Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Elife ; 122024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082933

RESUMO

Global amphibian declines are compounded by deadly disease outbreaks caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd). Much has been learned about the roles of amphibian skin-produced antimicrobial components and microbiomes in controlling Bd, yet almost nothing is known about the roles of skin-resident immune cells in anti-Bd defenses. Mammalian mast cells reside within and serve as key immune sentinels in barrier tissues like skin. Accordingly, we investigated the roles of Xenopus laevis frog mast cells during Bd infections. Our findings indicate that enrichment of X. laevis skin mast cells confers anti-Bd protection and ameliorates the inflammation-associated skin damage caused by Bd infection. This includes a significant reduction in infiltration of Bd-infected skin by neutrophils, promoting mucin content within cutaneous mucus glands, and preventing Bd-mediated changes to skin microbiomes. Mammalian mast cells are known for their production of the pleiotropic interleukin-4 (IL4) cytokine and our findings suggest that the X. laevis IL4 plays a key role in manifesting the effects seen following cutaneous mast cell enrichment. Together, this work underscores the importance of amphibian skin-resident immune cells in anti-Bd defenses and illuminates a novel avenue for investigating amphibian host-chytrid pathogen interactions.


Assuntos
Batrachochytrium , Mastócitos , Pele , Xenopus laevis , Animais , Mastócitos/imunologia , Mastócitos/microbiologia , Mastócitos/metabolismo , Xenopus laevis/microbiologia , Xenopus laevis/imunologia , Pele/microbiologia , Pele/imunologia , Micoses/imunologia , Micoses/veterinária , Micoses/microbiologia , Microbiota
2.
Vopr Pitan ; 91(1): 98-108, 2022.
Artigo em Russo | MEDLINE | ID: mdl-35298108

RESUMO

Helicobacter pylori induced gastritis accounts for 70% of cases in the structure of this pathology. Features of the long-term inflammatory reaction of the mucous membrane are directly related to the mechanisms of bacterial pathogenicity, and features of immunogenesis within narrow limits of the specific tissue microenvironment of organ structures. Mast cells appear to be one of the key players (promoters) in the regulation of the inflammatory mediator cascade and the formation of cytokine-induced expression. Possessing a wide arsenal of biologically active substances, mast cells are able to participate in the formation of the immune response and resistance of the gastric mucosa, modulating both pro- and anti-inflammatory effects. The antigen-presenting features of mast cells are of interest in terms of interaction with H. pylori and induction of mucosa bacterial colonization. The aim of study was to assess the mast cell tryptase profile of the gastric mucosa in the immunopathogenesis of H. pylori-associated inflammation. Material and methods. The study included 19 biopsies of the gastric mucosa with unknown status of H. pylori infection. Microslides were stained with hematoxylin and eosin, and Giemsa's dye for plain microscopy. H. pylori infection of the gastric mucosa was detected using the immunohistochemical method. Using double immunofluorescent labeling, localization of tryptase-positive mast cells and H. pylori strains was detected. Results. In patients infected with H. pylori (n=12), there was a significant increase in the number of tryptase-positive mast cells (177.99±30.55 vs 88.58±11.49; p<0.05) with activation of secretory pathways and release of protease into the extracellular matrix of the gastric mucosa. The quantitative parameters of mast cells in the group of patients with an undetected pathogen and signs of a chronic inflammation of the gastric mucosa were statistically significantly lower than in the group of infected patients. Co-localization of tryptase-positive mast cells and H. pylori strains (with the formation of areas of large free-lying granule accumulation around the glands with pronounced degree of H. pylori contamination) was detected in gastrobiopsy specimens, the fact evidencing their close involvement in the development of inflammatory reactions of the gastric mucosa. Conclusion. The study demonstrated the features of mast cells and H. pylori interaction revealing previously unknown aspects of gastritis pathophysiology. The data obtained contribute a valuable insight to choose a treatment strategy for H. pylori-associated gastritis.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Gastrite/metabolismo , Gastrite/microbiologia , Gastrite/patologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/patologia , Humanos , Inflamação/metabolismo , Mastócitos/metabolismo , Mastócitos/microbiologia , Mastócitos/patologia , Triptases/metabolismo
3.
Nutrients ; 13(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34836105

RESUMO

Cordyceps militaris (C. militaris) has various biomedical applications in traditional oriental medicine for different diseases including inflammatory and immune-dysregulated diseases. It is a reservoir of nutritional components such as cordycepin, polysaccharides, and antioxidants. To improve its bioactivity, we fermented C. militaris with a Pediococcus pentosaceus strain isolated from a salted small octopus (SC11). The current study aimed to evaluate whether P. pentosaceus (SC11) fermentation could enhance the anti-allergic potential of C. militaris cultured on germinated Rhynchosia nulubilis (GRC) against a type I hypersensitive reaction in in vitro and in vivo studies. Total antioxidant capacity and cordycepin content were significantly increased in GRC after SC11 fermentation. GRC-SC11 showed significantly enhanced anti-allergic responses by inhibiting immunoglobulin E (IgE)/antigen-induced degranulation in RBL-2H3 cells, compared to GRC. The results demonstrated the significant inhibition of phosphorylated spleen tyrosine kinase (Syk)/ p38/GRB2-associated binding protein 2 (Gab2)/c-jun in IgE/Ag-triggered RBL-2H3 cells. Furthermore, suppressed mRNA levels of interleukin-4 (IL-4) and tumor necrosis factor-α (TNF-α) in IgE/Ag-activated RBL-2H3 cells were observed. GRC-SC11 significantly ameliorated IgE-induced allergic reactions by suppressing the ear swelling, vascular permeability, and inflammatory cell infiltration in passive cutaneous anaphylaxis (PCA) BALB/c mice. In conclusion, GRC fermented with P.pentosaceus exerted enhanced anti-allergic effects, and increased the cordycepin content and antioxidants potential compared to GRC. It can be used as bio-functional food in the prevention and management of type I allergic diseases.


Assuntos
Antialérgicos/metabolismo , Cordyceps/metabolismo , Hipersensibilidade/microbiologia , Lactobacillales/metabolismo , Pediococcus pentosaceus/metabolismo , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Fermentação , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/terapia , Imunoglobulina E/metabolismo , Mastócitos/imunologia , Mastócitos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C
4.
Front Immunol ; 12: 650779, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194428

RESUMO

Listeria monocytogenes (L.m) is efficiently controlled by several cells of the innate immunity, including the Mast Cell (MC). MC is activated by L.m inducing its degranulation, cytokine production and microbicidal mechanisms. TLR2 is required for the optimal control of L.m infection by different cells of the immune system. However, little is known about the MC receptors involved in recognizing this bacterium and whether these interactions mediate MC activation. In this study, we analyzed whether TLR2 is involved in mediating different MC activation responses during L.m infection. We found that despite MC were infected with L.m, they were able to clear the bacterial load. In addition, MC degranulated and produced ROS, TNF-α, IL-1ß, IL-6, IL-13 and MCP-1 in response to bacterial infection. Interestingly, L.m induced the activation of signaling proteins: ERK, p38 and NF-κB. When TLR2 was blocked, L.m endocytosis, bactericidal activity, ROS production and mast cell degranulation were not affected. Interestingly, only IL-6 and IL-13 production were affected when TLR2 was inhibited in response to L.m infection. Furthermore, p38 activation depended on TLR2, but not ERK or NF-κB activation. These results indicate that TLR2 mediates only some MC activation pathways during L.m infection, mainly those related to IL-6 and IL-13 production.


Assuntos
Interleucina-13/imunologia , Interleucina-6/imunologia , Listeria monocytogenes/imunologia , Mastócitos/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Degranulação Celular/imunologia , Degranulação Celular/fisiologia , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Ativação Enzimática/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interleucina-13/metabolismo , Interleucina-6/metabolismo , Listeria monocytogenes/fisiologia , Mastócitos/microbiologia , Mastócitos/fisiologia , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptor 2 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Front Immunol ; 12: 670205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248949

RESUMO

Mast cells are potent immune sensors of the tissue microenvironment. Within seconds of activation, they release various preformed biologically active products and initiate the process of de novo synthesis of cytokines, chemokines, and other inflammatory mediators. This process is regulated at multiple levels. Besides the extensively studied IgE and IgG receptors, toll-like receptors, MRGPR, and other protein receptor signaling pathways, there is a critical activation pathway based on cholesterol-dependent, pore-forming cytolytic exotoxins produced by Gram-positive bacterial pathogens. This pathway is initiated by binding the exotoxins to the cholesterol-rich membrane, followed by their dimerization, multimerization, pre-pore formation, and pore formation. At low sublytic concentrations, the exotoxins induce mast cell activation, including degranulation, intracellular calcium concentration changes, and transcriptional activation, resulting in production of cytokines and other inflammatory mediators. Higher toxin concentrations lead to cell death. Similar activation events are observed when mast cells are exposed to sublytic concentrations of saponins or some other compounds interfering with the membrane integrity. We review the molecular mechanisms of mast cell activation by pore-forming bacterial exotoxins, and other compounds inducing cholesterol-dependent plasma membrane perturbations. We discuss the importance of these signaling pathways in innate and acquired immunity.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Citotoxinas/metabolismo , Bactérias Gram-Positivas/metabolismo , Infecções por Bactérias Gram-Positivas/metabolismo , Mastócitos/metabolismo , Animais , Sinalização do Cálcio , Morte Celular , Degranulação Celular , Membrana Celular/imunologia , Membrana Celular/microbiologia , Membrana Celular/patologia , Microambiente Celular , Citocinas/metabolismo , Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/patologia , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/metabolismo , Mastócitos/imunologia , Mastócitos/microbiologia , Mastócitos/patologia
6.
Front Immunol ; 12: 688659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149729

RESUMO

Mast cells (MCs) have been considered as the core effector cells of allergic diseases. However, there are evidence suggesting that MCs are involved in the mechanisms of fungal infection. MCs are mostly located in the border between host and environment and thus may have easy contact with the external environmental pathogens. These cells express receptors which can recognize pathogen-associated molecular patterns such as Toll-like receptors (TLR2/4) and C-type Lectins receptors (Dectin-1/2). Currently, more and more data indicate that MCs can be interacted with some fungi (Candida albicans, Aspergillus fumigatus and Sporothrix schenckii). It is demonstrated that MCs can enhance immunity through triggered degranulation, secretion of cytokines and chemokines, neutrophil recruitment, or provision of extracellular DNA traps in response to the stimulation by fungi. In contrast, the involvement of MCs in some immune responses may lead to more severe symptoms, such as intestinal barrier function loss, development of allergic bronchial pulmonary aspergillosis and increased area of inflammatory in S. schenckii infection. This suggests that MCs and their relevant signaling pathways are potential treatment regimens to prevent the clinically unwanted consequences. However, it is not yet possible to make definitive statements about the role of MCs during fungal infection and/or pathomechanisms of fungal diseases. In our article, we aim to review the function of MCs in fungal infections from molecular mechanism to signaling pathways, and illustrate the role of MCs in some common host-fungi interactions.


Assuntos
Fungos/patogenicidade , Mastócitos/microbiologia , Micoses/microbiologia , Animais , Fungos/imunologia , Interações Hospedeiro-Patógeno , Humanos , Mastócitos/imunologia , Mastócitos/metabolismo , Micoses/imunologia , Micoses/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431676

RESUMO

Pathogen interactions arising during coinfection can exacerbate disease severity, for example when the immune response mounted against one pathogen negatively affects defense of another. It is also possible that host immune responses to a pathogen, shaped by historical evolutionary interactions between host and pathogen, may modify host immune defenses in ways that have repercussions for other pathogens. In this case, negative interactions between two pathogens could emerge even in the absence of concurrent infection. Parasitic worms and tuberculosis (TB) are involved in one of the most geographically extensive of pathogen interactions, and during coinfection worms can exacerbate TB disease outcomes. Here, we show that in a wild mammal natural resistance to worms affects bovine tuberculosis (BTB) severity independently of active worm infection. We found that worm-resistant individuals were more likely to die of BTB than were nonresistant individuals, and their disease progressed more quickly. Anthelmintic treatment moderated, but did not eliminate, the resistance effect, and the effects of resistance and treatment were opposite and additive, with untreated, resistant individuals experiencing the highest mortality. Furthermore, resistance and anthelmintic treatment had nonoverlapping effects on BTB pathology. The effects of resistance manifested in the lungs (the primary site of BTB infection), while the effects of treatment manifested almost entirely in the lymph nodes (the site of disseminated disease), suggesting that resistance and active worm infection affect BTB progression via distinct mechanisms. Our findings reveal that interactions between pathogens can occur as a consequence of processes arising on very different timescales.


Assuntos
Búfalos/imunologia , Resistência à Doença , Hemoncose/microbiologia , Pulmão/imunologia , Linfonodos/imunologia , Tricostrongilose/microbiologia , Tuberculose Bovina/microbiologia , Animais , Antinematódeos/farmacologia , Búfalos/microbiologia , Búfalos/parasitologia , Bovinos , Coinfecção , Progressão da Doença , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Eosinófilos/microbiologia , Eosinófilos/parasitologia , Fezes/parasitologia , Feminino , Fenbendazol/farmacologia , Hemoncose/tratamento farmacológico , Hemoncose/mortalidade , Hemoncose/parasitologia , Haemonchus/efeitos dos fármacos , Haemonchus/genética , Haemonchus/patogenicidade , Imunoglobulina A/sangue , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/parasitologia , Linfonodos/efeitos dos fármacos , Linfonodos/microbiologia , Linfonodos/parasitologia , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Mastócitos/microbiologia , Mastócitos/parasitologia , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium bovis/patogenicidade , Índice de Gravidade de Doença , Análise de Sobrevida , Tricostrongilose/tratamento farmacológico , Tricostrongilose/mortalidade , Tricostrongilose/parasitologia , Trichostrongylus/efeitos dos fármacos , Trichostrongylus/genética , Trichostrongylus/patogenicidade , Tuberculose Bovina/tratamento farmacológico , Tuberculose Bovina/mortalidade , Tuberculose Bovina/parasitologia
8.
Immunity ; 53(4): 793-804.e9, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32910906

RESUMO

Allergies are considered to represent mal-directed type 2 immune responses against mostly innocuous exogenous compounds. Immunoglobulin E (IgE) antibodies are a characteristic feature of allergies and mediate hypersensitivity against allergens through activation of effector cells, particularly mast cells (MCs). Although the physiological functions of this dangerous branch of immunity have remained enigmatic, recent evidence shows that allergic immune reactions can help to protect against the toxicity of venoms. Because bacteria are a potent alternative source of toxins, we assessed the possible role of allergy-like type 2 immunity in antibacterial host defense. We discovered that the adaptive immune response against Staphylococcus aureus (SA) skin infection substantially improved systemic host defense against secondary SA infections in mice. Moreover, this acquired protection depended on IgE effector mechanisms and MCs. Importantly, our results reveal a previously unknown physiological function of allergic immune responses, IgE antibodies, and MCs in host defense against a pathogenic bacterium.


Assuntos
Imunidade Adaptativa/imunologia , Imunoglobulina E/imunologia , Mastócitos/imunologia , Infecções Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Alérgenos/imunologia , Animais , Feminino , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Mastócitos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Pele/imunologia , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia
9.
PLoS One ; 15(4): e0231101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32302339

RESUMO

Mast cells and basophils are central players in allergic reactions triggered by immunoglobulin E (IgE). They have intracellular granules containing allergic mediators (e.g., histamine, serotonin, inflammatory cytokines, proteases and ß-hexosaminidase), and stimulation by IgE-allergen complex leads to the release of such allergic mediators from the granules, that is, degranulation. Mast cells are residents of mucosal surfaces, including those of nasal and oral cavities, and play an important role in the innate defense system. Members of the mitis group streptococci such as Streptococcus oralis, are primary colonizers of the human oral cavity. They produce hydrogen peroxide (H2O2) as a by-product of sugar metabolism. In this study, we investigated the effects of streptococcal infection on RBL-2H3 mast cell/basophil cell line. Infection by oral streptococci did not induce degranulation of the cells. Stimulation of the RBL-2H3 cells with anti-dinitrophenol (DNP) IgE and DNP-conjugated human serum albumin triggers degranulation with the release of ß-hexosaminidase. We found that S. oralis and other mitis group streptococci inhibited the IgE-triggered degranulation of RBL-2H3 cells. Since mitis group streptococci produce H2O2, we examined the effect of S. oralis mutant strain deficient in producing H2O2, and found that they lost the ability to suppress the degranulation. Moreover, H2O2 alone inhibited the IgE-induced degranulation. Subsequent analysis suggested that the inhibition of degranulation was related to the cytotoxicity of streptococcal H2O2. Activated RBL-2H3 cells produce interleukin-4 (IL-4); however, IL-4 production was not induced by streptococcal H2O2. Furthermore, an in vivo study using the murine pollen-induced allergic rhinitis model suggested that the streptococcal H2O2 reduces nasal allergic reaction. These findings reveal that H2O2 produced by oral mitis group streptococci inhibits IgE-stimulated degranulation by inducing cell death. Consequently, streptococcal H2O2 can be considered to modulate the allergic reaction in mucosal surfaces.


Assuntos
Alérgenos/metabolismo , Hipersensibilidade/imunologia , Imunoglobulina E/imunologia , Infecções Estreptocócicas/tratamento farmacológico , Alérgenos/imunologia , Animais , Basófilos/imunologia , Basófilos/microbiologia , Basófilos/patologia , Degranulação Celular/imunologia , Sobrevivência Celular/imunologia , Dinitrofenóis/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/patologia , Imunoglobulina E/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Mastócitos/imunologia , Mastócitos/microbiologia , Mastócitos/patologia , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Albumina Sérica Humana/imunologia , Albumina Sérica Humana/metabolismo , Infecções Estreptocócicas/imunologia , Streptococcus oralis/imunologia , Streptococcus oralis/patogenicidade , Açúcares/metabolismo
10.
Immun Inflamm Dis ; 8(2): 198-210, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32222064

RESUMO

INTRODUCTION: Mast cells (MCs) are tissue-resident immune cells implicated in antibacterial responses. These include chemokine secretion, degranulation, and the release of mast cell-extracellular traps, which are primarily dependent on reactive oxygen species (ROS) production. Our study investigated whether human mast cells (hMCs) develop individual response patterns to bacteria located at different tissue sites: Escherichia coli (gut commensal), Listeria monocytogenes (foodborne intracellular pathogen), Staphylococcus aureus (skin commensal and opportunistic pathogen), and Streptococcus pneumoniae (upper respiratory tract commensal and lung pathogen). METHODS: After live bacteria exposure, hMCs were analyzed by a combined flow cytometry assay for degranulation, ROS production, DNA externalization, and for ß-hexosaminidase, chemokine, and prostaglandin release. RESULTS: L. monocytogenes induced hMC degranulation, IL-8 and MCP-1 release coupled with DNA externalization in a novel hMC ROS independent manner. In contrast, S. pneumoniae caused ROS production without DNA release and degranulation. E. coli induced low levels of hMC degranulation combined with interleukin 8 and MCP-1 secretion and in the absence of ROS and DNA externalization. Finally, S. aureus induced hMCs prostaglandin D2 release and DNA release selectively. Our findings demonstrate a novel hMC phenomenon of DNA externalization independent of ROS production. We also showed that ROS production, degranulation, DNA externalization, and mediator secretion occur as independent immune reactions in hMCs upon bacterial encounter and that hMCs contribute to bacterial clearance. CONCLUSIONS: Thus, hMCs exhibit a highly individualized pattern of immune response possibly to meet tissue requirements and regulate bacteria coexistence vs defense.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Mastócitos/metabolismo , Mastócitos/microbiologia , Espécies Reativas de Oxigênio/farmacologia , Degranulação Celular/efeitos dos fármacos , Quimiocina CCL2/metabolismo , DNA/metabolismo , Escherichia coli/imunologia , Citometria de Fluxo , Humanos , Interleucina-8/metabolismo , Listeria monocytogenes/imunologia , Mastócitos/fisiologia , Staphylococcus aureus/imunologia , Streptococcus pneumoniae/imunologia , beta-N-Acetil-Hexosaminidases/metabolismo
11.
J Allergy Clin Immunol ; 145(1): 147-159, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31254531

RESUMO

BACKGROUND: Chronic rhinosinusitis (CRS) with nasal polyps is a common chronic condition. The exact cause of nasal polyps remains unknown. Recently, we made the novel observation of intracellular localization of Staphylococcus aureus within mast cells in nasal polyps. OBJECTIVE: This follow-up study aimed to further characterize interactions between S aureus and mast cells in this setting and elucidate potential internalization mechanisms with particular emphasis on the role of staphylococcal enterotoxin B (SEB). METHODS: A prospective study was performed using an explant tissue model with ex vivo inferior turbinate mucosa obtained from patients with chronic rhinosinusitis with nasal polyps (n = 7) and patients without CRS (n = 5). Immunohistochemistry was used to characterize S aureus uptake into mast cells and investigate the effects of SEB on this process. An in vitro cell-culture model was used to investigate mast cell-S aureus interactions by using a combination of fluorescent in situ hybridization, confocal laser scanning microscopy, scanning electron microscopy, transmission electron microscopy, and proliferation assays. RESULTS: S aureus was captured by extracellular traps and entered mast cells through phagocytosis. Proliferating intracellular S aureus led to the expansion and eventual rupture of mast cells, resulting in release of viable S aureus into the extracellular space. The presence of SEB appeared to promote internalization of S aureus into mast cells. CONCLUSION: This study provides new insights into the interactions between S aureus and mast cells, including the internalization process, and demonstrates a prominent role for SEB in promoting uptake of the bacteria into these cells.


Assuntos
Enterotoxinas/imunologia , Mastócitos , Pólipos Nasais , Fagocitose , Staphylococcus aureus , Adulto , Idoso , Linhagem Celular , Feminino , Humanos , Masculino , Mastócitos/imunologia , Mastócitos/microbiologia , Mastócitos/ultraestrutura , Pessoa de Meia-Idade , Pólipos Nasais/imunologia , Pólipos Nasais/microbiologia , Pólipos Nasais/ultraestrutura , Estudos Prospectivos , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade , Técnicas de Cultura de Tecidos
12.
Artigo em Inglês | MEDLINE | ID: mdl-31456952

RESUMO

Cryptococcosis, caused by the basidiomycete Cryptococcus neoformans, is a life-threatening disease affecting approximately one million people per year worldwide. Infection can occur when C. neoformans cells are inhaled by immunocompromised people. In order to establish infection, the yeast must bypass recognition and clearance by immune cells guarding the tissue. Using in vitro infections, we characterized the role of mast cells (MCs) in cryptococcosis. We found that MCs recognize C. neoformans and release inflammatory mediators such as tryptase and cytokines. From the latter group MCs released mainly CCL-2/MCP-1, a strong chemoattractant for monocytic cells. We demonstrated that supernatants of infected MCs recruit monocytes but not neutrophils. During infection with C. neoformans, MCs have a limited ability to kill the yeast depending on the serotype. C. neoformans, in turn, modulates the lifespan of MCs both, by presence of its polysaccharide capsule and by secreting soluble modulators. Taken together, MCs might have important contributions to fungal clearance during early stages of cryptocococis where these cells regulate recruitment of monocytes to mucosal tissues.


Assuntos
Quimiocina CCL2/biossíntese , Criptococose/metabolismo , Criptococose/microbiologia , Cryptococcus neoformans/fisiologia , Interações Hospedeiro-Patógeno , Mastócitos/metabolismo , Mastócitos/microbiologia , Morte Celular , Degranulação Celular/imunologia , Quimiotaxia de Leucócito/imunologia , Criptococose/imunologia , Citocinas/metabolismo , Humanos , Mastócitos/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/microbiologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagocitose
13.
Cell Microbiol ; 21(9): e13064, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31155820

RESUMO

Mast cells are implicated in the innate proinflammatory immune defence against bacterial insult, but the mechanisms through which mast cells respond to bacterial encounter are poorly defined. Here, we addressed this issue and show that mast cells respond vividly to wild type Streptococcus equi by up-regulating a panel of proinflammatory genes and by secreting proinflammatory cytokines. However, this response was completely abrogated when the bacteria lacked expression of sagA, whereas the lack of a range of other potential virulence genes (seeH, seeI, seeL, seeM, hasA, seM, aroB, pyrC, and recA) had no effect on the amplitude of the mast cell responses. The sagA gene encodes streptolysin S, a lytic toxin, and we next showed that the wild type strain but not a sagA-deficient mutant induced lysis of mast cells. To investigate whether host cell membrane perturbation per se could play a role in the activation of the proinflammatory response, we evaluated the effects of detergent- and pneumolysin-dependent lysis on mast cells. Indeed, exposure of mast cells to sublytic concentrations of all these agents resulted in cytokine responses of similar amplitudes as those caused by wild type streptococci. This suggests that sublytic membrane perturbation is sufficient to trigger full-blown proinflammatory signalling in mast cells. Subsequent analysis showed that the p38 and Erk1/2 signalling pathways had central roles in the proinflammatory response of mast cells challenged by either sagA-expressing streptococci or detergent. Altogether, these findings suggest that sagA-dependent mast cell membrane perturbation is a mechanism capable of activating the innate immune response upon bacterial challenge.


Assuntos
Proteínas de Bactérias/metabolismo , Inflamação/metabolismo , Mastócitos/imunologia , Streptococcus equi/genética , Streptococcus equi/patogenicidade , Estreptolisinas/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Citocinas/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Mastócitos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/genética , Estreptolisinas/genética , Estreptolisinas/farmacologia , Virulência/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Biochem Biophys Res Commun ; 511(2): 350-355, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30795864

RESUMO

Staphylococcal superantigen-like (SSL) protein is a family of exotoxins that consists of 14 SSLs, and the roles of several SSLs in immune evasion of the cocci have been revealed. However little is known whether they act as immune activators and are involved in inflammatory disorders such as atopic dermatitis. In this study we examined whether SSLs activate mast cells, the key player of local inflammation. SSL12 evoked the release of a granule enzyme ß-hexosaminidase from bone marrow derived mast cells (BMMCs) in the absence of IgE. The release of the granule enzyme caused by SSL12 was not accompanied with the leakage of a cytosolic enzyme lactate dehydrogenase (LDH), unlike staphylococcal δ-toxin that was reported to induce both the release of ß-hexosaminidase and the leakage of LDH from the cells, suggesting that SSL12 evokes the degranulation of mast cells without cell membrane damage. Furthermore SSL12 induced IL-6 and IL-13 in both mRNA and protein levels indicating that SSL12 induces de novo synthesis of the cytokines. Evans blue extravasation was elevated by the intradermal injection of SSL12, suggesting that SSL12 is also able to evoke local inflammation in vivo. These findings indicate the novel mast cell activating activity of SSLs, and SSL12 is likely an important factor in both initiation phase and effector phase of allergic and immune responses.


Assuntos
Mastócitos/microbiologia , Staphylococcus/imunologia , Superantígenos/imunologia , Animais , Degranulação Celular , Células Cultivadas , Citocinas/imunologia , Interações Hospedeiro-Patógeno , Mastócitos/imunologia , Mastócitos/fisiologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia
15.
Cell Prolif ; 52(2): e12565, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30729611

RESUMO

OBJECTIVES: The lung-gut axis is known to be involved in the pathogenesis of Staphylococcus aureus pneumonia. However, the underlying mechanisms remain unclear. We examined the role of pulmonary mast cells (MCs) in the regulation of the lung-gut axis during S. aureus pneumonia. MATERIALS AND METHODS: We created a mouse model of S. aureus pneumonia using MC-deficient mice (KitW-sh/W-sh ) and examined the level of inflammation, bacterial burden, expression of cathelicidin-related antimicrobial peptide (CRAMP) and composition of the gut microbiota. We further evaluated anti-bacterial immunity by administering bone marrow MCs (BMMCs) or CRAMP into the lungs of KitW-sh/W-sh mice. RESULTS: After S. aureus challenge, the MC-deficient mice, compared with wild-type (WT) mice, displayed attenuated lung inflammation, decreased expression of CRAMP, higher bacterial lung load and disturbance of the intestinal microbiota. Adoptive transfer of BMMCs into the lung effectively reconstituted the host defence against S. aureus in KitW-sh/W-sh mice, thus resulting in recovery of S. aureus pneumonia-induced intestinal dysfunction. Similarly, exogenous administration of CRAMP significantly enhanced anti-bacterial immunity in the lungs of MC-deficient mice. CONCLUSIONS: This study provides evidence for the involvement of MCs in the regulation of the lung-gut axis during S. aureus pneumonia.


Assuntos
Microbioma Gastrointestinal , Inflamação/imunologia , Pulmão/imunologia , Mastócitos/imunologia , Pneumonia/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Modelos Animais de Doenças , Inflamação/microbiologia , Inflamação/patologia , Pulmão/microbiologia , Pulmão/patologia , Mastócitos/microbiologia , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/microbiologia , Pneumonia/patologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia
16.
Cell Death Differ ; 26(4): 703-714, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30737478

RESUMO

Autophagy is an evolutionally conserved, highly regulated catabolic process that combines cellular functions required for the regulation of metabolic balance under conditions of stress with those needed for the degradation of damaged cell organelles via the lysosomal machinery. The importance of autophagy for cell homeostasis and survival has long been appreciated. Recent data suggest that autophagy is also involved in non-metabolic functions that impact the immune system. Here, we reflect in two review articles the recent literature pointing to an important role for autophagy in innate immune cells. In this article, we focus on neutrophils, eosinophils, mast cells, and natural killer cells. We mainly discuss the influence of autophagy on functional cellular responses and its importance for overall host defense. In the companion review, we present the role of autophagy in the functions performed by monocytes/macrophages and dendritic cells.


Assuntos
Autofagia/imunologia , Eosinófilos/imunologia , Imunidade Inata , Células Matadoras Naturais/imunologia , Mastócitos/imunologia , Neutrófilos/metabolismo , Animais , Autofagia/genética , Autofagia/fisiologia , Morte Celular/genética , Morte Celular/imunologia , Eosinófilos/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/microbiologia , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/microbiologia , Células Matadoras Naturais/virologia , Mastócitos/metabolismo , Mastócitos/microbiologia , Neutrófilos/imunologia , Neutrófilos/microbiologia
17.
Cell Microbiol ; 21(3): e12972, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30423602

RESUMO

Interleukin (IL)-31 is important for innate immunity in mucosal tissues and skin, and increased IL-31 expression participates in the pathogenesis of chronic inflammatory diseases affecting the skin, airways, lungs, and intestines. We investigated the contribution of mast cells to the induction of IL-31 production following infection with the periodontal pathogen, Porphyromonas gingivalis. We found that oral infection with P. gingivalis increased IL-31 expression in the gingival tissues of wild-type mice but not in those of mast cell-deficient mice. The P. gingivalis-induced IL-31 production by human mast cells occurred through the activation of the JNK and NF-κB signalling pathways and was dependent on the P. gingivalis lysine-specific protease gingipain-K. P. gingivalis infection induced IL-31 receptor α and oncostatin M receptor ß expression in human gingival epithelial cells. Notably, the P. gingivalis-induced IL-31 production by mast cells led to the downregulation of claudin-1, a tight junction molecule, in gingival epithelial cells, resulting in an IL-31-dependent increase in the paracellular permeability of the gingival epithelial barrier. These findings suggest that IL-31 produced by mast cells in response to P. gingivalis infection causes gingival epithelial barrier dysfunction, which may contribute to the chronic inflammation observed in periodontitis.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Interleucinas/metabolismo , Mastócitos/imunologia , Mastócitos/microbiologia , Porphyromonas gingivalis/crescimento & desenvolvimento , Porphyromonas gingivalis/imunologia , Animais , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/microbiologia , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/patologia , Humanos , Camundongos , Periodontite/microbiologia , Periodontite/patologia , Transdução de Sinais
18.
Curr Opin Pharmacol ; 43: 66-71, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30216901

RESUMO

The intestinal mucosa is constantly exposed to harmful luminal content, and uptake is closely controlled and regulated by neuro-immune factors. If control is broken, it might lead to ongoing enhanced mucosal permeability, potentially resulting in functional gastrointestinal disorders. The importance of mast cells in the regulation of the mucosal barrier has become obvious, and increased numbers and more activated mast cells have been observed in irritable bowel syndrome, functional dyspepsia and gastroesophageal reflux disease. To target the disturbed mucosal permeability, directly or via mast cells, is therefore currently of major interest. For example, administration of mast cell stabilizers and probiotics have shown promising effects in patients with functional gastrointestinal disorders.


Assuntos
Fármacos Gastrointestinais/uso terapêutico , Gastroenteropatias/terapia , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Mastócitos/efeitos dos fármacos , Probióticos/uso terapêutico , Animais , Degranulação Celular/efeitos dos fármacos , Fármacos Gastrointestinais/efeitos adversos , Gastroenteropatias/metabolismo , Gastroenteropatias/microbiologia , Humanos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mastócitos/metabolismo , Mastócitos/microbiologia , Permeabilidade , Probióticos/efeitos adversos
19.
Cell Death Dis ; 9(5): 457, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29691371

RESUMO

Interleukin (IL)-induced inflammatory responses are critical for the pathogenesis of Helicobacter pylori (H. pylori)-induced gastritis. IL-33 represents a recently discovered proinflammatory cytokine involved in inflammatory diseases, but its relevance to H. pylori-induced gastritis is unknown. Here, we found that gastric IL-33 mRNA and protein expression were elevated in gastric mucosa of both patients and mice infected with H. pylori, which is positively correlated with bacterial load and the degree of gastritis. IL-33 production was promoted via extracellular regulated protein kinases (ERK) signaling pathway activation by gastric epithelial cells in a cagA-dependent manner during H. pylori infection, and resulted in increased inflammation and bacteria burden within the gastric mucosa. Gastric epithelial cell-derived IL-33 promoted TNF-α production from mast cells in vitro, and IL-33 increased TNF-α production in vivo. Increased TNF-α inhibited gastric epithelial cell proliferation, conducing to the progress of H. pylori-associated gastritis and bacteria colonization. This study defined a patent regulatory networks involving H. pylori, gastric epithelial cell, IL-33, mast cell, and TNF-α, which jointly play a pathological effect within the gastric circumstances. It may be a valuable strategy to restrain this IL-33-dependent pathway in the treatment of H. pylori-associated gastritis.


Assuntos
Gastrite/metabolismo , Helicobacter pylori/metabolismo , Interleucina-33/biossíntese , Sistema de Sinalização das MAP Quinases , Mastócitos/metabolismo , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Feminino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Gastrite/genética , Gastrite/microbiologia , Gastrite/patologia , Helicobacter pylori/genética , Humanos , Interleucina-33/genética , Masculino , Mastócitos/microbiologia , Mastócitos/patologia , Camundongos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
Front Immunol ; 9: 327, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535718

RESUMO

The resurgence of Group A Streptococcus (GAS) infections in the past two decades has been a rising major public health concern. Due to a large number of GAS infections occurring in the skin, mast cells (MCs), innate immune cells known to localize to the dermis, could play an important role in controlling infection. MCs can exert their antimicrobial activities either early during infection, by degranulation and release of antimicrobial proteases and the cathelicidin-derived antimicrobial peptide LL-37, or by forming antibacterial MC extracellular traps (MCETs) in later stages of infection. We demonstrate that MCs do not directly degranulate in response to GAS, reducing their ability to control bacterial growth in early stages of infection. However, MC granule components are highly cytotoxic to GAS due to the pore-forming activity of LL-37, while MC granule proteases do not significantly affect GAS viability. We therefore confirmed the importance of MCETs by demonstrating their capacity to reduce GAS survival. The data therefore suggests that LL-37 from MC granules become embedded in MCETs, and are the primary effector molecule by which MCs control GAS infection. Our work underscores the importance of a non-traditional immune effector cell, utilizing a non-conventional mechanism, in the defense against an important human pathogen.


Assuntos
Degranulação Celular/imunologia , Armadilhas Extracelulares/imunologia , Mastócitos/imunologia , Dermatopatias Bacterianas/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Linhagem Celular , Armadilhas Extracelulares/microbiologia , Humanos , Mastócitos/microbiologia , Mastócitos/patologia , Vesículas Secretórias/imunologia , Vesículas Secretórias/microbiologia , Vesículas Secretórias/patologia , Dermatopatias Bacterianas/microbiologia , Dermatopatias Bacterianas/patologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Catelicidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA