Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.111
Filtrar
1.
J Environ Manage ; 357: 120715, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579465

RESUMO

The effluents from conventional wastewater treatment plants (WWTP), even if accomplishing quality regulations, substantially differ in their characteristics with those of waters in natural environments. Constructed wetlands (CWs) serve as transitional ecosystems within WWTPs, mitigating these differences and restoring natural features before water is poured into the natural environment. Our study focused on an experimental surface-flow CW naturalizing the WWTP effluent in a semiarid area in Eastern Spain. Despite relatively low pollutant concentrations entering the CW, it effectively further reduced settled organic matter and nitrogen. Dissolved organic matter (DOM) reaching the CW was mainly protein-like, yet optical property changes in the DOM indicated increased humification, aromaticity, and stabilization as it flowed through the CW. Flow cytometry analysis revealed that the CW released less abundant but more active bacterial populations than those received. MiSeq Illumina sequencing highlighted changes in the prokaryotic community composition, with phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria dominating the CW outflow. Functional prediction tools (FaproTax and PICRUSt2) demonstrated a shift towards microbial guilds aligned with those of the natural aquatic environments, increased aerobic chemoheterotrophs, photoautotrophs, and metabolic reactions at higher redox potentials. Enhanced capabilities for degrading plant material correlated well with changes in the DOM pool. Our findings emphasize the role of CWs in releasing biochemically stable DOM and functionally suited microbial populations for natural receiving environments. Consequently, we propose CWs as a naturalization nature-based solution (NBS) in water-scarce regions like the Mediterranean, where reclaimed discharged water can significantly contribute to ecosystem's water resources compared to natural flows.


Assuntos
Águas Residuárias , Áreas Alagadas , Ecossistema , Cidadania , Bactérias , Matéria Orgânica Dissolvida , Região do Mediterrâneo , Eliminação de Resíduos Líquidos
2.
Environ Sci Technol ; 58(14): 6204-6214, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557085

RESUMO

Marine permeable sediments are important sites for organic matter turnover in the coastal ocean. However, little is known about their role in trapping dissolved organic matter (DOM). Here, we examined DOM abundance and molecular compositions (9804 formulas identified) in subtidal permeable sediments along a near- to offshore gradient in the German North Sea. With the salinity increasing from 30.1 to 34.6 PSU, the DOM composition in bottom water shifts from relatively higher abundances of aromatic compounds to more highly unsaturated compounds. In the bulk sediment, DOM leached by ultrapure water (UPW) from the solid phase is 54 ± 20 times more abundant than DOM in porewater, with higher H/C ratios and a more terrigenous signature. With 0.5 M HCl, the amount of leached DOM (enriched in aromatic and oxygen-rich compounds) is doubled compared to UPW, mainly due to the dissolution of poorly crystalline Fe phases (e.g., ferrihydrite and Fe monosulfides). This suggests that poorly crystalline Fe phases promote DOM retention in permeable sediments, preferentially terrigenous, and aromatic fractions. Given the intense filtration of seawater through the permeable sediments, we posit that Fe can serve as an important intermediate storage for terrigenous organic matter and potentially accelerate organic matter burial in the coastal ocean.


Assuntos
Matéria Orgânica Dissolvida , Ferro , Ferro/química , Água do Mar/química , Água , Compostos Orgânicos
3.
Proc Biol Sci ; 291(2020): 20240016, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565157

RESUMO

An emerging consensus suggests that evolved intraspecific variation can be ecologically important. However, evidence that evolved trait variation within vertebrates can influence fundamental ecosystem-level processes remains sparse. In this study, we sought to assess the potential for evolved variation in the spotted salamander (Ambystoma maculatum) to affect aquatic ecosystem properties. Spotted salamanders exhibit a conspicuous polymorphism in the colour of jelly encasing their eggs-some females produce clear jelly, while others produce white jelly. Although the functional significance of jelly colour variation remains largely speculative, evidence for differences in fecundity and the morphology of larvae suggests that the colour morphs might differ in the strength or identity of ecological effects. Here, we assessed the potential for frequency variation in spotted salamander colour morphs to influence fundamental physiochemical and ecosystem properties-dissolved organic carbon, conductivity, acidity and primary production-with a mesocosm experiment. By manipulating colour morph frequency across a range of larval densities, we were able to demonstrate that larva density and colour morph variation were ecologically relevant: population density reduced dissolved organic carbon and increased primary production while mesocosms stocked with white morph larvae tended to have higher dissolved organic carbon and conductivity. Thus, while an adaptive significance of jelly coloration remains hypothetical, our results show that colour morphs differentially influence key ecosystem properties-dissolved organic carbon and conductivity.


Assuntos
Matéria Orgânica Dissolvida , Ecossistema , Animais , Feminino , Cor , Ambystoma , Larva
4.
Sci Rep ; 14(1): 8493, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605135

RESUMO

This study involved the production of 20 biochar samples derived from secondary medicinal residues of Snow Lotus Oral Liquid, processed within the temperature range of 200-600 °C. Additionally, four medicinal residues, including dissolved organic matter (DOM), from 24 samples obtained using the shaking method, served as the primary source material. The investigation focused on two key factors: the modifier and preparation temperature. These factors were examined to elucidate the spectral characteristics and chemical properties of the pharmaceutical residues, biochar, and DOM. To analyze the alterations in the spectral attributes of biochar and medicinal residues, we employed near-infrared spectroscopy (NIR) in conjunction with Fourier-infrared one-dimensional and two-dimensional correlation spectroscopy. These findings revealed that modifiers enhanced the aromaticity of biochar, and the influence of preparation temperature on biochar was diminished. This observation indicates the stability of the aromatic functional group structure. Comparative analysis indicated that Na2CO3 had a more pronounced structural effect on biochar, which is consistent with its adsorption properties. Furthermore, we utilized the fluorescence indices from UV-visible spectroscopy and excitation-emission-matrix spectra with the PARAFAC model to elucidate the characteristics of the fluorescence components in the DOM released from the samples. The results demonstrated that the DOM released from biochar primarily originated externally. Aromaticity reduction and increased decay will enhance the ability of the biochar to bind pollutants. Those results confirmed the link between the substantial increase in the adsorption performance of the high-temperature modified charcoal in the previous study and the structural changes in the biochar. We investigated the structural changes of biochar and derivative DOM in the presence of two perturbing factors, modifier and preparation temperature. Suitable modifiers were selected. Preparation for the study of adsorption properties of snow lotus medicinal residues.


Assuntos
Carvão Vegetal , Carvão Vegetal/química , Matéria Orgânica Dissolvida , Substâncias Húmicas/análise , Espectrometria de Fluorescência/métodos , Temperatura
5.
Chemosphere ; 355: 141782, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548083

RESUMO

While anthropogenic pollution is a major threat to aquatic ecosystem health, our knowledge of the presence of xenobiotics in coastal Dissolved Organic Matter (DOM) is still relatively poor. This is especially true for water bodies in the Global South with limited information gained mostly from targeted studies that rely on comparison with authentic standards. In recent years, non-targeted tandem mass spectrometry has emerged as a powerful tool to collectively detect and identify pollutants and biogenic DOM components in the environment, but this approach has yet to be widely utilized for monitoring ecologically important aquatic systems. In this study we compared the DOM composition of Algoa Bay, Eastern Cape, South Africa, and its two estuaries. The Swartkops Estuary is highly urbanized and severely impacted by anthropogenic pollution, while the Sundays Estuary is impacted by commercial agriculture in its catchment. We employed solid-phase extraction followed by liquid chromatography tandem mass spectrometry to annotate more than 200 pharmaceuticals, pesticides, urban xenobiotics, and natural products based on spectral matching. The identification with authentic standards confirmed the presence of methamphetamine, carbamazepine, sulfamethoxazole, N-acetylsulfamethoxazole, imazapyr, caffeine and hexa(methoxymethyl)melamine, and allowed semi-quantitative estimations for annotated xenobiotics. The Swartkops Estuary DOM composition was strongly impacted by features annotated as urban pollutants including pharmaceuticals such as melamines and antiretrovirals. By contrast, the Sundays Estuary exhibited significant enrichment of molecules annotated as agrochemicals widely used in the citrus farming industry, with predicted concentrations for some of them exceeding predicted no-effect concentrations. This study provides new insight into anthropogenic impact on the Algoa Bay system and demonstrates the utility of non-targeted tandem mass spectrometry as a sensitive tool for assessing the health of ecologically important coastal ecosystems and will serve as a valuable foundation for strategizing long-term monitoring efforts.


Assuntos
Matéria Orgânica Dissolvida , Poluentes Ambientais , Ecossistema , Estuários , Baías , Rios/química , Agricultura , Preparações Farmacêuticas
6.
Chemosphere ; 355: 141826, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552805

RESUMO

Recent studies have increasingly focused on the occurrence of plastic leachate and its impacts on aquatic ecosystems. Nonetheless, the environmental fate of this leachate in the presence of abundant natural organic matter (NOM)-a typical scenario in environments contaminated with plastics-remains underexplored. This study investigates the photo-induced leaching behaviors of dissolved organic matter (DOM) from terrestrial-sourced particles (forest soil and leaf litter) and microplastics (MPs), specifically polystyrene (PS) and polyvinyl chloride (PVC), over a two-week period. We also examined the biodegradability and spectroscopic characteristics of the leached DOM from both sources. Our results reveal that DOM from microplastics (MP-DOM) demonstrates more persistent leaching behavior compared to terrestrial-derived DOM, even with lesser quantities per unit of organic carbon. UV irradiation was found to enhance DOM leaching across all particle types. However, the photo-induced leaching behaviors of fluorescent components varied with the particle type. The MP group exhibited a broader range and higher biodegradability (ranging from 19.7% to 61.6%) compared to the terrestrial-sourced particles (ranging from 3.7% to 16.5%). DOM leached under UV irradiation consistently showed higher biodegradability than that under dark conditions. Furthermore, several fluorescence characteristics of DOM, such as the protein/phenol-like component (%C2), terrestrial humic-like component (%C3), and humification index (HIX)-traditionally used to indicate the biodegradability of natural organic matter-were also effective in assessing MP-DOM (with correlation coefficients R2 = 0.6055 (p = 0.003), R2 = 0.5389 (p = 0.007), and R2 = 0.4640 (p = 0.015), respectively). This study provides new insights into the potential differences in environmental fate between MP-DOM and NOM in aquatic environments heavily contaminated with MPs.


Assuntos
Microplásticos , Plásticos , Matéria Orgânica Dissolvida , Ecossistema , Solo/química , Substâncias Húmicas/análise , Espectrometria de Fluorescência/métodos
7.
Sci Total Environ ; 926: 171857, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521264

RESUMO

In aquatic ecosystems, dissolved organic matter (DOM) plays a vital role in microbial communities and the biogeochemical cycling of elements. However, little is known about the associations between DOM and microbial communities in lake sediments. This study investigated the composition of water-extractable organic matter and microbial communities in surface sediments of lakes with different salinities on the Qinghai-Tibet Plateau. Ultrahigh-resolution mass spectrometry and high-throughput microbial sequencing techniques were employed to assess the associations between molecular diversity and microbial diversity and the effects of salinity in 19 lakes spanning a salinity range from 0.22 ‰ to 341.87 ‰. Our results show that increasing salinity of lake water led to higher molecular diversity of DOM in surface sediments. High-salinity lakes exhibited distinct DOM characteristics, such as lower aromaticity, smaller molecular weight, and higher oxidation degree, compared to freshwater lakes. The complexity of the microbial network composition of sediments first increased and then decreased with the increase of salinity. Moreover, as salinity increases, the dominant species transitioned from Gammaproteobacteria to Bacteroidia, and this transition was accompanied by a decrease in microbial diversity and an increase in molecular diversity. Microbial factors accounted for 34.68 % of the variation in the molecular composition of DOM. Overall, this study emphasizes the significant effects of salinity on both molecular and microbial diversity in lake sediments. Furthermore, our findings underscore the importance of microbes in controlling the range of organic compounds present in lakes and deepen our knowledge of the biogeochemical cycling of DOM.


Assuntos
Lagos , Microbiota , Lagos/química , Tibet , Matéria Orgânica Dissolvida , Salinidade , Água
8.
Sci Total Environ ; 926: 171864, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521274

RESUMO

The effect of dissolved organic matter (DOM) on bacterial regrowth in water after disinfection using ultraviolet (UV) light emitting diodes (UVLEDs) is still unclear. Herein, the regrowth and responses of Vibrio parahaemolyticus and Bacillus cereus were investigated after being exposed to UVLEDs at combined wavelengths (265 and 280 nm) in a phosphate-buffered saline consisting of Suwannee River natural organic matter (SRNOM) and Suwannee River fulvic acid (SRFA). Low-molecular-weight (MW) organic compounds, which may form into intermediary photoproducts, and indicate bacterial repair metabolism, were characterized through non-target screening using orbitrap mass spectrometry. This study demonstrates the ability of the UVLEDs-inactivated cells to regrow. After UV exposure, a considerable upregulation of RecA was observed in two strains. With increasing the incubation time, the expression levels of RecA in V. parahaemolyticus increased, which may be attributed to the dark repair mechanism. Coexisting anionic DOM affects both the disinfection and bacterial regrowth processes. The time required for bacterial regrowth after UV exposure reflects the time needed for the individual cells to reactivate, and it differs in the presence or absence of DOM. In the presence of DOM, the cells were less damaged and required less time to grow. The UVLEDs exposure results in the occurrence of low-MW organic compounds, including carnitine or acryl-carnitine with N-acetylmuramic acid, which are associated with bacterial repair metabolism. Overall, the results of this study expand the understanding of the effects of water matrices on bacterial health risks. This can aid in the development of more effective strategies for water disinfection.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção , Matéria Orgânica Dissolvida , Água , Rios , Purificação da Água/métodos , Compostos Orgânicos , Bactérias , Carnitina , Poluentes Químicos da Água/química
9.
Sci Total Environ ; 926: 171943, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527546

RESUMO

Monoculture plantations in China, characterized by the continuous cultivation of a single species, pose challenges to timber accumulation and understory biodiversity, raising concerns about sustainability. This study investigated the impact of continuous monoculture plantings of Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.) on soil properties, dissolved organic matter (DOM), and microorganisms over multiple generations. Soil samples from first to fourth-generation plantations were analyzed for basic chemical properties, DOM composition using Fourier transform ion cyclotron resonance mass spectrometry, and microorganisms via high-throughput sequencing. Results revealed a significant decline in nitrate nitrogen content with successive rotations, accompanied by an increase in easily degradable compounds like carbohydrates, aliphatic/proteins, tannins, Carbon, Hydrogen, Oxygen and Nitrogen- (CHON) and Carbon, Hydrogen, Oxygen and Sulfur- (CHOS) containing compounds. However, the recalcitrant compounds, such as lignin and carboxyl-rich alicyclic molecules (CRAMs), condensed aromatics and Carbon, Hydrogen and Oxygen- (CHO) containing compounds decreased. Microorganism diversity, abundance, and structure decreased with successive plantations, affecting the ecological niche breadth of fungal communities. Bacterial communities were strongly influenced by DOM composition, particularly lignin/CRAMs and tannins. Continuous monoculture led to reduced soil nitrate, lignin/CRAMs, and compromised soil quality, altering chemical properties and DOM composition, influencing microbial community assembly. This shift increased easily degraded DOM, accelerating soil carbon and nitrogen cycling, ultimately reducing soil carbon sequestration. From environmental point of view, the study emphasizes the importance of sustainable soil management practices in continuous monoculture systems. Particularly the findings offer valuable insights for addressing challenges associated with monoculture plantations and promoting long-term ecological sustainability.


Assuntos
Cunninghamia , Microbiota , Matéria Orgânica Dissolvida , Nitratos/análise , Lignina/metabolismo , Taninos/análise , Taninos/metabolismo , Solo/química , Compostos Orgânicos/análise , Compostos de Enxofre/metabolismo , Nitrogênio/análise , Carbono/análise , Hidrogênio/análise , Oxigênio/análise
10.
Sci Total Environ ; 926: 171962, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38537819

RESUMO

Estuaries are important components of the global carbon cycle; exchanging carbon between aquatic, atmospheric, and terrestrial environments, representing important loci for blue carbon storage and greenhouse gas emissions. However, how estuarine gradients affect sinking/suspended particles, and dissolved organic matter dynamic interactions remains unexplored. We fractionated suspended/sinking particles to assess and characterise carbon fate differences. We investigated bacterial colonisation (SYBR Green I) and exopolymer concentrations (TEP/CSP) with microscopy staining techniques. C/H/N and dry weight analysis identified particle composition differences. Meanwhile, nutrient and carbon analysis, and excitation and emission matrix evaluations with a subsequent parallel factor (PARAFAC) analysis characterised dissolved organic matter. The lack of clear salinity driven patterns in our study are presumably due to strong mixing forces and high particle heterogeneity along the estuary, with only density differences between suspended and sinking particles. Elbe estuary particles' organic portion is made up of marine-like (sinking) and terrestrial-like (suspended) signatures. Salinity did not have a significant role in microbial degradation and carbon composition, although brackish estuary portions were more biologically active. Indicative of increased degradation rates, leading to decreased greenhouse gas emissions, which are especially relevant for estuaries, with their disproportionate greenhouse gas emissions. Bacterial colonisation decreased seawards, indicative of decreased degradation, and shifts in microbial community composition and functions. Our findings span diverse strands of research, concerning steady carbon contributions from both marine and terrestrial sources, carbon aromaticity, humification index, and bioavailability. Their integration highlights the importance of the Elbe estuary as a model system, providing robust information for future policy decisions affecting dissolved and particulate matter dynamics within the Elbe Estuary.


Assuntos
Carbono , Gases de Efeito Estufa , Carbono/análise , Matéria Orgânica Dissolvida , Gases de Efeito Estufa/análise , Estuários , Material Particulado/análise , Rios
11.
Sci Total Environ ; 926: 172086, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38556025

RESUMO

Dissolved organic matter (DOM) in rainfall participates in many biogeochemical cycles in aquatic environments and affects biological activities in water bodies. Revealing the characteristics of rainfall DOM could broaden our understanding of the carbon cycle. Therefore, the distribution characteristics and response mechanisms of DOM to microorganisms were investigated in different regions of Hebei. The results indicated that the water quality of the northern region was worse than that of the middle and southern regions. The two protein like components (C1, C2) and one humic like component (C3) were obtained; at high molecular weight (MW), the fluorescence intensity is high in the northern region (0.03 ± 0.02 R.U.), while at low MW, the fluorescence intensity is highest in the southern region (0.50 ± 0.18 R.U.). Furthermore, C2 is significantly positively correlated with C1 (P < 0.01), while C2 is significantly negatively correlated with C3 (P < 0.05) was observed. The spectral index results indicated that rainfall DOM exhibited low humification and highly autochthonous characteristics. The southern region obtained higher richness and diversity of microbial species than northern region (P < 0.05). The community exhibits significant spatiotemporal differences, and the Acinetobacter, Enterobacter, and Massilia, were dominant genus. Redundancy and network analyses showed that the effects of C1, C2, and nitrate on microorganisms increased with decreasing MW, while low MW exhibited a more complex network between DOM and microorganisms than high MW. Meanwhile, C1, C2 had a large total effect on ß-diversity and function through structural equation modeling. The backward trajectory model indicates that the sources of air masses are from the northwest, local area, and sea in the northern, middle, and southern regions, respectively. This study broadened the understanding of the composition of summer rainfall DOM and its interactions with microorganisms during rainfall.


Assuntos
Matéria Orgânica Dissolvida , Rios , Rios/química , Espectrometria de Fluorescência , Qualidade da Água , Compostos Orgânicos/análise , Substâncias Húmicas/análise
12.
Bioresour Technol ; 399: 130606, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499201

RESUMO

The utilization of anaerobic hydrolysate from agroforestry wastes is limited by dissolved lignin and aromatics, which have received insufficient attention despite their potential as excellent carbon sources for denitrification. This study aims to investigate the influence of hematite on lignin-derived aromatic compounds and denitrifying carbon sources, as well as to identify iron-reducing bacteria that utilize lignin-derived aromatic compounds as electron donors. The findings revealed that hematite facilitated the anaerobic fermentation of plant biomass, resulting in the production of small molecular organic acids. Moreover, biodegradation of lignin-derived aromatic compounds led to the formation of phenolic acids, while an increased generation of denitrifying carbon sources enhanced nitrogen removal efficiency by 13.84 %. Additionally, due to adsorption by hematite and subsequent microbial degradation, there was a significant improvement (40.32%) in color removal rate within denitrification effluent. Notably, Azonexus strains were hypothesized to be involved in Fe(Ⅲ) reduction coupled with aromatic compounds oxidation.


Assuntos
Compostos Férricos , Lignina , Lignina/metabolismo , Anaerobiose , Matéria Orgânica Dissolvida , Carbono , Compostos Orgânicos , Desnitrificação , Nitrogênio
13.
Water Res ; 254: 121387, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457943

RESUMO

Constructed wetlands (CWs) are frequently used for effective biological treatment of nitrogen-rich wastewater with external carbon source addition; however, these approaches often neglect the interaction between plant litter and biochar in biochar-amended CW environments. To address this, we conducted a comprehensive study to assess the impacts of single or combined addition of common reed litter and reed biochar (pyrolyzed at 300 and 500 °C) on nitrogen removal, greenhouse gas emission, dissolved organic matter (DOM) dynamics, and microbial activity. The results showed that combined addition of reed litter and biochar to CWs significantly improved nitrate and total nitrogen removal compared with biochar addition alone. Compared to those without reed litter addition, CWs with reed litter addition had more low-molecular-weight and less aromatic DOM and more protein-like fluorescent DOM, which favored the enrichment of bacteria associated with denitrification. The improved nitrogen removal could be attributed to increases in denitrifying microbes and the relative abundance of functional denitrification genes with litter addition. Moreover, the combined addition of reed litter and 300 °C-heated biochar significantly decreased nitrous oxide (30.7 %) and methane (43.9 %) compared to reed litter addition alone, while the combined addition of reed litter and 500 °C-heated biochar did not. This study demonstrated that the presences of reed litter and biochar in CWs could achieve both high microbial nitrogen removal and relatively low greenhouse gas emissions.


Assuntos
Carvão Vegetal , Gases de Efeito Estufa , Áreas Alagadas , Desnitrificação , Nitrogênio , Matéria Orgânica Dissolvida , Metano
14.
Water Res ; 254: 121412, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457944

RESUMO

Wetlands export large amounts of dissolved organic carbon (DOC) downstream, which is sensitive to water-table fluctuations (WTFs). While numerous studies have shown that WTFs may decrease wetland DOC via enhancing DOC biodegradation, an alternative pathway, i.e., retention of dissolved organic matter (DOM) by soil minerals, remains under-investigated. Here, we conducted a water-table manipulation experiment on intact soil columns collected from three wetlands with varying contents of reactive metals and clay to examine the potential retention of DOM by soil minerals during WTFs. Using batch sorption experiments and Fourier transform ion cyclotron resonance mass spectrometry, we showed that mineral (bentonite) sorption mainly retained lignin-, aromatic- and humic-like compounds (i.e., adsorbable compounds), in contrast to the preferential removal of protein- and carbohydrate-like compounds during biodegradation. Seven cycles of WTFs significantly decreased the intensity of adsorbable compounds in DOM (by 50 ± 21% based on fluorescence spectroscopy) and DOC adsorbability (by 2-20% and 1.9-12.7 mg L-1 based on batch sorption experiment), to a comparable extent compared with biodegradable compounds (by 11-32% and 1.6-15.2 mg L-1). Furthermore, oxidation of soil ferrous iron [Fe(II)] exerted a major control on the magnitude of potential DOM retention by minerals, while WTFs increased mineral-bound lignin phenols in the Zoige soil with the highest content of lignin phenols and Fe(II). Collectively, these results suggest that DOM retention by minerals likely played an important role in DOC decrease during WTFs, especially in soils with high contents of oxidizable Fe. Our findings support the 'iron gate' mechanism of soil carbon protection by newly-formed Fe (hydr)oxides during water-table decline, and highlight an underappreciated process (mineral-DOM interaction) leading to contrasting fate (i.e., preservation) of DOC in wetlands compared to biodegradation. Mineral retention of wetland DOC hence deserves more attention under changing climate and human activities.


Assuntos
Matéria Orgânica Dissolvida , Solo , Humanos , Solo/química , Áreas Alagadas , Lignina , Minerais/química , Ferro/análise , Água/análise , Fenóis/análise , Compostos Ferrosos , Carbono/química
15.
J Hazard Mater ; 469: 133978, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461667

RESUMO

The expansion of aquaculture produces increasing pollutant loads, necessitating the use of drainage systems to discharge wastewater into surface water. To assess the mass variations and transfer process of aquaculture wastewater, an entire aquaculture drainage investigation lasting for 48 h was conducted, focusing on the nutrients, heavy metals, dissolved organic matter (DOM), and physicochemical properties of drainage in a commercial shrimp farm. The findings revealed that early drainage produced more heavy metals, total nitrogen (TN), dissolved organic nitrogen (DON), and feed-like proteins from aquaculture floating feed and additives, whereas late drainage produced more PO43--P and total dissolved phosphorus (TP). A few pollutants, including DON, Cu, and feed-like proteins, were effectively removed, whereas the contents of TN, dissolved inorganic nitrogen, and Zn increased in the multi-level aquaculture drainage system. Limited dilution indicated that in-stream transfer was the main process shaping pollutant concentrations within the drainage system. In the lower ditches, NO3--N, heavy metals, and feed-like proteins exhibited evident in-stream attenuation, while TN and NH4+-N underwent significant in-stream enrichment processes, especially in ditch C, with the transfer coefficient values (vf) of -1.74E-5 and -2.04E-5. This indicates that traditional aquaculture drainage systems serve as nitrogen sinks, rather than efficient nutrient purge facilitators. Notably, DOM was identified as a more influential factor in shaping the in-stream transfer process in aquaculture drainage systems, with an interpretation rate 40.79% higher than that of the physiochemical properties. Consequently, it is necessary to eliminate the obstacles posed by DOM to pollutant absorption and net zero emissions in aquaculture drainage systems in the future. ENVIRONMENTAL IMPLICATIONS: Nutrients, heavy metals, and dissolved organic matter are hazardous pollutants originating from high-density aquaculture. As the sole conduit to natural waters, aquaculture drainage systems have pivotal functions in receiving and purifying wastewater, in which the in-stream transfer process is affected by ambient conditions. This field study investigated the spatial variations, stage distinctions, effects of physicochemical properties, and dissolved organic matter (DOM) features. This finding suggests that the aquaculture drainage system as a nitrogen sink and DOM source. While the DOM is the key factor in shaping the in-stream transfer process, and obstacles for pollutant elimination. This study helps in understanding the fate of aquaculture pollutants and reveals the drawbacks of traditional aquaculture drainage systems.


Assuntos
Poluentes Ambientais , Metais Pesados , Matéria Orgânica Dissolvida , Águas Residuárias , Agricultura , Aquicultura , Nitrogênio/química
16.
Chemosphere ; 354: 141670, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462184

RESUMO

UV/H2O2 has been used as an advanced oxidation process to remove organic micropollutants from drinking water. It is essential to quench residual H2O2 to prevent increased chlorine demand during chlorination/chloramination and within distribution systems. Granular activated carbon (GAC) filter can quench the residual oxidant and eliminate some of the dissolved organic matter. However, knowledge on the kinetics and governing factors of GAC quenching of residual H2O2 from UV/H2O2 and the mechanism underlying the enhancement of the process by HCO3- is limited. Therefore, this study aimed to analyse the kinetics and influential factors, particularly the significant impact of bicarbonate (HCO3-). H2O2 decomposition by GAC followed first-order kinetics, and the rate constants normalised by the GAC dosage (kn) were steady (1.6 × 10-3 L g-1 min-1) with variations in the GAC dosage and initial H2O2 concentration. Alkaline conditions favour H2O2 quenching. The content of basic groups exhibited a stronger correlation with the efficiency of GAC in quenching H2O2 than did the acidic groups, with their specific kn values being 8.9 and 2.4 min-1 M-1, respectively. The presence of chloride, sulfate, nitrate, and dissolved organic matter inhibited H2O2 quenching, while HCO3- promoted it. The interfacial hydroxyl radical (HO•) zones were visualised on the GAC surface, and HCO3- addition increased the HO• concentration. HCO3- increased the concentration of persistent free radicals (PFRs) on the GAC surface, which mainly contributed to HO• generation. A significant enhancement of HCO3- on H2O2 quenching by GAC was also verified in real water. This study revealed the synergistic mechanism of HCO3- and GAC on H2O2 quenching and presents the potential applications of residual H2O2 in the H2O2-based oxidation processes.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal/análise , Peróxido de Hidrogênio/análise , Bicarbonatos , Matéria Orgânica Dissolvida , Poluentes Químicos da Água/análise , Oxirredução , Água Potável/análise , Cinética , Raios Ultravioleta
17.
Chemosphere ; 354: 141677, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467198

RESUMO

The bioavailability of contaminants in aquatic environments was highly related with the existing forms (soluble or adsorbed) and properties of dissolved organic matters (DOMs). In this study, the molecular weight (MWs)-dependent effects of DOMs on the adsorption and bioavailability of sulfadiazine were explored. Colloid ZnO and Al2O3 were employed as the representative colloidal particles, and algae-derived organic matter (AOM) and humic acid (HA) were selected as typical autochthonous and allochthonous DOMs. The ultrafiltration procedure was applied to divide the bulk DOMs into high MW (HMW-, 1 kDã0.45 µm) and low MW (LMW-, <1 kDa) fractions. Results showed that HMW-DOM contained more aromatic and protein-like substances as compared to the LMW counterparts. In addition, presence of AOM promoted sulfadiazine adsorption capabilities by 1.19-4.54 folds and mitigated the inhibition ratio by 0.56-0.78 folds, whereas those of HA inhibited sulfadiazine adsorption by 0.27-0.84 folds and enhanced the biotoxicity by 1.21-1.45 folds. Regardless of different DOM types, HMW-fraction exhibited highest effects on sulfadiazine adsorption and bioavailability, followed by the bulk- and LMW-fractions. Two-dimensional correlation spectroscopy showed that sulfadiazine was adsorbed on colloidal surfaces prior to AOM, and the subsequent adsorption of AOM can provide additional sites for sulfadiazine adsorption, which decreased the concentrations of aqueous sulfadiazine as well as the biotoxicity to Microcystis aeruginosa (M. aeruginosa). The HA, however, was preferentially adsorbed on colloidal surfaces, which hindered the subsequent sulfadiazine adsorption and resulted in a high sulfadiazine abundance in aqueous solution as well as the enhanced biotoxicity to M. aeruginosa. This study highlighted the importance of the types and MWs of DOMs in influencing the behaviors and ecological effects of aquatic contaminants.


Assuntos
Matéria Orgânica Dissolvida , Substâncias Húmicas , Peso Molecular , Adsorção , Disponibilidade Biológica , Substâncias Húmicas/análise
18.
J Environ Manage ; 356: 120543, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479284

RESUMO

In aquifers, the sequestration and transformation of organic carbon are closely associated with soil iron oxides and can facilitate the release of iron ions from iron oxide minerals. There is a strong interaction between dissolved organic matter (DOM) and iron oxide minerals in aquifers, but the extent to which iron is activated by DOM exposure to active iron minerals in natural aquifers, the microscopic distribution of minerals on the surface, and the mechanisms involved in DOM molecular transformation are currently unclear. This study investigated the nonbiological reduction transformation and coupled adsorption of iron oxide minerals in aquifers containing DOM from both macro- and micro perspectives. The results of macroscopic dynamics experiments indicate that DOM can mediate soluble iron release during the reduction of iron oxide minerals, that pH strongly affects DOM removal, and that DOM is more efficiently degraded at low rather than high pH values, suggesting that a low pH is conducive to DOM adsorption and oxidation. Spherical aberration-corrected scanning transmission electron microscopy (SACTS) indicates that the reacted mineral surfaces are covered with large amounts of carbon and that dynamic agglomeration of iron, carbon, and oxygen occurs. At the nanoscale, three forms of DOM are found in the mineral surface agglomerates (on the surfaces, inside the surface agglomerates, and in the polymer pores). The microscopic organic carbon and iron mineral reaction patterns can form through oxidation reactions and selective adsorption effects. Fourier transform ion cyclotron resonance mass spectra indicate that both synergistic and antagonistic reactions occur between DOM and the minerals, that the release of iron is accompanied by DOM decomposition and humification, that large oxygen- and carbon-containing molecules are broken down into smaller oxygen- and carbon-containing compounds and that more molecules are produced through oxidation under acidic rather than alkaline conditions. These molecules provide adsorption sites for sediment, meaning that more iron can be released. Microscopic evidence for the release of iron was acquired. These results improve the understanding of the geochemical processes affecting iron in groundwater, the nonbiological transformation mechanisms that occur at the interfaces between natural iron minerals and organic matter, groundwater pollution control, and the environmental behavior of pollutants.


Assuntos
Compostos Férricos , Água Subterrânea , Substâncias Húmicas , Adsorção , Minerais , Ferro/química , Carbono , Compostos Orgânicos , Matéria Orgânica Dissolvida , Oxigênio
19.
Environ Pollut ; 347: 123805, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493863

RESUMO

The effect of concentration and origin of dissolved organic matter (DOM) on acenaphthene (Ace) photodegradation in liquid water and ice was investigated, and the components in DOM which were involved in Ace photodegradation were identified. The DOM samples included Suwannee River fulvic acid (SRFA), Elliott soil humic acid (ESHA), and an effluent organic matter (EfOM) sample. Due to the production of hydroxyl radical (•OH) and triplet excited-state DOM (3DOM*) which react with Ace, DOM had promotion effects on Ace photodegradation. However, the promotion effects of DOM were prevailed over by their suppressing effect of DOM including screening light effect, intermediates reducing effect and RS quenching effect, and thus, the photodegradation rates of Ace decreased in the presence of the three DOM with concentrations of 0.5-7.5 mg C/L in liquid water and ice. ESHA had higher light absorption and thus had higher screening light effect on Ace photodegradation in liquid water than SRFA and EfOM. At each DOM concentration, ESHA exhibited higher promotion effect on Ace photodegradation than SRFA and EfOM, in liquid water and ice. The binding of Ace with DOM was indicated by decreases in fluorescence intensity of Ace when coexisted with DOM. However, the binding of Ace to DOM played an unimportant role in suppressing Ace photodegradation. The photodegradation behavior of fluorophores in Ace with DOM present in ice was not similar to that in liquid water. C-O, C═O, carboxyl groups O-H and aliphatic C-H functional groups in DOM were involved in the interaction of DOM with Ace. The presence of Ace seemed to have no influence on the photodegradation behavior of functional groups in DOM.


Assuntos
Poluentes Químicos da Água , Água , Fotólise , Gelo/análise , Matéria Orgânica Dissolvida , Acenaftenos , Solo , Substâncias Húmicas/análise , Poluentes Químicos da Água/química
20.
J Environ Manage ; 356: 120582, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508007

RESUMO

Thermal stratification often occurs in deep-water bodies, including oceans, lakes, and reservoirs. Dissolved organic matter (DOM) plays a critical role in regulating the dynamics of aquatic food webs and water quality in aquatic ecosystems. In the past, thermal stratification boundaries have been sometimes used exclusively to analyze the vertical distribution of DOM in thermally stratified water bodies. However, the validity of this practice has been challenged. Currently, there is limited understanding of the formation mechanism and stratification of the vertical distribution of DOM in thermally stratified water bodies, which hinders the analysis of the interactions between DOM and vertical aquatic ecological factors. To address this gap, we conducted a comprehensive study to extensively collect the vertical distribution of DOM in thermally stratified water bodies and identify the primary factors influencing this distribution. We found that DOM was independently stratified in thermally stratified water bodies (including two cases in unstratified water bodies), and that the formation mechanisms and statuses of DOM stratification were different from those of thermal stratification. The boundaries and numbers of DOM stratification were generally inconsistent with those of thermal stratification. Therefore, it is more accurate to divide DOM into different layers according to its own vertical profile, and analyze DOM characteristics of each layer based on its own stratification instead of thermal stratification. This study sheds light on the relationship between DOM and thermal stratification and provides a novel approach for analyzing DOM vertical distribution characteristics and their impact on aquatic ecosystems. This finding also holds significant implications for the design and implementation of environmental management programs aimed at preserving the health and functionality of aquatic ecosystems.


Assuntos
Matéria Orgânica Dissolvida , Ecossistema , Qualidade da Água , Lagos , Cadeia Alimentar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA