibrium between different conformers of the cluster in two of its lower oxidation states, S1 and S2, while still supporting O2 evolution at approximately 50% the rate of the wild type. In this study, we show that the D342E mutation produces much the same alterations to the cluster's FTIR and EPR spectra as D170E, while still supporting O2 evolution at approximately 20% the rate of the wild type. Furthermore, the double mutation, D170E + D342E, behaves similarly to the two single mutations. We conclude that D342E alters the equilibrium between different conformers of the cluster in its S1 and S2 states in the same manner as D170E and perturbs the H-bond networks in a similar fashion. This is the second identification of a Mn4CaO5 metal ligand whose mutation influences the equilibrium between the different conformers of the S1 and S2 states without eliminating O2 evolution. This finding has implications for our understanding of the mechanism of O2 formation in terms of catalytically active/inactive conformations of the Mn4CaO5 cluster in its lower oxidation states.


Assuntos
Ácidos Carboxílicos , Mutação , Oxigênio , Complexo de Proteína do Fotossistema II , Cálcio/metabolismo , Cálcio/química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Manganês/química , Manganês/metabolismo , Modelos Moleculares , Oxigênio/química , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/genética , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1138-1156, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658154

RESUMO

Manganese (Mn) is an essential element for plants and plays a role in various metabolic processes. However, excess manganese can be toxic to plants. This study aimed to analyze the changes in various physiological activities and the transcriptome of Arabidopsis under different treatments: 1 mmol/L MnCl2 treatment for 1 day or 3 days, and 1 day of recovery on MS medium after 3 days of MnCl2 treatment. During the recovery phase, minor yellowing symptoms appeared on the leaves of Arabidopsis, and the content of chlorophyll and carotenoid decreased significantly, but the content of malondialdehyde and soluble sugar increased rapidly. Transcriptome sequencing data shows that the expression patterns of differentially expressed genes exhibit three major models: initial response model, later response model, recovery response model. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis identified several affected metabolic pathways, including plant hormone signal transduction mitosolysis activates protein kinase (MAPK) phytohormone signaling, phenylpropanoid biosynthesis, ATP binding cassette transporters (ABC transporter), and glycosphingolipid biosynthesis. Differential expressed genes (DEGs) involved in phenylpropanoid biosynthesis, ABC transporter, and glycosphingolipid biosynthesis, were identified. Sixteen randomly selected DEGs were validated through qRT-PCR and showed consistent results with RNA-seq data. Our findings suggest that the phenylpropanoid metabolic pathway is activated to scavenge reactive oxygen species, the regulation of ABC transporter improves Mn transport, and the adjustment of cell membrane lipid composition occurs through glycerophospholipid metabolism to adapt to Mn stress in plants. This study provides new insights into the molecular response of plants to Mn stress and recovery, as well as theoretical cues for cultivating Mn-resistant plant varieties.


Assuntos
Arabidopsis , Manganês , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Manganês/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma , Perfilação da Expressão Gênica , Cloretos/metabolismo , Compostos de Manganês/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Carotenoides/metabolismo
8.
Nat Commun ; 15(1): 3534, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670989

RESUMO

Glutamine synthetase (GS) is vital in maintaining ammonia and glutamate (Glu) homeostasis in living organisms. However, the natural enzyme relies on adenosine triphosphate (ATP) to activate Glu, resulting in impaired GS function during ATP-deficient neurotoxic events. To date, no reports demonstrate using artificial nanostructures to mimic GS function. In this study, we synthesize aggregation-induced emission active polyP-Mn nanosheets (STPE-PMNSs) based on end-labeled polyphosphate (polyP), exhibiting remarkable GS-like activity independent of ATP presence. Further investigation reveals polyP in STPE-PMNSs serves as phosphate source to activate Glu at low ATP levels. This self-feeding mechanism offers a significant advantage in regulating Glu homeostasis at reduced ATP levels in nerve cells during excitotoxic conditions. STPE-PMNSs can effectively promote the conversion of Glu to glutamine (Gln) in excitatory neurotoxic human neuroblastoma cells (SH-SY5Y) and alleviate Glu-induced neurotoxicity. Additionally, the fluorescence signal of nanosheets enables precise monitoring of the subcellular distribution of STPE-PMNSs. More importantly, the intracellular fluorescence signal is enhanced in a conversion-responsive manner, allowing real-time tracking of reaction progression. This study presents a self-sustaining strategy to address GS functional impairment caused by ATP deficiency in nerve cells during neurotoxic events. Furthermore, it offers a fresh perspective on the potential biological applications of polyP-based nanostructures.


Assuntos
Trifosfato de Adenosina , Glutamato-Amônia Ligase , Ácido Glutâmico , Glutamina , Manganês , Nanoestruturas , Neurônios , Polifosfatos , Glutamato-Amônia Ligase/metabolismo , Humanos , Polifosfatos/química , Polifosfatos/metabolismo , Polifosfatos/farmacologia , Nanoestruturas/química , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Ácido Glutâmico/metabolismo , Ácido Glutâmico/toxicidade , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Glutamina/metabolismo , Manganês/metabolismo , Manganês/química , Materiais Biocompatíveis/química
9.
FASEB J ; 38(7): e23605, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38597508

RESUMO

Understanding the homeostatic interactions among essential trace metals is important for explaining their roles in cellular systems. Recent studies in vertebrates suggest that cellular Mn metabolism is related to Zn metabolism in multifarious cellular processes. However, the underlying mechanism remains unclear. In this study, we examined the changes in the expression of proteins involved in cellular Zn and/or Mn homeostatic control and measured the Mn as well as Zn contents and Zn enzyme activities to elucidate the effects of Mn and Zn homeostasis on each other. Mn treatment decreased the expression of the Zn homeostatic proteins metallothionein (MT) and ZNT1 and reduced Zn enzyme activities, which were attributed to the decreased Zn content. Moreover, loss of Mn efflux transport protein decreased MT and ZNT1 expression and Zn enzyme activity without changing extracellular Mn content. This reduction was not observed when supplementing with the same Cu concentrations and in cells lacking Cu efflux proteins. Furthermore, cellular Zn homeostasis was oppositely regulated in cells expressing Zn and Mn importer ZIP8, depending on whether Zn or Mn concentration was elevated in the extracellular milieu. Our results provide novel insights into the intricate interactions between Mn and Zn homeostasis in mammalian cells and facilitate our understanding of the physiopathology of Mn, which may lead to the development of treatment strategies for Mn-related diseases in the future.


Assuntos
Manganês , Zinco , Animais , Zinco/metabolismo , Manganês/metabolismo , Cobre/metabolismo , Homeostase , Mamíferos/metabolismo
10.
Plant Physiol Biochem ; 210: 108641, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663267

RESUMO

Manganese (Mn) deficiency is a widespread occurrence across different landscapes, including agricultural systems and managed forests, and causes interruptions in the normal metabolic functioning of plants. The microelement is well-characterized for its role in the oxygen-evolving complex in photosystem II and maintenance of photosynthetic structures. Mn is also required for a variety of enzymatic reactions in secondary metabolism, which play a crucial role in defense strategies for trees. Despite the strong relationship between Mn availability and the biosynthesis of defense-related compounds, there are few studies addressing how Mn deficiency can impact tree defense mechanisms and the ensuing ecological patterns and processes. Understanding this relationship and highlighting the potentially deleterious effects of Mn deficiency in trees can also inform silvicultural and management decisions to build more robust forests. In this review, we address this relationship, focusing on forest trees. We describe Mn availability in forest soils, characterize the known impacts of Mn deficiency in plant susceptibility, and discuss the relationship between Mn and defense-related compounds by secondary metabolite class. In our review, we find several lines of evidence that low Mn availability is linked with lowered or altered secondary metabolite activity. Additionally, we compile documented instances where Mn limitation has altered the defense capabilities of the host plant and propose potential ecological repercussions when studies are not available. Ultimately, this review aims to highlight the importance of untangling the effects of Mn limitation on the ecophysiology of plants, with a focus on forest trees in both managed and natural stands.


Assuntos
Manganês , Árvores , Manganês/metabolismo , Árvores/metabolismo , Florestas , Doenças das Plantas/imunologia , Animais
11.
Sci Total Environ ; 923: 171474, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447734

RESUMO

Manganese (Mn), a common environmental and occupational risk factor for Parkinson's disease (PD), can cause central nervous system damage and gastrointestinal dysfunction. The melatonin has been shown to effectively improve neural damage and intestinal microbiota disturbances in animal models. This research investigated the mechanism by which exogenous melatonin prevented Mn-induced neurogenesis impairment and neural damage. Here, we established subchronic Mn-exposed mice model and melatonin supplement tests to evaluate the role of melatonin in alleviating Mn-induced neurogenesis impairment. Mn induced neurogenesis impairment and microglia overactivation, behavioral dysfunction, gut microbiota dysbiosis and serum metabolic disorder in mice. All these events were reversed with the melatonin supplement. The behavioral tests revealed that melatonin group showed approximately 30 % restoration of motor activity. According to quantitative real time polymerase chain reaction (qPCR) results, melatonin group showed remarkable restoration of the expression of dopamine neurons and neurogenesis markers, approximately 46.4 % (TH), 68.4 % (DCX in hippocampus) and 48 % (DCX in striatum), respectively. Interestingly, melatonin increased neurogenesis probably via the gut microbiota and metabolism modulation. The correlation analysis of differentially expressed genes associated with hippocampal neurogenesis indicated that Firmicutes-lipid metabolism might mediate the critical repair role of melatonin in neurogenesis in Mn-exposed mice. In conclusion, exogenous melatonin supplementation can promote neurogenesis, and restore neuron loss and neural function in Mn-exposed mice, and the multi-omics results provide new research ideas for future mechanistic studies.


Assuntos
Microbioma Gastrointestinal , Melatonina , Camundongos , Animais , Melatonina/farmacologia , Melatonina/metabolismo , Manganês/metabolismo , Hipocampo/metabolismo , Neurônios Dopaminérgicos
12.
ACS Nano ; 18(12): 8885-8905, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38465890

RESUMO

As intervertebral disc degeneration (IVDD) proceeds, the dysfunctional mitochondria disrupt the viability of nucleus pulposus cells, initiating the degradation of the extracellular matrix. To date, there is a lack of effective therapies targeting the mitochondria of nucleus pulposus cells. Here, we synthesized polygallic acid-manganese (PGA-Mn) nanoparticles via self-assembly polymerization of gallic acid in an aqueous medium and introduced a mitochondrial targeting peptide (TP04) onto the nanoparticles using a Schiff base linkage, resulting in PGA-Mn-TP04 nanoparticles. With a size smaller than 50 nm, PGA-Mn-TP04 possesses pH-buffering capacity, avoiding lysosomal confinement and selectively accumulating within mitochondria through electrostatic interactions. The rapid electron exchange between manganese ions and gallic acid enhances the redox capability of PGA-Mn-TP04, effectively reducing mitochondrial damage caused by mitochondrial reactive oxygen species. Moreover, PGA-Mn-TP04 restores mitochondrial function by facilitating the fusion of mitochondria and minimizing their fission, thereby sustaining the vitality of nucleus pulposus cells. In the rat IVDD model, PGA-Mn-TP04 maintained intervertebral disc height and nucleus pulposus tissue hydration. It offers a nonoperative treatment approach for IVDD and other skeletal muscle diseases resulting from mitochondrial dysfunction, presenting an alternative to traditional surgical interventions.


Assuntos
Degeneração do Disco Intervertebral , Doenças Mitocondriais , Nanopartículas , Ratos , Animais , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Manganês/metabolismo , Estresse Oxidativo , Mitocôndrias , Fenóis , Doenças Mitocondriais/metabolismo , Ácido Gálico
13.
Ecotoxicol Environ Saf ; 274: 116237, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503104

RESUMO

Dissolved organic matter (DOM) is a crucial component of natural sediments that alters Cd sequestration. Nevertheless, how different types of DOM fuel Cd mobilization in Mn-rich sediments has not been elucidated. In the present study, four typical DOM, fluvic acid (FA), bovine serum albumin (BSA), sodium alginate (SA), and sodium dodecyl benzene sulfonate (SDBS), were used to amend Cd-contaminated sediment to study their effects on Cd/Mn biotransformation and microbial community response. The results demonstrated that different DOM drive microbial community shifts and enhance microbially mediated Mn oxide (MnO) reduction and Cd release. The amendment of terrestrial- and anthropogenic-derived DOM (FA and SDBS) mainly contributed to enriching Mn-reducing bacteria phylum Proteobacteria, and its abundance increased by 38.16-74.47 % and 56.41-73.98 %, respectively. Meanwhile, microbial-derived DOM (BSA and SA) mainly stimulated the abundances of metal(loid)-resistant bacteria phylum Firmicutes. Accompanied by microbial community structure, diversity, and co-occurrence network shifts, the DOM concentration and oxidation-reduction potential changed, resulting in enhanced Cd mobilization. Importantly, FA stimulated Cd release most remarkably, probably because of the decreased cooperative interactions between bacterial populations, stronger reduction of MnOs, and higher aromaticity and hydrophobicity of the sediment DOM after amendment. This study linked DOM types to functional microbial communities, and explored the potential roles of different DOM types in Cd biotransformation in lake sediments.


Assuntos
Cádmio , Manganês , Cádmio/metabolismo , Manganês/metabolismo , Matéria Orgânica Dissolvida , Bactérias/metabolismo , Firmicutes
14.
Molecules ; 29(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474469

RESUMO

Diacetylcurcumin manganese complex (DiAc-Cp-Mn) is a diacetylcurcumin (DiAc-Cp) derivative synthesized with Mn (II) to mimic superoxide dismutase (SOD). It exhibited superior reactive oxygen species (ROS) scavenging efficacy, particularly for the superoxide radical. The present study investigated the ROS scavenging activity, neuroprotective effects, and underlying mechanism of action of DiAc-Cp-Mn in a cellular model of Parkinson's disease. This study utilized rotenone-induced neurotoxicity in SH-SY5Y cells to assess the activities of DiAc-Cp-Mn by measuring cell viability, intracellular ROS, mitochondrial membrane potential (MMP), SOD, and catalase (CAT) activities. The mRNA expression of the nuclear factor erythroid 2 p45-related factor (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), inducible nitric oxide synthase (iNOS), and Interleukin 1ß (IL-1ß), which are oxidative and inflammatory genes, were also evaluated to clarify the molecular mechanism. The results of the in vitro assays showed that DiAc-Cp-Mn exhibited greater scavenging activity against superoxide radicals, hydrogen peroxide, and hydroxyl radicals compared to DiAc-Cp. In cell-based assays, DiAc-Cp-Mn demonstrated greater neuroprotective effects against rotenone-induced neurotoxicity when compared to its parent compound, DiAc-Cp. DiAc-Cp-Mn maintained MMP levels, reduced intracellular ROS levels, and increased the activities of SOD and CAT by activating the Nrf2-Keap1 signaling pathway. In addition, DiAc-Cp-Mn exerted its anti-inflammatory impact by down-regulating the mRNA expression of iNOS and IL-1ß that provoked neuro-inflammation. The current study indicates that DiAc-Cp-Mn protects against rotenone-induced neuronal damage by reducing oxidative stress and inflammation.


Assuntos
Curcumina/análogos & derivados , Doenças Mitocondriais , Neuroblastoma , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Doença de Parkinson , Humanos , Manganês/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Inflamação , Superóxido Dismutase/metabolismo , Antioxidantes/farmacologia , RNA Mensageiro/genética
15.
J Agric Food Chem ; 72(14): 7564-7585, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38536968

RESUMO

Manganese (Mn) is an important microelement for the mineral nutrition of plants, but it is not effectively absorbed from the soil and mineral salts added thereto and can also be toxic in high concentrations. Mn nanoparticles (NPs) are less toxic, more effective, and economical than Mn salts due to their nanosize. This article critically reviews the current publications on Mn NPs, focusing on their effects on plant health, growth, and stress tolerance, and explaining possible mechanisms of their effects. This review also provides basic information and examples of chemical, physical, and ecological ("green") methods for the synthesis of Mn NPs. It has been shown that the protective effect of Mn NPs is associated with their antioxidant activity, activation of systemic acquired resistance (SAR), and pronounced antimicrobial activity against phytopathogens. In conclusion, Mn NPs are promising agents for agriculture, but their effects on gene expression and plant microbiome require further research.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Manganês/farmacologia , Manganês/metabolismo , Química Agrícola , Sais , Minerais
16.
Sci Rep ; 14(1): 3121, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326390

RESUMO

A response to manganese nanoparticles was studied in seedlings of two wheat cultivars and a model system of plant cell membranes. Nanoparticles at concentrations of 125 and 250 mg/ml were applied foliar. The application of NPs enhanced the content of Mn in plant cells, indicating its penetration through the leaf surface. The stressful effect in the plant cells was estimated based on changes in the activity of antioxidant enzymes, content of chlorophylls and starch. MnNPs evoked no significant changes in the leaf morphology, however, an increase in enzyme activity, starch accumulation, and a decrease in chlorophyll synthesis indicated the stress occurrence. Moreover, a rise in the electrokinetic potential of the chloroplast membrane surface and the reconstruction of their hydrophobic parts toward an increase in fatty acid saturation was found.


Assuntos
Manganês , Nanopartículas , Manganês/toxicidade , Manganês/metabolismo , Plântula/metabolismo , Triticum/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Clorofila/metabolismo , Nanopartículas/toxicidade , Nanopartículas/química , Membrana Celular/metabolismo , Amido/metabolismo
17.
Ecotoxicol Environ Saf ; 273: 116155, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417317

RESUMO

Excessive exposure to manganese in the environment or workplace is strongly linked to neurodegeneration and cognitive impairment, but the precise pathogenic mechanism and preventive measures are still not fully understood. The study aimed to investigate manganese -induced oxidative damage in the nervous system from an epigenetic perspective, focusing on the H3K36ac-dependent antioxidant pathway. Additionally, it sought to examine the potential of curcumin in preventing manganese-induced oxidative damage. Histopathology and transmission electron microscopy revealed that apoptosis and necrosis of neurons and mitochondrial ultrastructure damage were observed in the striatum of manganese-exposed rats. manganese suppressed the expression of mitochondrial antioxidant genes, leading to oxidative damage in the rats' striatum and SH-SY5Y cells. With higher doses of manganese, levels of histone acetyltransferase lysine acetyltransferase 2 A (KAT2A) expression and H3K36ac level decreased. ChIP-qPCR confirmed that H3K36ac enrichment in the promoter regions of antioxidant genes SOD2, PRDX3, and TXN2 was reduced in SH-SY5Y cells after manganese exposure, leading to decreased expression of these genes. Overexpression of KAT2A confirms that it attenuates manganese-induced mitochondrial oxidative damage by regulating H3K36ac levels, which in turn controls the expression of antioxidant genes SOD2, PRDX3, and TXN2 in the manganese-exposed cell model. Furthermore, curcumin might control H3K36ac levels by influencing KAT2A expression, boosting antioxidant genes expression, and reducing manganese-induced mitochondrial oxidative damage. In conclusion, the regulation of mitochondrial oxidative stress by histone acetylation may be an important mechanism of manganese-induced neurotoxicity. This regulation could be achieved by reducing the level of H3K36ac near the promoter region of mitochondrial-associated antioxidant genes via KAT2A. Curcumin mitigates manganese-induced oxidative damage in mitochondria and plays a crucial protective role in manganese-induced oxidative injury in the nervous system.


Assuntos
Curcumina , Neuroblastoma , Humanos , Ratos , Animais , Manganês/toxicidade , Manganês/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Curcumina/farmacologia , Neuroblastoma/metabolismo , Estresse Oxidativo , Mitocôndrias/metabolismo , Histonas/metabolismo , Apoptose , Neurônios/metabolismo , Histona Acetiltransferases/metabolismo
18.
mSphere ; 9(2): e0077123, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38319113

RESUMO

The bacteria within supragingival biofilms participate in complex exchanges with other microbes inhabiting the same niche. One example is the mutans group streptococci (Streptococcus mutans), implicated in the development of tooth decay, and other health-associated commensal streptococci species. Previously, our group transcriptomically characterized intermicrobial interactions between S. mutans and several species of oral bacteria. However, these experiments were carried out in a medium without human saliva. To better mimic their natural environment, we first evaluated how inclusion of saliva affected growth and biofilm formation of eight Streptococcus species individually and found saliva to positively benefit growth rates while negatively influencing biofilm biomass accumulation and altering spatial arrangement. These results carried over during evaluation of 29 saliva-derived isolates of various species. Surprisingly, we also found that addition of saliva increased the competitive behaviors of S. mutans in coculture competitions against commensal streptococci that led to increases in biofilm microcolony volumes. Through transcriptomically characterizing mono- and cocultures of S. mutans and Streptococcus oralis with and without saliva, we determined that each species developed a nutritional niche under mixed-species growth, with S. mutans upregulating carbohydrate uptake and utilization pathways while S. oralis upregulated genome features related to peptide uptake and glycan foraging. S. mutans also upregulated genes involved in oxidative stress tolerance, particularly manganese uptake, which we could artificially manipulate by supplementing in manganese leading to an advantage over its opponent. Our report highlights observable changes in microbial behaviors through leveraging environmental- and host-supplied resources over their competitors. IMPORTANCE: Dental caries (tooth decay) is the most prevalent disease for both children and adults nationwide. Caries are initiated from demineralization of the enamel due to organic acid production through the metabolic activity of oral bacteria growing in biofilm communities attached to the tooth's surface. Mutans group streptococci are closely associated with caries development and initiation of the cariogenic cycle, which decreases the amount of acid-sensitive, health-associated commensal bacteria while selecting for aciduric and acidogenic species that then further drives the disease process. Defining the exchanges that occur between mutans group streptococci and oral commensals in a condition that closely mimics their natural environment is of critical need toward identifying factors that can influence odontopathogen establishment, persistence, and outgrowth. The goal of our research is to develop strategies, potentially through manipulation of microbial interactions characterized here, that prevent the emergence of mutans group streptococci while keeping the protective flora intact.


Assuntos
Cárie Dentária , Saliva , Criança , Humanos , Saliva/microbiologia , Comportamento Competitivo , Manganês/metabolismo , Streptococcus/genética , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Biofilmes
19.
mSphere ; 9(3): e0080423, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38380913

RESUMO

Due to the scarcity of transition metals within the human host, fungal pathogens have evolved sophisticated mechanisms to uptake and utilize these micronutrients at the infection interface. While considerable attention was turned to iron and copper acquisition mechanisms and their importance in fungal fitness, less was done regarding either the role of manganese (Mn) in infectious processes or the cellular mechanism by which fungal cells achieve their Mn-homeostasis. Here, we undertook transcriptional profiling in the pathogenic fungus Candida albicans experiencing both Mn starvation and excess to capture biological processes that are modulated by this metal. We uncovered that Mn scarcity influences diverse processes associated with fungal fitness including invasion of host cells and antifungal sensitivity. We show that Mn levels influence the abundance of iron and zinc emphasizing the complex crosstalk between metals. The deletion of SMF12, a member of Mn Nramp transporters, confirmed its contribution to Mn uptake. smf12 was unable to form hyphae and damage host cells and exhibited sensitivity to azoles. We found that the unfolded protein response (UPR), likely activated by decreased glycosylation under Mn limitation, was required to recover growth when cells were shifted from an Mn-starved to an Mn-repleted medium. RNA-seq profiling of cells exposed to Mn excess revealed that UPR was also activated. Furthermore, the UPR signaling axis Ire1-Hac1 was required to bypass Mn toxicity. Collectively, this study underscores the importance of Mn homeostasis in fungal virulence and comprehensively provides a portrait of biological functions that are modulated by Mn in a fungal pathogen. IMPORTANCE: Transition metals such as manganese provide considerable functionality across biological systems as they are used as cofactors for many catalytic enzymes. The availability of manganese is very limited inside the human body. Consequently, pathogenic microbes have evolved sophisticated mechanisms to uptake this micronutrient inside the human host to sustain their growth and cause infections. Here, we undertook a comprehensive approach to understand how manganese availability impacts the biology of the prevalent fungal pathogen, Candida albicans. We uncovered that manganese homeostasis in this pathogen modulates different biological processes that are essential for host infection which underscores the value of targeting fungal manganese homeostasis for potential antifungal therapeutics development.


Assuntos
Candida albicans , Manganês , Humanos , Manganês/metabolismo , Virulência , Antifúngicos/farmacologia , Homeostase , Metais , Ferro
20.
Biol Pharm Bull ; 47(2): 539-546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38417906

RESUMO

Metformin is an anti-diabetic drug that exerts protective effects against neurodegenerative diseases. In this study, we investigated the protective effects of metformin against manganese (Mn)-induced cytotoxicity associated with Parkinson's disease-like symptoms in N27-A dopaminergic (DA) cells. Metformin (0.1-1 mM) suppressed Mn (0.4 mM)-induced cell death in a concentration-dependent manner. Metformin pretreatment effectively suppressed the Mn-mediated increase in the levels of oxidative stress markers, such as reactive oxygen species (ROS) and thiobarbituric acid reactive substances. Moreover, metformin restored the levels of the antioxidants, superoxide dismutase, intracellular glutathione, and glutathione peroxidase, which were reduced by Mn. Metformin (0.5 mM) significantly attenuated the decrease in sirtuin-1 (SIRT1) and peroxisome proliferator activated receptor gamma coactivator-1 alpha levels, which were increased by Mn (0.4 mM). In addition, metformin inhibited the expression of microRNA-34a, which directly targeted SIRT1. Metformin also inhibited the loss of Mn-induced mitochondrial membrane potential (ΔΨm) and activation of the apoptosis marker, caspase-3. Furthermore, metformin-mediated inhibition of ROS generation and caspase-3 activation, recovery of ΔΨm, and restoration of cell viability were partially reversed by the SIRT1 inhibitor, Ex527. These results suggest that metformin may protects against Mn-induced DA neuronal cell death mediated by oxidative stress and mitochondrial dysfunction possibly via the regulation of SIRT1 pathway.


Assuntos
Manganês , Metformina , Manganês/toxicidade , Manganês/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Metformina/farmacologia , Sirtuína 1/metabolismo , Apoptose , Estresse Oxidativo , Neurônios Dopaminérgicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA