Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
BMC Genomics ; 25(1): 436, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698332

RESUMO

BACKGROUND: Cassava mosaic disease (CMD), caused by Sri Lankan cassava mosaic virus (SLCMV) infection, has been identified as a major pernicious disease in Manihot esculenta Crantz (cassava) plantations. It is widespread in Southeast Asia, especially in Thailand, which is one of the main cassava supplier countries. With the aim of restricting the spread of SLCMV, we explored the gene expression of a tolerant cassava cultivar vs. a susceptible cassava cultivar from the perspective of transcriptional regulation and the mechanisms underlying plant immunity and adaptation. RESULTS: Transcriptomic analysis of SLCMV-infected tolerant (Kasetsart 50 [KU 50]) and susceptible (Rayong 11 [R 11]) cultivars at three infection stages-that is, at 21 days post-inoculation (dpi) (early/asymptomatic), 32 dpi (middle/recovery), and 67 dpi (late infection/late recovery)-identified 55,699 expressed genes. Differentially expressed genes (DEGs) between SLCMV-infected KU 50 and R 11 cultivars at (i) 21 dpi to 32 dpi (the early to middle stage), and (ii) 32 dpi to 67 dpi (the middle stage to late stage) were then identified and validated by real-time quantitative PCR (RT-qPCR). DEGs among different infection stages represent genes that respond to and regulate the viral infection during specific stages. The transcriptomic comparison between the tolerant and susceptible cultivars highlighted the role of gene expression regulation in tolerant and susceptible phenotypes. CONCLUSIONS: This study identified genes involved in epigenetic modification, transcription and transcription factor activities, plant defense and oxidative stress response, gene expression, hormone- and metabolite-related pathways, and translation and translational initiation activities, particularly in KU 50 which represented the tolerant cultivar in this study.


Assuntos
Manihot , Vírus do Mosaico , Manihot/classificação , Manihot/genética , Manihot/imunologia , Manihot/virologia , Vírus do Mosaico/fisiologia , Imunidade Vegetal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Reação em Cadeia da Polimerase em Tempo Real , Sequenciamento de Nucleotídeos em Larga Escala , RNA de Plantas , Análise de Sequência de RNA
2.
Plant Biotechnol J ; 17(2): 421-434, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30019807

RESUMO

Cassava brown streak disease (CBSD) is a major constraint on cassava yields in East and Central Africa and threatens production in West Africa. CBSD is caused by two species of positive-sense RNA viruses belonging to the family Potyviridae, genus Ipomovirus: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Diseases caused by the family Potyviridae require the interaction of viral genome-linked protein (VPg) and host eukaryotic translation initiation factor 4E (eIF4E) isoforms. Cassava encodes five eIF4E proteins: eIF4E, eIF(iso)4E-1, eIF(iso)4E-2, novel cap-binding protein-1 (nCBP-1), and nCBP-2. Protein-protein interaction experiments consistently found that VPg proteins associate with cassava nCBPs. CRISPR/Cas9-mediated genome editing was employed to generate ncbp-1, ncbp-2, and ncbp-1/ncbp-2 mutants in cassava cultivar 60444. Challenge with CBSV showed that ncbp-1/ncbp-2 mutants displayed delayed and attenuated CBSD aerial symptoms, as well as reduced severity and incidence of storage root necrosis. Suppressed disease symptoms were correlated with reduced virus titre in storage roots relative to wild-type controls. Our results demonstrate the ability to modify multiple genes simultaneously in cassava to achieve tolerance to CBSD. Future studies will investigate the contribution of remaining eIF4E isoforms on CBSD and translate this knowledge into an optimized strategy for protecting cassava from disease.


Assuntos
Fator de Iniciação 4E em Eucariotos/genética , Manihot/imunologia , Complexo Proteico Nuclear de Ligação ao Cap/metabolismo , Doenças das Plantas/imunologia , Potyviridae/imunologia , Sistemas CRISPR-Cas , Fator de Iniciação 4E em Eucariotos/metabolismo , Edição de Genes , Interações Hospedeiro-Patógeno , Manihot/genética , Manihot/virologia , Complexo Proteico Nuclear de Ligação ao Cap/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética , Proteínas Virais/metabolismo
3.
BMC Plant Biol ; 18(1): 132, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29940871

RESUMO

BACKGROUND: Morphogenic culture systems are central to crop improvement programs that utilize transgenic and genome editing technologies. We previously reported that CMD2-type cassava (Manihot esculenta) cultivars lose resistance to cassava mosaic disease (CMD) when passed through somatic embryogenesis. As a result, these plants cannot be developed as products for deployment where CMD is endemic such as sub-Saharan Africa or the Indian sub-continent. RESULT: In order to increase understanding of this phenomenon, 21 African cassava cultivars were screened for resistance to CMD after regeneration through somatic embryogenesis. Fifteen cultivars were shown to retain resistance to CMD through somatic embryogenesis, confirming that the existing transformation and gene editing systems can be employed in these genetic backgrounds without compromising resistance to geminivirus infection. CMD2-type cultivars were also subjected to plant regeneration via caulogenesis and meristem tip culture, resulting in 25-36% and 5-10% of regenerated plant lines losing resistance to CMD respectively. CONCLUSIONS: This study provides clear evidence that multiple morphogenic systems can result in loss of resistance to CMD, and that somatic embryogenesis per se is not the underlying cause of this phenomenon. The information described here is critical for interpreting genomic, transcriptomic and epigenomic datasets aimed at understanding CMD resistance mechanisms in cassava.


Assuntos
Resistência à Doença , Geminiviridae , Manihot/imunologia , Doenças das Plantas/imunologia , Técnicas de Embriogênese Somática de Plantas , Meios de Cultura , Manihot/genética , Manihot/crescimento & desenvolvimento , Manihot/virologia , Meristema/crescimento & desenvolvimento , Doenças das Plantas/virologia , Técnicas de Embriogênese Somática de Plantas/métodos , Plantas Geneticamente Modificadas
4.
Plant Cell Rep ; 37(6): 887-900, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29523964

RESUMO

KEY MESSAGE: MeCIPK23 interacts with MeCBL1/9, and they confer improved defense response, providing potential genes for further genetic breeding in cassava. Cassava (Manihot esculenta) is an important food crop in tropical area, but its production is largely affected by cassava bacterial blight. However, the information of defense-related genes in cassava is very limited. Calcium ions play essential roles in plant development and stress signaling pathways. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) are crucial components of calcium signals. In this study, systematic expression profile of 25MeCIPKs in response to Xanthomonas axonopodis pv. manihotis (Xam) infection was examined, by which seven candidate MeCIPKs were chosen for functional investigation. Through transient expression in Nicotiana benthamiana leaves, we found that six MeCIPKs (MeCIPK5, MeCIPK8, MeCIPK12, MeCIPK22, MeCIPK23 and MeCIPK24) conferred improved defense response, via regulating the transcripts of several defense-related genes. Notably, we found that MeCIPK23 interacted with MeCBL1 and MeCBL9, and overexpression of these genes conferred improved defense response. On the contrary, virus-induced gene silencing of either MeCIPK23 or MeCBL1/9 or both genes resulted in disease sensitive in cassava. To our knowledge, this is the first study identifying MeCIPK23 as well as MeCBL1 and MeCBL9 that confer enhanced defense response against Xam.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Manihot/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Xanthomonas axonopodis/fisiologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Manihot/genética , Manihot/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia
5.
J Exp Bot ; 68(17): 4997-5006, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28992113

RESUMO

Similar to the situation in animals, melatonin biosynthesis is regulated by four sequential enzymatic steps in plants. Although the melatonin synthesis genes have been identified in various plants, the upstream transcription factors of them remain unknown. In this study on cassava (Manihot esculenta), we found that MeWRKY79 and heat-shock transcription factor 20 (MeHsf20) targeted the W-box and the heat-stress elements (HSEs) in the promoter of N-acetylserotonin O-methyltransferase 2 (MeASMT2), respectively. The interaction between MeWRKY79, MeHsf20, and the MeASMT2 promoter was evidenced by the activation of promoter activity and chromatin immunoprecipitation (ChIP) in cassava protoplasts, and by an in vitro electrophoretic mobility shift assay (EMSA). The transcripts of MeWRKY79, MeHsf20, and MeASMT2 were all regulated by a 22-amino acid flagellin peptide (flg22) and by Xanthomonas axonopodis pv manihotis (Xam). In common with the phenotype of MeASMT2, transient expression of MeWRKY79 and MeHsf20 in Nicotiana benthamiana leaves conferred improved disease resistance. Through virus-induced gene silencing (VIGS) in cassava, we found that MeWRKY79- and MeHsf20-silenced plants showed lower transcripts of MeASMT2 and less accumulation of melatonin, which resulted in disease sensitivity that could be reversed by exogenous melatonin. Taken together, these results indicate that MeASMT2 is a target of MeWRKY79 and MeHsf20 in plant disease resistance. This study identifies novel upstream transcription factors of melatonin synthesis genes in cassava, thus extending our knowledge of the complex modulation of melatonin synthesis in plant defense.


Assuntos
Acetilserotonina O-Metiltransferasa/genética , Resistência à Doença/genética , Manihot/genética , Melatonina/metabolismo , Doenças das Plantas/genética , Fatores de Transcrição/genética , Acetilserotonina O-Metiltransferasa/metabolismo , Manihot/imunologia , Manihot/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
6.
PLoS One ; 12(8): e0181998, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771520

RESUMO

Cassava (Manihot esculenta) is an important tropical subsistence crop that is severely affected by cassava brown streak disease (CBSD) in East Africa. The disease is caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Both have a (+)-sense single-stranded RNA genome with a 5' covalently-linked viral protein, which functionally resembles the cap structure of mRNA, binds to eukaryotic translation initiation factor 4E (eIF4E) or its analogues, and then enable the translation of viral genomic RNA in host cells. To characterize cassava eIF4Es and their potential role in CBSD tolerance and susceptibility, we cloned five eIF4E transcripts from cassava (accession TMS60444). Sequence analysis indicated that the cassava eIF4E family of proteins consisted of one eIF4E, two eIF(iso)4E, and two divergent copies of novel cap-binding proteins (nCBPs). Our data demonstrated experimentally the coding of these five genes as annotated in the published cassava genome and provided additional evidence for refined annotations. Illumina resequencing data of the five eIF4E genes were analyzed from 14 cassava lines tolerant or susceptible to CBSD. Abundant single nucleotide polymorphisms (SNP) and biallelic variations were observed in the eIF4E genes; however, most of the SNPs were located in the introns and non-coding regions of the exons. Association studies of non-synonymous SNPs revealed no significant association between any SNP of the five eIF4E genes and the tolerance or susceptibility to CBSD. However, two SNPs in two genes were weakly associated with the CBSD responses but had no direct causal-effect relationship. SNPs in an intergenic region upstream of eIF4E_me showed a surprising strong association with CBSD responses. Digital expression profile analysis showed differential expression of different eIF4E genes but no significant difference in gene expression was found between susceptible and tolerant cassava accessions despite the association of the intergenic SNPs with CBSD responses.


Assuntos
Resistência à Doença/imunologia , Fator de Iniciação 4E em Eucariotos/genética , Variação Genética/genética , Manihot/imunologia , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas/imunologia , Potyviridae/fisiologia , Resistência à Doença/genética , Interações Hospedeiro-Patógeno , Manihot/crescimento & desenvolvimento , Manihot/virologia , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , RNA Viral/genética
7.
Virol J ; 14(1): 47, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270156

RESUMO

BACKGROUND: Cassava mosaic disease (CMD) is a major constraint to cassava production in sub-Saharan Africa. Under field conditions, evaluation for resistance to CMD takes 12-18 months, often conducted across multiple years and locations under pressure from whitefly-mediated transmission. Under greenhouse or laboratory settings, evaluation for resistance or susceptibility to CMD involves transmission of the causal viruses from an infected source to healthy plants through grafting, or by using Agrobacterium-mediated or biolistic delivery of infectious clones. Following inoculation, visual assessment for CMD symptom development and recovery requires 12-22 weeks. Here we report a rapid screening system for determining resistance and susceptibility to CMD based on virus-induced gene silencing (VIGS) of an endogenous cassava gene. RESULTS: A VIGS vector was developed based on an infectious clone of the virulent strain of East African cassava mosaic virus (EACMV-K201). A sequence from the cassava (Manihot esculenta) ortholog of Arabidopsis SPINDLY (SPY) was cloned into the CP position of the DNA-A genomic component and used to inoculate cassava plants by Helios® Gene Gun microparticle bombardment. Silencing of Manihot esculenta SPY (MeSPY) using MeSPY1-VIGS resulted in shoot-tip necrosis followed by death of the whole plant in CMD susceptible cassava plants within 2-4 weeks. CMD resistant cultivars were not affected and remained healthy after challenge with MeSPY1-VIGS. Significantly higher virus titers were detected in CMD-susceptible cassava lines compared to resistant controls and were correlated with a concomitant reduction in MeSPY expression in susceptible plants. CONCLUSIONS: A rapid VIGS-based screening system was developed for assessing resistance and susceptibility to CMD. The method is space and resource efficient, reducing the time required to perform CMD screening to as little as 2-4 weeks. It can be employed as a high throughput rapid screening system to assess new cassava cultivars and for screening transgenic, gene edited and breeding lines under controlled growth conditions.


Assuntos
Begomovirus/imunologia , Resistência à Doença , Inativação Gênica , Genes de Plantas , Manihot/imunologia , Biologia Molecular/métodos , Doenças das Plantas/virologia , Begomovirus/patogenicidade , Manihot/virologia
10.
Mol Plant Microbe Interact ; 29(7): 527-34, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27070326

RESUMO

Cassava brown streak disease (CBSD) has become a major constraint to cassava production in East and Central Africa. The identification of new sources of CBSD resistance is essential to deploy CBSD mitigation strategies, as the disease is progressing westwards to new geographical areas. A stringent infection method based on top cleft-grafting combined with precise virus titer quantitation was utilized to screen 14 cassava cultivars and elite breeding lines. When inoculated with mixed infections of Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), the scions of elite breeding lines KBH 2006/18 and KBH 2006/26 remained symptom-free during a 16-week period of virus graft inoculation, while susceptible varieties displayed typical CBSD infection symptoms at 4 weeks after grafting. The identified CBSD resistance was stable under the coinoculation of CBSV and UCBSV with cassava geminiviruses. Double-grafting experiments revealed that transmission of CBSV and UCBSV to CBSD-susceptible top scions was delayed when using intermediate scions of elite breeding lines KBH 2006/18 and KBH 2006/26. Nonetheless, comparison of virus systemic movement using scions from KBH2006/18 and a transgenic CBSD resistant 60444 line (60444-Hp9 line) showed that both CBSV and UCBSV move at undetectable levels through the stems. Further, protoplast-based assays of virus titers showed that the replication of CBSV is inhibited in the resistant line KBH2006/18, suggesting that the identified CBSD resistance is at least partially based on inhibition of virus replication. Our molecular characterization of CBSD resistance in cassava offers a robust virus-host system to further investigate the molecular determinants of CBSD resistance.


Assuntos
Resistência à Doença/genética , Manihot/genética , Doenças das Plantas/imunologia , Potyviridae/fisiologia , Manihot/imunologia , Manihot/virologia , Doenças das Plantas/virologia , Carga Viral
11.
Virus Res ; 215: 1-11, 2016 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-26811902

RESUMO

Infection of plant cells by viral pathogens triggers RNA silencing, an innate antiviral defense mechanism. In response to infection, small RNAs (sRNAs) are produced that associate with Argonaute (AGO)-containing silencing complexes which act to inactivate viral genomes by posttranscriptional gene silencing (PTGS). Deep sequencing was used to compare virus-derived small RNAs (vsRNAs) in cassava genotypes NASE 3, TME 204 and 60444 infected with the positive sense single-stranded RNA (+ssRNA) viruses cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), the causal agents of cassava brown streak disease (CBSD). An abundance of 21-24nt vsRNAs was detected and mapped, covering the entire CBSV and UCBSV genomes. The 21nt vsRNAs were most predominant, followed by the 22 nt class with a slight bias toward sense compared to antisense polarity, and a bias for adenine and uracil bases present at the 5'-terminus. Distribution and frequency of vsRNAs differed between cassava genotypes and viral genomes. In susceptible genotypes TME 204 and 60444, CBSV-derived sRNAs were seen in greater abundance than UCBSV-derived sRNAs. NASE 3, known to be resistant to UCBSV, accumulated negligible UCBSV-derived sRNAs but high populations of CBSV-derived sRNAs. Transcript levels of cassava homologues of AGO2, DCL2 and DCL4, which are central to the gene-silencing complex, were found to be differentially regulated in CBSV- and UCBSV-infected plants across genotypes, suggesting these proteins play a role in antiviral defense. Irrespective of genotype or viral pathogen, maximum populations of vsRNAs mapped to the cytoplasmic inclusion, P1 and P3 protein-encoding regions. Our results indicate disparity between CBSV and UCBSV host-virus interaction mechanisms, and provide insight into the role of virus-induced gene silencing as a mechanism of resistance to CBSD.


Assuntos
Manihot/virologia , Doenças das Plantas/virologia , Potyviridae/crescimento & desenvolvimento , Potyviridae/genética , Pequeno RNA não Traduzido/análise , RNA Viral/análise , Inativação Gênica , Interações Hospedeiro-Patógeno , Manihot/imunologia
12.
Virus Res ; 213: 109-115, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26581664

RESUMO

Geminiviruses are among the most serious pathogens of many economically important crop plants and RNA interference (RNAi) is an important strategy for their control. Although any fragment of a viral genome can be used to generate a double stranded (ds) RNA trigger, the precursor for generation of siRNAs, the exact sequence and size requirements for efficient gene silencing and virus resistance have so far not been investigated. Previous efforts to control geminiviruses by gene silencing mostly targeted AC1, the gene encoding replication-associated protein. In this study we made RNAi constructs for all the genes of both the genomic components (DNA-A and DNA-B) of African cassava mosaic virus (ACMV-CM), one of the most devastating geminiviruses causing cassava mosaic disease (CMD) in Africa. Using transient agro-infiltration studies, RNAi constructs were evaluated for their ability to trigger gene silencing against the invading virus and protection against it. The results show that the selection of the DNA target sequence is an important determinant for the amount of siRNA produced and the extent of resistance. The ACMV genes AC1, AC2, AC4 from DNA-A and BC1 from DNA-B were effective targets for RNAi-mediated resistance and their siRNA expression was higher compared to other RNAi constructs. The RNAi construct targeting AC2, the suppressor of gene silencing of ACMV-CM gave highest level of resistance in the transient studies. This is the first report of targeting DNA-B to confer resistance to a bipartite geminivirus infection.


Assuntos
Geminiviridae/genética , Geminiviridae/imunologia , Genoma Viral , Manihot/imunologia , Manihot/virologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , DNA Viral/genética , Geminiviridae/isolamento & purificação , Genes Virais , Organismos Geneticamente Modificados , RNA Interferente Pequeno/genética
13.
Adv Virus Res ; 91: 85-142, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25591878

RESUMO

Cassava (Manihot esculenta Crantz.) is the most important vegetatively propagated food staple in Africa and a prominent industrial crop in Latin America and Asia. Its vegetative propagation through stem cuttings has many advantages, but deleteriously it means that pathogens are passed from one generation to the next and can easily accumulate, threatening cassava production. Cassava-growing continents are characterized by specific suites of viruses that affect cassava and pose particular threats. Of major concern, causing large and increasing economic impact in Africa and Asia are the cassava mosaic geminiviruses that cause cassava mosaic disease in Africa and Asia and cassava brown streak viruses causing cassava brown streak disease in Africa. Latin America, the center of origin and domestication of the crop, hosts a diverse set of virus species, of which the most economically important give rise to cassava frog skin disease syndrome. Here, we review current knowledge on the biology, epidemiology, and control of the most economically important groups of viruses in relation to both farming and cultural practices. Components of virus control strategies examined include: diagnostics and surveillance, prevention and control of infection using phytosanitation, and control of disease through the breeding and promotion of varieties that inhibit virus replication and/or movement. We highlight areas that need further research attention and conclude by examining the likely future global outlook for virus disease management in cassava.


Assuntos
Manihot/virologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Vírus de Plantas/crescimento & desenvolvimento , África , Ásia , Resistência à Doença , Vida Livre de Germes , Controle de Insetos/métodos , América Latina , Manihot/imunologia , Manihot/parasitologia
15.
Virol J ; 11: 216, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25526680

RESUMO

BACKGROUND: Production of cassava (Manihot esculenta Crantz), a food security crop in sub-Saharan Africa, is threatened by the spread of cassava brown streak disease (CBSD) which manifests in part as a corky necrosis in the storage root. It is caused by either of two virus species, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), resulting in up to 100% yield loss in susceptible varieties. METHODS: This study characterized the response of 11 cassava varieties according to CBSD symptom expression and relative CBSV and UCBSV load in a field trial in Uganda. Relative viral load was measured using quantitative RT-PCR using COX as an internal housekeeping gene. RESULTS: A complex situation was revealed with indications of different resistance mechanisms that restrict virus accumulation and symptom expression. Four response categories were defined. Symptom expression was not always positively correlated with virus load. Substantially different levels of the virus species were found in many genotypes suggesting either resistance to one virus species or the other, or some form of interaction, antagonism or competition between virus species. CONCLUSIONS: A substantial amount of research still needs to be undertaken to fully understand the mechanism and genetic bases of resistance. This information will be useful in informing breeding strategies and restricting virus spread.


Assuntos
Resistência à Doença , Manihot/genética , Manihot/virologia , Doenças das Plantas/virologia , Potyviridae/isolamento & purificação , Carga Viral , Manihot/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Uganda
16.
Mol Plant Microbe Interact ; 27(11): 1186-98, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25083909

RESUMO

The gene-for-gene concept has historically been applied to describe a specific resistance interaction wherein single genes from the host and the pathogen dictate the outcome. These interactions have been observed across the plant kingdom and all known plant microbial pathogens. In recent years, this concept has been extended to susceptibility phenotypes in the context of transcription activator-like (TAL) effectors that target SWEET sugar transporters. However, because this interaction has only been observed in rice, it was not clear whether the gene-for-gene susceptibility was unique to that system. Here, we show, through a combined systematic analysis of the TAL effector complement of Xanthomonas axonopodis pv. manihotis and RNA sequencing to identify targets in cassava, that TAL20Xam668 specifically induces the sugar transporter MeSWEET10a to promote virulence. Designer TAL effectors (dTALE) complement TAL20Xam668 mutant phenotypes, demonstrating that MeSWEET10a is a susceptibility gene in cassava. Sucrose uptake-deficient X. axonopodis pv. manihotis bacteria do not lose virulence, indicating that sucrose may be cleaved extracellularly and taken up as hexoses into X. axonopodis pv. manihotis. Together, our data suggest that pathogen hijacking of plant nutrients is not unique to rice blight but also plays a role in bacterial blight of the dicot cassava.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Manihot/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas axonopodis/patogenicidade , Proteínas de Bactérias/genética , Resistência à Doença , Expressão Gênica , Manihot/genética , Manihot/imunologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Doenças das Plantas/imunologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Regulação para Cima , Virulência , Xanthomonas axonopodis/genética
17.
Virus Res ; 186: 87-96, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24389096

RESUMO

Cassava mosaic disease (CMD), caused by different species of cassava mosaic geminiviruses (CMGs), is the most important disease of cassava in Africa and the Indian sub-continent. The cultivated cassava species is protected from CMD by polygenic resistance introgressed from the wild species Manihot glaziovii and a dominant monogenic type of resistance, named CMD2, discovered in African landraces. The ability of the monogenic resistance to confer high levels of resistance in different genetic backgrounds has led recently to its extensive usage in breeding across Africa as well as pre-emptive breeding in Latin America. However, most of the landraces carrying the monogenic resistance are morphologically very similar and come from a geographically restricted area of West Africa, raising the possibility that the diversity of the single-gene resistance could be very limited, or even located at a single locus. Several mapping studies, employing bulk segregant analysis, in different genetic backgrounds have reported additional molecular markers linked to supposedly new resistance genes. However, it is not possible to tell if these are indeed new genes in the absence adequate genetic map framework or allelism tests. To address this important question, a high-density single nucleotide polymorphism (SNP) map of cassava was developed through genotyping-by-sequencing a bi-parental mapping population (N=180) that segregates for the dominant monogenic resistance to CMD. Virus screening using PCR showed that CMD symptoms and presence of virus were strongly correlated (r=0.98). Genome-wide scan and high-resolution composite interval mapping using 6756 SNPs uncovered a single locus with large effect (R(2)=0.74). Projection of the previously published resistance-linked microsatellite markers showed that they co-occurred in the same chromosomal location surrounding the presently mapped resistance locus. Moreover, their relative distance to the mapped resistance locus correlated with the reported degree of linkage with the resistance phenotype. Cluster analysis of the landraces first shown to have this type of resistance revealed that they are very closely related, if not identical. These findings suggest that there is a single source of monogenic resistance in the crop's genepool tracing back to a common ancestral clone. In the absence of further resistance diversification, the long-term effectiveness of the single gene resistance is known to be precarious, given the potential to be overcome by CMGs due to their fast-paced evolutionary rate. However, combining the quantitative with the qualitative type of resistance may ensure that this resistance gene continues to offer protection to cassava, a crop that is depended upon by millions of people in Africa against the devastating onslaught of CMGs.


Assuntos
Geminiviridae/fisiologia , Genoma de Planta , Manihot/genética , Doenças das Plantas/genética , Imunidade Vegetal/genética , Evolução Biológica , Cruzamento , Mapeamento Cromossômico , Geminiviridae/patogenicidade , Loci Gênicos , Técnicas de Genotipagem , Interações Hospedeiro-Patógeno , Manihot/imunologia , Manihot/virologia , Repetições de Microssatélites , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
18.
GM Crops Food ; 5(1): 16-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24296511

RESUMO

A confined field trial was established to determine durability of RNAi-mediated resistance to Cassava brown streak disease (CBSD). Stem cuttings were obtained from field-grown cassava plants of cv 60444 transgenic for construct p718, consisting of an 894 bp inverted repeat sequence from the Ugandan Cassava brown streak virus (UCBSV) coat protein. Plants were established from three transgenic lines previously shown to provide complete resistance to UCBSV and differing levels of protection to the non-homologous virus species Cassava brown streak virus (CBSV), and grown for 11 months. CBSD symptoms were observed on shoots and storage roots of all non-transgenic cv 60444 control plants and transgenic lines p718-002 and p718-005, but not on p718-001. RT-PCR diagnostic showed tissues of plant lines p718-002 and p718-005 to be infected with CBSV, but free of UCBSV. All leaves and roots of p718-001 plants were to carry no detectable levels of either pathogen. Plants of cv 60444 in this field trial showed severe cassava mosaic disease symptoms, indicating that presence of replicating geminiviruses did not cause significant suppression of RNAi-mediated resistance to CBSD. Resistance to CBSD across a vegetative cropping cycle confirms earlier field data, and provides an important step in proof of concept for application of RNAi technology to control of CBSD under conditions encountered in farmers' fields.


Assuntos
Agricultura/métodos , Resistência à Doença/imunologia , Manihot/imunologia , Manihot/virologia , Doenças das Plantas/imunologia , Potyviridae/fisiologia , Interferência de RNA , Doenças das Plantas/virologia , Folhas de Planta/virologia , Uganda
19.
BMC Res Notes ; 6: 516, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24314370

RESUMO

BACKGROUND: Techniques to study plant viral diseases under controlled growth conditions are required to fully understand their biology and investigate host resistance. Cassava brown streak disease (CBSD) presents a major threat to cassava production in East Africa. No infectious clones of the causal viruses, Cassava brown streak virus (CBSV) or Ugandan cassava brown streak virus (UCBSV) are available, and mechanical transmission to cassava is not effective. An improved method for transmission of the viruses, both singly and as co-infections has been developed using bud grafts. FINDINGS: Axillary buds from CBSD symptomatic plants infected with virulent isolates of CBSV and UCBSV were excised and grafted onto 6-8 week old greenhouse-grown, disease-free cassava plants of cultivars Ebwanateraka, TME204 and 60444. Plants were assessed visually for development of CBSD symptoms and by RT-PCR for presence of the viruses in leaf and storage root tissues. Across replicated experiments, 70-100% of plants inoculated with CBSV developed CBSD leaf and stem symptoms 2-6 weeks after bud grafting. Infected plants showed typical, severe necrotic lesions in storage roots at harvest 12-14 weeks after graft inoculation. Sequential grafting of buds from plants infected with UCBSV followed 10-14 days later by buds carrying CBSV, onto the same test plant, resulted in 100% of the rootstocks becoming co-infected with both pathogens. This dual transmission rate was greater than that achieved by simultaneous grafting with UCBSV and CBSV (67%), or when grafting first with CBSV followed by UCBSV (17%). CONCLUSIONS: The bud grafting method described presents an improved tool for screening cassava germplasm for resistance to CBSD causal viruses, and for studying pathogenicity of this important disease. Bud grafting provides new opportunities compared to previously reported top and side grafting systems. Test plants can be inoculated as young, uniform plants of a size easily handled in a small greenhouse or large growth chamber and can be inoculated in a controlled manner with CBSV and UCBSV, either singly or together. Disease symptoms develop rapidly, allowing better studies of interactions between these viral pathogens, their movement within shoot and root systems, and how they induce their destructive disease symptoms.


Assuntos
Manihot/virologia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Raízes de Plantas/virologia , Caules de Planta/virologia , Potyviridae/genética , Interações Hospedeiro-Patógeno , Manihot/imunologia , Doenças das Plantas/imunologia , Folhas de Planta/imunologia , Raízes de Plantas/imunologia , Caules de Planta/imunologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução Genética
20.
Genomics Proteomics Bioinformatics ; 11(6): 345-53, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24316329

RESUMO

Recent advances in genomic and post-genomic technologies have provided the opportunity to generate a previously unimaginable amount of information. However, biological knowledge is still needed to improve the understanding of complex mechanisms such as plant immune responses. Better knowledge of this process could improve crop production and management. Here, we used holistic analysis to combine our own microarray and RNA-seq data with public genomic data from Arabidopsis and cassava in order to acquire biological knowledge about the relationships between proteins encoded by immunity-related genes (IRGs) and other genes. This approach was based on a kernel method adapted for the construction of gene networks. The obtained results allowed us to propose a list of new IRGs. A putative function in the immunity pathway was predicted for the new IRGs. The analysis of networks revealed that our predicted IRGs are either well documented or recognized in previous co-expression studies. In addition to robust relationships between IRGs, there is evidence suggesting that other cellular processes may be also strongly related to immunity.


Assuntos
Arabidopsis/genética , Genômica , Manihot/genética , Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genoma de Planta , Manihot/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA