Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
1.
Nat Commun ; 15(1): 2144, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459021

RESUMO

Host survival depends on the elimination of virus and mitigation of tissue damage. Herein, we report the modulation of D-mannose flux rewires the virus-triggered immunometabolic response cascade and reduces tissue damage. Safe and inexpensive D-mannose can compete with glucose for the same transporter and hexokinase. Such competitions suppress glycolysis, reduce mitochondrial reactive-oxygen-species and succinate-mediated hypoxia-inducible factor-1α, and thus reduce virus-induced proinflammatory cytokine production. The combinatorial treatment by D-mannose and antiviral monotherapy exhibits in vivo synergy despite delayed antiviral treatment in mouse model of virus infections. Phosphomannose isomerase (PMI) knockout cells are viable, whereas addition of D-mannose to the PMI knockout cells blocks cell proliferation, indicating that PMI activity determines the beneficial effect of D-mannose. PMI inhibition suppress a panel of virus replication via affecting host and viral surface protein glycosylation. However, D-mannose does not suppress PMI activity or virus fitness. Taken together, PMI-centered therapeutic strategy clears virus infection while D-mannose treatment reprograms glycolysis for control of collateral damage.


Assuntos
Manose-6-Fosfato Isomerase , Manose , Animais , Camundongos , Manose-6-Fosfato Isomerase/metabolismo , Glicosilação , Manose/metabolismo , Glucose/metabolismo , Antivirais/farmacologia
2.
Enzyme Microb Technol ; 177: 110427, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518553

RESUMO

d-mannose has been widely used in food, medicine, cosmetic, and food-additive industries. To date, chemical synthesis or enzymatic conversion approaches based on iso/epimerization reactions for d-mannose production suffered from low conversion rate due to the reaction equilibrium, necessitating intricate separation processes for obtaining pure products on an industrial scale. To circumvent this challenge, this study showcased a new approach for d-mannose synthesis from glucose through constructing a phosphorylation-dephosphorylation pathway in an engineered strain. Specifically, the gene encoding phosphofructokinase (PfkA) in glycolytic pathway was deleted in Escherichia coli to accumulate fructose-6-phosphate (F6P). Additionally, one endogenous phosphatase, YniC, with high specificity to mannose-6-phosphate, was identified. In ΔpfkA strain, a recombinant synthetic pathway based on mannose-6-phosphate isomerase and YniC was developed to direct F6P to mannose. The resulting strain successfully produced 25.2 g/L mannose from glucose with a high conversion rate of 63% after transformation for 48 h. This performance surpassed the 15% conversion rate observed with 2-epimerases. In conclusion, this study presents an efficient method for achieving high-yield mannose synthesis from cost-effective glucose.


Assuntos
Escherichia coli , Glucose , Manose , Manose/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fosforilação , Glucose/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Manosefosfatos/metabolismo , Engenharia Metabólica , Frutosefosfatos/metabolismo , Manose-6-Fosfato Isomerase/metabolismo , Manose-6-Fosfato Isomerase/genética , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Glicólise
3.
Plant Sci ; 338: 111897, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37852415

RESUMO

Due to anthropogenic global warming, droughts are expected to increase and water availability to decrease in the coming decades. For this reason, research is increasingly focused on developing plant varieties and crop cultivars with reduced water consumption. Transpiration occurs through stomatal pores, resulting in water loss. Potassium plays a significant role in stomatal regulation. KAT1 is an inward-rectifying potassium channel that contributes to stomatal opening. Using a yeast high-throughput screening of an Arabidopsis cDNA library, MEE31 was found to physically interact with KAT1. MEE31 was initially identified in a screen for mutants with delayed embryonic development. The gene encodes a conserved phosphomannose isomerase (PMI). We report here that MEE31 interacts with and increases KAT1 activity in yeast and this interaction was also confirmed in plants. In addition, MEE31 complements the function of the yeast homologue, whereas the truncated version recovered in the screening does not, thus uncoupling the enzymatic activity from KAT1 regulation. We show that MEE31 overexpression leads to increased stomatal opening in Arabidopsis transgenic lines. Our data suggest that MEE31 is a moonlighting protein involved in both GDP-D-mannose biosynthesis and KAT1 regulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Manose-6-Fosfato Isomerase , Canais de Potássio Corretores do Fluxo de Internalização , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Manose/metabolismo , Proteínas de Plantas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Água/metabolismo , Manose-6-Fosfato Isomerase/metabolismo
4.
Transgenic Res ; 32(5): 423-435, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37415055

RESUMO

Fundamental to the safety assessment of genetically modified (GM) crops is the concept of negligible risk for newly expressed proteins for which there is a history of safe use. Although this simple concept has been stated in international and regional guidance for assessing the risk of newly expressed proteins in GM crops, its full implementation by regulatory authorities has been lacking. As a result, safety studies are often repeated at a significant expenditure of resources by developers, study results are repeatedly reviewed by regulators, and animals are sacrificed needlessly to complete redundant animal toxicity studies. This situation is illustrated using the example of the selectable marker phosphomannose isomerase (PMI) for which familiarity has been established. Reviewed is the history of safe use for PMI and predictable results of newly conducted safety studies including bioinformatic comparisons, resistance to digestion, and acute toxicity that were repeated to gain regulatory reapproval of PMI expressed from constructs in recently developed GM maize. As expected, the results of these newly repeated hazard-identification and characterization studies for PMI indicate negligible risk. PMI expressed in recently developed GM crops provides an opportunity to use the concept of familiarity by regulatory authorities to reduce risk-disproportionate regulation of these new events and lessen the resulting waste of both developer and regulator resources, as well as eliminate unnecessary animal testing. This would also correctly imply that familiar proteins like PMI have negligible risk. Together, such modernization of regulations would benefit society through enabling broader and faster access to needed technologies.


Assuntos
Produtos Agrícolas , Manose-6-Fosfato Isomerase , Animais , Manose-6-Fosfato Isomerase/genética , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética
5.
Microbiol Spectr ; 10(5): e0236722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190421

RESUMO

Cyanophages, viruses that infect cyanobacteria, are abundant and widely distributed in aquatic ecosystems, playing important roles in regulating the abundance, activity, diversity, and evolution of cyanobacteria. A T4-like cyanophage, S-SCSM1, infecting Synechococcus and Prochlorococcus strains of different ecotypes, was isolated from the South China Sea in this study. For the first time, a mannose-6-phosphate isomerase (MPI) gene was identified in the cultured cyanophage. At least 11 phylogenetic clusters of cyanophage MPIs were retrieved and identified from the marine metagenomic data sets, indicating that cyanophage MPIs in the marine environment are extremely diverse. The existence of 24 genes encoding 2-oxoglutarate (2OG)-Fe(II) oxygenase superfamily proteins in the S-SCSM1 genome emphasizes their potential importance and diverse functions in reprogramming host metabolism during phage infection. Novel cell wall synthesis and modification genes found in the S-SCSM1 genome indicate that diverse phenotypic modifications imposed by phages on cyanobacterial hosts remain to be discovered. Two noncoding RNAs of cis-regulatory elements in the S-SCSM1 genome were predicted to be associated with host exopolysaccharide metabolism and photosynthesis. The isolation and genomic characterization of cyanophage S-SCSM1 provide more information on the genetic diversity of cyanophages and phage-host interactions in the marine environment. IMPORTANCE Cyanophages play important ecological roles in aquatic ecosystems. Genomic and proteomic characterizations of the T4-like cyanophage S-SCSM1 indicate that novel and diverse viral genes and phage-host interactions in the marine environment remain unexplored. The first identified mannose-6-phosphate isomerase (MPI) gene from a cultured cyanophage was found in the S-SCSM1 genome, although MPIs were previously found in viral metagenomes at high frequencies similar to those of the cyanophage photosynthetic gene psbA. The presence of 24 genes encoding 2-oxoglutarate (2OG)-Fe(II) oxygenase superfamily proteins, novel cell wall synthesis and modification genes, a nonbleaching protein A gene, and 2 noncoding RNAs of cis-regulatory elements in the S-SCSM1 genome as well as the presence of a virion-associated regulatory protein indicate the diverse functions that cyanophages have in reprogramming the metabolism and modifying the phenotypes of hosts during infection.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Filogenia , Ecossistema , Genoma Viral , Ácidos Cetoglutáricos , Proteômica , Manose-6-Fosfato Isomerase/genética , Oxigenases/genética , Compostos Ferrosos
6.
Microbiol Spectr ; 10(5): e0202722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35980200

RESUMO

Aspergillus flavus causes invasive aspergillosis in immunocompromised patients and severe contamination of agriculturally important crops by producing aflatoxins. The fungal cell wall is absent in animals and is structurally different from that of plants, which makes it a potential antifungal drug target due to its essentiality for fungal survival. Mannose is one of the important components in the fungal cell wall, which requires GDP-mannose (GDP-Man) as the primary donor. Three consecutive enzymes, namely, phosphomannose isomerase (PMI), phosphomannose mutase (PMM), and GDP-mannose phosphorylase (GMPP), are required for GDP-Man biosynthesis. Thus, PMI is of prime importance in cell wall biosynthesis and also has an active role in sugar metabolism. Here, we investigated the functional role of PMI in A. flavus by generating a pmiA-deficient strain. The mutant required exogenous mannose to survive and exhibited reduced growth rate, impaired conidiation, early germination, disturbance in stress responses, and defects in colonization of crop seeds. Furthermore, attenuated virulence of the mutant was documented in both Caenorhabditis elegans and Galleria mellonella infection models. Our results suggested that PMI plays an important role in the development, stress responses, and pathogenicity of A. flavus and therefore could serve as a potential target for battling against infection and controlling aflatoxin contamination caused by A. flavus. IMPORTANCE Aspergillus flavus is a common fungal pathogen of humans, animals, and agriculturally important crops. It causes invasive aspergillosis in humans and also produces highly carcinogenic mycotoxins in postharvest crops that threaten food safety worldwide. To alleviate or eliminate the threats posed by A. flavus, it is necessary to identify genes involved in pathogenicity and mycotoxin contamination. However, little progress has been made in this regard. Here, we focused on PMI, which is the first enzyme involved in the biosynthesis pathway of GDP-Man and thus is important for cell wall synthesis and protein glycosylation. Our study revealed that PMI is important for growth of A. flavus. It is also involved in conidiation, germination, morphogenesis, stress responses, and pathogenicity of A. flavus. Thus, PMI is a potent antifungal target to curb the threats posed by A. flavus.


Assuntos
Aflatoxinas , Aspergilose , Transferases Intramoleculares , Animais , Humanos , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Virulência/genética , Manose-6-Fosfato Isomerase/genética , Manose-6-Fosfato Isomerase/metabolismo , Antifúngicos , Manose/metabolismo , Aflatoxinas/metabolismo , Transferases Intramoleculares/metabolismo , Proteínas Fúngicas/genética
7.
Hepatol Commun ; 6(7): 1711-1724, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35315595

RESUMO

The mechanisms underlying liver fibrosis are multifaceted and remain elusive with no approved antifibrotic treatments available. The adult zebrafish has been an underutilized tool to study liver fibrosis. We aimed to characterize the single-cell transcriptome of the adult zebrafish liver to determine its utility as a model for studying liver fibrosis. We used single-cell RNA sequencing (scRNA-seq) of adult zebrafish liver to study the molecular and cellular dynamics at a single-cell level. We performed a comparative analysis to scRNA-seq of human liver with a focus on hepatic stellate cells (HSCs), the driver cells in liver fibrosis. scRNA-seq reveals transcriptionally unique populations of hepatic cell types that comprise the zebrafish liver. Joint clustering with human liver scRNA-seq data demonstrates high conservation of transcriptional profiles and human marker genes in zebrafish. Human and zebrafish HSCs show conservation of transcriptional profiles, and we uncover collectin subfamily member 11 (colec11) as a novel, conserved marker for zebrafish HSCs. To demonstrate the power of scRNA-seq to study liver fibrosis using zebrafish, we performed scRNA-seq on our zebrafish model of a pediatric liver disease with mutation in mannose phosphate isomerase (MPI) and characteristic early liver fibrosis. We found fibrosis signaling pathways and upstream regulators conserved across MPI-depleted zebrafish and human HSCs. CellPhoneDB analysis of zebrafish transcriptome identified neuropilin 1 as a potential driver of liver fibrosis. Conclusion: This study establishes the first scRNA-seq atlas of the adult zebrafish liver, highlights the high degree of similarity to human liver, and strengthens its value as a model to study liver fibrosis.


Assuntos
Transcriptoma , Peixe-Zebra , Animais , Criança , Humanos , Cirrose Hepática/genética , Manose-6-Fosfato Isomerase , Fenótipo , Transcriptoma/genética , Peixe-Zebra/genética
8.
Chembiochem ; 23(4): e202100497, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34958513

RESUMO

Self-stable precipitation polymerization was used to prepare an enzyme-immobilized microsphere composite. Phosphomannose isomerase (PMI) with His-tag was successfully immobilized on Ni2+ charged pyridine-derived particles. The maximum amount of PMI immobilized on such particles was ∼184 mg/g. Compared with free enzyme, the activity of the immobilized enzymes was significantly improved. In addition, the immobilized enzymes showed a much better thermostability than free enzymes. At the same time, the immobilized enzymes can be reused for multiple reaction cycles. We observed that the enzyme activity did not decrease significantly after six cycles. We conclude that the pyridine-derived particles can be used to selectively immobilize His-tagged enzymes, which can couple the enzyme purification and catalysis steps and improve the efficiency of enzyme-catalyzed industrial processes.


Assuntos
Quelantes/metabolismo , Histidina/metabolismo , Manose-6-Fosfato Isomerase/metabolismo , Nanopartículas/metabolismo , Níquel/metabolismo , Linhagem Celular Tumoral , Quelantes/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Histidina/química , Humanos , Manose-6-Fosfato Isomerase/química , Nanopartículas/química , Níquel/química
9.
Cancer Sci ; 112(12): 4944-4956, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34533861

RESUMO

Diverse metabolic changes are induced by various driver oncogenes during the onset and progression of leukemia. By upregulating glycolysis, cancer cells acquire a proliferative advantage over normal hematopoietic cells; in addition, these changes in energy metabolism contribute to anticancer drug resistance. Because leukemia cells proliferate by consuming glucose as an energy source, an alternative nutrient source is essential when glucose levels in bone marrow are insufficient. We profiled sugar metabolism in leukemia cells and found that mannose is an energy source for glycolysis, the tricarboxylic acid (TCA) cycle, and the pentose phosphate pathway. Leukemia cells express high levels of phosphomannose isomerase (PMI), which mobilizes mannose to glycolysis; consequently, even mannose in the blood can be used as an energy source for glycolysis. Conversely, suppression of PMI expression or a mannose load exceeding the processing capacity of PMI inhibited transcription of genes related to mitochondrial metabolism and the TCA cycle, therefore suppressing the growth of leukemia cells. High PMI expression was also a poor prognostic factor for acute myeloid leukemia. Our findings reveal a new mechanism for glucose starvation resistance in leukemia. Furthermore, the combination of PMI suppression and mannose loading has potential as a novel treatment for driver oncogene-independent leukemia.


Assuntos
Leucemia/tratamento farmacológico , Manose-6-Fosfato Isomerase/metabolismo , Manose/administração & dosagem , Regulação para Cima , Animais , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Células K562 , Leucemia/enzimologia , Leucemia/genética , Leucemia/patologia , Manose/farmacologia , Manose-6-Fosfato Isomerase/antagonistas & inibidores , Camundongos , Via de Pentose Fosfato/efeitos dos fármacos , Prognóstico , Células THP-1 , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Med Oncol ; 38(9): 103, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34313879

RESUMO

Mannose induces tumor cell apoptosis and inhibits glucose metabolism by accumulating intracellularly as mannose 6-phosphate while the drug sensitivity of tumors is negatively correlated with mannose phosphate isomerase gene (MPI) expression. In this study, we performed a first attempt to explore the relationship between the targeted gene MPI and immune infiltration and genetic and clinical characteristics of head and neck squamous carcinoma (HNSC) using computational algorithms and bioinformatic analysis, and further to verify the co-inhibition effects of mannose with genotoxicity, immune responses, and microbes dysbiosis in oral squamous cell carcinoma (OSCC) in vitro and in vivo. Our results found that patients with lower MPI expression had higher survival rate. The enhancement of MPI expression was in response to DNA damage gene, and ATM inhibitor was verified as a potential drug with a synergistic effect with mannose on HSC-3. In the HNSC, infiltrated immunocytes CD8+ T cell and B cell were the significantly reduced risk cells, while IL-22 and IFN-γ showed negative correlation with MPI. Finally, mannose could reverse immunophenotyping caused by antibiotics in mice, resulting in the decrease of CD8+ T cells and increase of myeloid-derived suppressor cells (MDSCs). In conclusion, the MPI gene showed a significant correlation with immune infiltration and genetic and clinical characteristics of HNSC. The treatment of ATM inhibitor, immune regulating cells of CD8+ T cells and MDSCs, and oral microbiomes in combination with mannose could exhibit co-inhibitory therapeutic effect for OSCC.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Biologia Computacional/métodos , Linfócitos do Interstício Tumoral/imunologia , Manose-6-Fosfato Isomerase/antagonistas & inibidores , Manose/farmacologia , Neoplasias Bucais/tratamento farmacológico , Animais , Apoptose , Biomarcadores Tumorais/análise , Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Humanos , Masculino , Manose-6-Fosfato Isomerase/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Bucais/imunologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Células Supressoras Mieloides/imunologia , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Transgenic Res ; 30(2): 201-206, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33761048

RESUMO

Newly expressed proteins in genetically engineered crops are evaluated for potential cross reactivity to known allergens as part of their safety assessment. This assessment uses a weight-of-evidence approach. Two key components of this allergenicity assessment include any history of safe human exposure to the protein and/or the source organism from which it was originally derived, and bioinformatic analysis identifying amino acid sequence relatedness to known allergens. Phosphomannose-isomerase (PMI) has been expressed in commercialized genetically engineered (GE) crops as a selectable marker since 2010 with no known reports of allergy, which supports a history of safe exposure, and GE events expressing the PMI protein have been approved globally based on expert safety analysis. Bioinformatic analyses identified an eight-amino-acid contiguous match between PMI and a frog parvalbumin allergen (CAC83047.1). While short amino acid matches have been shown to be a poor predictor of allergen cross reactivity, most regulatory bodies require such matches be assessed in support of the allergenicity risk assessment. Here, this match is shown to be of negligible risk of conferring cross reactivity with known allergens.


Assuntos
Alérgenos/imunologia , Biologia Computacional/métodos , Hipersensibilidade Alimentar/imunologia , Manose-6-Fosfato Isomerase/imunologia , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas/imunologia , Zea mays/imunologia , Alérgenos/genética , Sequência de Aminoácidos , Reações Cruzadas , Hipersensibilidade Alimentar/genética , Humanos , Manose-6-Fosfato Isomerase/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Homologia de Sequência , Zea mays/genética
12.
J Inherit Metab Dis ; 43(6): 1360-1369, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33098580

RESUMO

Mannose phosphate isomerase MPI-CDG (formerly CDG-1b) is a potentially fatal inherited metabolic disease which is readily treatable with oral D-mannose. We retrospectively reviewed long-term outcomes of patients with MPI-CDG, all but one of whom were treated with D-mannose. Clinical, biological, and histological data were reviewed at diagnosis and on D-mannose treatment. Nine patients were diagnosed with MPI-CDG at a median age of 3 months. The presenting symptoms were diarrhea (n = 9), hepatomegaly (n = 9), hypoglycemia (n = 8), and protein loosing enteropathy (n = 7). All patients survived except the untreated one who died at 2 years of age. Oral D-mannose was started in eight patients at a median age of 7 months (mean 38 months), with a median follow-up on treatment of 14 years 9 months (1.5-20 years). On treatment, two patients developed severe portal hypertension, two developed venous thrombosis, and 1 displayed altered kidney function. Poor compliance with D-mannose was correlated with recurrence of diarrhea, thrombosis, and abnormal biological parameters including coagulation factors and transferrin profiles. Liver fibrosis persisted despite treatment, but two patients showed improved liver architecture during follow-up. This study highlights (i) the efficacy and safety of D-mannose treatment with a median follow-up on treatment of almost 15 years (ii) the need for life-long treatment (iii) the risk of relapse with poor compliance, (iii) the importance of portal hypertension screening (iv) the need to be aware of venous and renal complications in adulthood.


Assuntos
Defeitos Congênitos da Glicosilação/tratamento farmacológico , Manose-6-Fosfato Isomerase/deficiência , Manose/administração & dosagem , Manose/efeitos adversos , Administração Oral , Criança , Pré-Escolar , Feminino , Humanos , Hipertensão/etiologia , Lactente , Cirrose Hepática/patologia , Masculino , Adesão à Medicação , Estudos Retrospectivos , Transferrina/análise , Resultado do Tratamento , Trombose Venosa/etiologia
13.
J Agric Food Chem ; 68(25): 6892-6899, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32486647

RESUMO

A mannose-6-phosphate isomerase (MPI) from Geobacillus thermodenitrificans was expressed and successfully encapsulated into the Saccharomyces cerevisiae spores. Our results demonstrated that compared to the free enzyme, the MPI triple mutant encapsulated in osw2Δ spores exhibited much preferred enzymatic properties, such as enhanced catalytic activity, excellent reusability, thermostability, and tolerance to various harsh conditions. In combination with an l-arabinose isomerase (AI) also from G. thermodenitrificans, this technique of spore encapsulation was applied for producing a high-value rare sugar l-ribose from biomass-derived l-arabinose. Using a 10 mL reaction system, 350 mg of l-ribose was produced from 1 g of l-arabinose with a conversion yield of 35% by repeatedly reacting with 200 mg of AI-encapsulated spores and 300 mg of MPI-encapsulated spores. This study provides a very useful and concise approach for the synthesis of rare sugars and other useful compounds.


Assuntos
Proteínas de Bactérias/genética , Geobacillus/enzimologia , Manose-6-Fosfato Isomerase/genética , Ribose/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Expressão Gênica , Manose-6-Fosfato Isomerase/química , Manose-6-Fosfato Isomerase/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo
14.
J Microbiol ; 58(9): 725-733, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32583284

RESUMO

Phosphate sugar isomerases, catalyzing the isomerization between ketopentose/ketohexose phosphate and aldopentose/aldohexose phosphate, play an important role in microbial sugar metabolism. They are present in a wide range of microorganisms. They have attracted increasing research interest because of their broad substrate specificity and great potential in the enzymatic production of various rare sugars. Here, the enzymatic properties of various phosphate sugar isomerases are reviewed in terms of their substrate specificities and their applications in the production of valuable rare sugars because of their functions such as low-calorie sweeteners, bulking agents, and pharmaceutical precursor. Specifically, we focused on the industrial applications of D-ribose-5-phosphate isomerase and D-mannose-6-phosphate isomerase to produce D-allose and L-ribose, respectively.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Bactérias/metabolismo , Glucose/biossíntese , Manose-6-Fosfato Isomerase/metabolismo , Ribose/biossíntese , Hexoses/metabolismo , Pentoses/metabolismo , Especificidade por Substrato , Edulcorantes/química
15.
J Inherit Metab Dis ; 43(4): 671-693, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32266963

RESUMO

Mannose phosphate isomerase-congenital disorder of glycosylation (MPI-CDG) deficiency is a rare subtype of congenital disorders of protein N-glycosylation. It is characterised by deficiency of MPI caused by pathogenic variants in MPI gene. The manifestation of MPI-CDG is different from other CDGs as the patients suffer dominantly from gastrointestinal and hepatic involvement whereas they usually do not present intellectual disability or neurological impairment. It is also one of the few treatable subtypes of CDGs with proven effect of oral mannose. This article covers a complex review of the literature and recommendations for the management of MPI-CDG with an emphasis on the clinical aspect of the disease. A team of international experts elaborated summaries and recommendations for diagnostics, differential diagnosis, management, and treatment of each system/organ involvement based on evidence-based data and experts' opinions. Those guidelines also reveal more questions about MPI-CDG which need to be further studied.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/terapia , Manose-6-Fosfato Isomerase/deficiência , Defeitos Congênitos da Glicosilação/enzimologia , Consenso , Gerenciamento Clínico , Humanos , Manose-6-Fosfato Isomerase/genética , Guias de Prática Clínica como Assunto
16.
Proc Natl Acad Sci U S A ; 117(10): 5376-5385, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32098846

RESUMO

The mannose-6-phosphate isomerase (Mpi) locus in Semibalanus balanoides has been studied as a candidate gene for balancing selection for more than two decades. Previous work has shown that Mpi allozyme genotypes (fast and slow) have different frequencies across Atlantic intertidal zones due to selection on postsettlement survival (i.e., allele zonation). We present the complete gene sequence of the Mpi locus and quantify nucleotide polymorphism in S. balanoides, as well as divergence to its sister taxon Semibalanus cariosus We show that the slow allozyme contains a derived charge-altering amino acid polymorphism, and both allozyme classes correspond to two haplogroups with multiple internal haplotypes. The locus shows several footprints of balancing selection around the fast/slow site: an enrichment of positive Tajima's D for nonsynonymous mutations, an excess of polymorphism, and a spike in the levels of silent polymorphism relative to silent divergence, as well as a site frequency spectrum enriched for midfrequency mutations. We observe other departures from neutrality across the locus in both coding and noncoding regions. These include a nonsynonymous trans-species polymorphism and a recent mutation under selection within the fast haplogroup. The latter suggests ongoing allelic replacement of functionally relevant amino acid variants. Moreover, predicted models of Mpi protein structure provide insight into the functional significance of the putatively selected amino acid polymorphisms. While footprints of selection are widespread across the range of S. balanoides, our data show that intertidal zonation patterns are variable across both spatial and temporal scales. These data provide further evidence for heterogeneous selection on Mpi.


Assuntos
Manose-6-Fosfato Isomerase/genética , Seleção Genética , Thoracica/enzimologia , Thoracica/genética , Alelos , Animais , Loci Gênicos , Genótipo , Isoenzimas/química , Isoenzimas/genética , Manose-6-Fosfato Isomerase/química , Mutação , Polimorfismo Genético
17.
Artigo em Inglês | MEDLINE | ID: mdl-30987578

RESUMO

BACKGROUND AND OBJECTIVE: The present paper aims to study the inhibition of Candida albicans growth as candidiasis treatment, using seeds of Lepidium sativum as source. METHODS: In vitro assays were carried out on the antifungal activity of three kinds of extracts from L. sativum seeds against four strains of C. albicans, then testing the same phytochemicals on the inhibition of Lipase (LCR). A new in silico study was achieved using molecular docking, with Autodock vina program, to find binding affinity of two important and major lepidine alkaloids (lepidine E and B) towards the four enzymes secreted by C. albicans as target drugs, responsible of vitality and virulence of this yeast cells: Lipase, Serine/threonine phosphatase, Phosphomannose isomerase and Sterol 14-alpha demethylase (CYP51). RESULTS: The results of the microdillution assay show that the hexanic and alkaloidal extracts have an antifungal activity with MICs: 2.25 mg/ml and 4.5mg/ml, respectively. However, Candida rugosa lipase assay gives a remarkable IC50 values for the hexanic extract (1.42± 0.04 mg/ml) followed by 1.7± 0.1 and 2.29 ± 0.09 mg/ml of ethyl acetate and alkaloidal extracts respectively. The molecular docking confirms a significant correlation between C. albicans growth and inhibition of crucial enzymes involved in the invasion mechanism and cellular metabolisms, for the first time there were an interesting and new positive results on binding modes of lepidine E and B on the four studied enzymes. CONCLUSION: Through this work, we propose Lepidine B & E as potent antifungal drugs.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Lepidium sativum , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Sementes , Antifúngicos/química , Antifúngicos/isolamento & purificação , Candida albicans/enzimologia , Candida albicans/crescimento & desenvolvimento , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lepidium sativum/química , Lipase/antagonistas & inibidores , Lipase/metabolismo , Manose-6-Fosfato Isomerase/antagonistas & inibidores , Manose-6-Fosfato Isomerase/metabolismo , Terapia de Alvo Molecular , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Conformação Proteica , Sementes/química , Relação Estrutura-Atividade , Virulência
18.
J Bacteriol ; 202(4)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31767777

RESUMO

Bacteria have a variety of mechanisms for adapting to environmental perturbations. Changes in oxygen availability result in a switch between aerobic and anaerobic respiration, whereas iron limitation may lead to siderophore secretion. In addition to metabolic adaptations, many organisms respond by altering their cell shape. Caulobacter crescentus, when grown under phosphate-limiting conditions, dramatically elongates its polar stalk appendage. The stalk is hypothesized to facilitate phosphate uptake; however, the mechanistic details of stalk synthesis are not well characterized. We used a chemical mutagenesis approach to isolate and characterize stalk-deficient mutants, one of which had two mutations in the phosphomannose isomerase gene (manA) that were necessary and sufficient to inhibit stalk elongation. Transcription of the pho regulon was unaffected in the manA mutant; therefore, ManA plays a unique regulatory role in stalk synthesis. The mutant ManA had reduced enzymatic activity, resulting in a 5-fold increase in the intracellular fructose 6-phosphate/mannose 6-phosphate ratio. This metabolic imbalance impaired the synthesis of cellular envelope components derived from mannose 6-phosphate, namely, lipopolysaccharide O-antigen and exopolysaccharide. Furthermore, the manA mutations prevented C. crescentus cells from efficiently entering stationary phase. Deletion of the stationary-phase response regulator gene spdR inhibited stalk elongation in wild-type cells, while overproduction of the alarmone ppGpp, which triggers growth arrest and stationary-phase entry, increased stalk length in the manA mutant strain. These results demonstrate that sugar-phosphate metabolism regulates stalk elongation independently of phosphate starvation.IMPORTANCE Metabolic control of bacterial cell shape is an important mechanism for adapting to environmental perturbations. Caulobacter crescentus dramatically elongates its polar stalk appendage in response to phosphate starvation. To investigate the mechanism of this morphological adaptation, we isolated stalk-deficient mutants, one of which had mutations in the phosphomannose isomerase gene (manA) that blocked stalk elongation, despite normal activation of the phosphate starvation response. The mutant ManA resulted in an imbalance in sugar-phosphate concentrations, which had effects on the synthesis of cellular envelope components and entry into stationary phase. Due to the interconnectivity of metabolic pathways, our findings may suggest more generally that the modulation of bacterial cell shape involves the regulation of growth phase and the synthesis of cellular building blocks.


Assuntos
Caulobacter crescentus/metabolismo , Manose-6-Fosfato Isomerase/fisiologia , Fosfatos/metabolismo , Açúcares/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/crescimento & desenvolvimento , Manose-6-Fosfato Isomerase/genética , Redes e Vias Metabólicas , Mutação , Polimorfismo de Nucleotídeo Único
19.
PLoS Negl Trop Dis ; 13(6): e0007496, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31220120

RESUMO

To obtain further insight into geographic distribution of Leishmania species in Peru, a countrywide survey, including central to southern rainforest areas where information on causative parasite species is limited, was performed based on cytochrome b (cyt b) and mannose phosphate isomerase (mpi) gene analyses. A total of 262 clinical samples were collected from patients suspected of cutaneous leishmaniasis (CL) in 28 provinces of 13 departments, of which 99 samples were impregnated on FTA (Flinders Technology Associates) cards and 163 samples were Giemsa-stained smears. Leishmania species were successfully identified in 83 (83.8%) of FTA-spotted samples and 59 (36.2%) of Giemsa-stained smear samples. Among the 142 samples identified, the most dominant species was Leishmania (Viannia) braziliensis (47.2%), followed by L. (V.) peruviana (26.1%), and others were L. (V.) guyanensis, L. (V.) lainsoni, L. (V.) shawi, a hybrid of L. (V.) braziliensis and L. (V.) peruviana, and Leishmania (Leishmania) amazonensis. Besides the present epidemiological observations, the current study provided the following findings: 1) A hybrid of L. (V.) braziliensis and L. (V.) peruviana is present outside the Department of Huanuco, the only place reported, 2) Many cases of CL due to L. (V.) lainsoni, an uncommon causative species in Peru, were observed, and 3) L. (V.) shawi is widely circulating in southern Amazonian areas in Peru.


Assuntos
Citocromos b/genética , Leishmania/classificação , Leishmania/genética , Leishmaniose Cutânea/epidemiologia , Manose-6-Fosfato Isomerase/genética , Filogeografia , Proteínas de Protozoários/genética , Humanos , Leishmania/isolamento & purificação , Peru/epidemiologia
20.
Rev. MED ; 27(1): 29-43, ene.-jun. 2019. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-1115217

RESUMO

Resumen: Los desórdenes congénitos de glicosilación son un conjunto de defectos genéticos de tipo multisistémico que afectan la función de la proteína. Se han descrito cerca de 75 enfermedades desde sus primeros estudios. En el presente estudio se desarrolló un método microespectrofotométrico para el diagnóstico de la enzima citosólica fosfomanosa isomerasa EC 5.3.1.8 (PMI), se analizaron 32 muestras de individuos con rango de edad de 0,6 a 27 años y se estableció el intervalo y el valor de referencia de actividad enzimática específica. Este estudio permitirá iniciar el diagnóstico de pacientes deficientes de la PMI de forma temprana y oportuna, lo cual la convierte en una posible enzima candidata para pruebas de tamizaje neonatal, ya que esta patología tiene un tratamiento fácil y de bajo costo, que consiste en la suplementación de manosa en forma oral. El diagnóstico clínico de este desorden metabólico beneficiará al paciente y a su familia al mejorar su calidad de vida, como también al sistema de salud colombiano.


Abstract: Congenital glycosylation disorders are a set of multi-systemic genetic defects affecting protein function. About 75 diseases have been described since early studies. This study developed a microspectrophotometric method for the diagnosis of the cytosolic enzyme phosphomannose isomerase (PMI) (EC 5.3.1.8), analyzed 32 samples of individuals ranging between 0.6 and 27 years old, and established the interval and reference value of specific enzyme activity. This study will allow early and timely diagnosis of PMI deficient patients, which makes this enzyme a potential candidate for neonatal screening tests since this pathology has an easy, low-cost treatment (oral administration of mannose supplements). Clinical diagnosis of this metabolic disorder will benefit the patient and his family by improving his quality of life, as well as the Colombian healthcare system.


Resumo: Os defeitos congénitos de glicosilação são um conjunto de defeitos genéticos de tipo mul-tissistêmico que afetam a função da proteína. Foram descritas 75 doenças desde seus primeiros estudos. Neste estudo, foi desenvolvido um método microespectrofotométrico para diagnosticar a enzima citosólica fosfomanose isomerase EC 5.3.1.8 (PMI); foram analisadas 32 amostras de indivíduos entre 0,6 e 27 anos e estabelecidos o intervalo e o valor de referência de atividade enzimática específica. Este estudo permitirá iniciar o diagnóstico de pacientes deficientes da PMI de forma precoce e oportuna, o que a converte em uma possível enzima candidata para testes genéticos de rastreio pré-natal, já que essa patologia tem um tratamento fácil e de baixo custo, que consiste na suplementação de manose por via oral. O diagnóstico clínico desse defeito metabólico beneficiará o paciente e sua família ao melhorar a qualidade de vida e o sistema de saúde colombiano.


Assuntos
Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Microespectrofotometria , Manose-6-Fosfato Isomerase , Defeitos Congênitos da Glicosilação , Diagnóstico , Ativação Enzimática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA