Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.699
Filtrar
1.
BMC Med ; 22(1): 189, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715017

RESUMO

BACKGROUND: Sleep loss is a common public health problem that causes hyperalgesia, especially that after surgery, which reduces the quality of life seriously. METHODS: The 48-h sleep restriction (SR) mouse model was created using restriction chambers. In vivo imaging, transmission electron microscopy (TEM), immunofluorescence staining and Western blot were performed to detect the status of the blood-spinal cord barrier (BSCB). Paw withdrawal mechanical threshold (PWMT) was measured to track mouse pain behavior. The role of infiltrating regulatory T cells (Tregs) and endothelial cells (ECs) in mouse glycolysis and BSCB damage were analyzed using flow cytometry, Western blot, CCK-8 assay, colorimetric method and lactate administration. RESULTS: The 48-h SR made mice in sleep disruption status and caused an acute damage to the BSCB, resulting in hyperalgesia and neuroinflammation in the spinal cord. In SR mice, the levels of glycolysis and glycolysis enzymes of ECs in the BSCB were found significantly decreased [CON group vs. SR group: CD31+Glut1+ cells: p < 0.001], which could cause dysfunction of ECs and this was confirmed in vitro. Increased numbers of infiltrating T cells [p < 0.0001] and Treg population [p < 0.05] were detected in the mouse spinal cord after 48-h SR. In the co-cultured system of ECs and Tregs in vitro, the competition of Tregs for glucose resulted in the glycolysis disorder of ECs [Glut1: p < 0.01, ENO1: p < 0.05, LDHα: p < 0.05; complete tubular structures formed: p < 0.0001; CCK8 assay: p < 0.001 on 24h, p < 0.0001 on 48h; glycolysis level: p < 0.0001]. An administration of sodium lactate partially rescued the function of ECs and relieved SR-induced hyperalgesia. Furthermore, the mTOR signaling pathway was excessively activated in ECs after SR in vivo and those under the inhibition of glycolysis or co-cultured with Tregs in vitro. CONCLUSIONS: Affected by glycolysis disorders of ECs due to glucose competition with infiltrating Tregs through regulating the mTOR signaling pathway, hyperalgesia induced by 48-h SR is attributed to neuroinflammation and damages to the barriers, which can be relieved by lactate supplementation.


Assuntos
Células Endoteliais , Glucose , Hiperalgesia , Privação do Sono , Medula Espinal , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Camundongos , Glucose/metabolismo , Células Endoteliais/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Masculino , Privação do Sono/complicações , Glicólise/fisiologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
J Neuroinflammation ; 21(1): 117, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715127

RESUMO

BACKGROUND: Despite the high prevalence of neuropathic pain, treating this neurological disease remains challenging, given the limited efficacy and numerous side effects associated with current therapies. The complexity in patient management is largely attributed to an incomplete understanding of the underlying pathological mechanisms. Central sensitization, that refers to the adaptation of the central nervous system to persistent inflammation and heightened excitatory transmission within pain pathways, stands as a significant contributor to persistent pain. Considering the role of the cystine/glutamate exchanger (also designated as system xc-) in modulating glutamate transmission and in supporting neuroinflammatory responses, we investigated the contribution of this exchanger in the development of neuropathic pain. METHODS: We examined the implication of system xc- by evaluating changes in the expression/activity of this exchanger in the dorsal spinal cord of mice after unilateral partial sciatic nerve ligation. In this surgical model of neuropathic pain, we also examined the consequence of the genetic suppression of system xc- (using mice lacking the system xc- specific subunit xCT) or its pharmacological manipulation (using the pharmacological inhibitor sulfasalazine) on the pain-associated behavioral responses. Finally, we assessed the glial activation and the inflammatory response in the spinal cord by measuring mRNA and protein levels of GFAP and selected M1 and M2 microglial markers. RESULTS: The sciatic nerve lesion was found to upregulate system xc- at the spinal level. The genetic deletion of xCT attenuated both the amplitude and the duration of the pain sensitization after nerve surgery, as evidenced by reduced responses to mechanical and thermal stimuli, and this was accompanied by reduced glial activation. Consistently, pharmacological inhibition of system xc- had an analgesic effect in lesioned mice. CONCLUSION: Together, these observations provide evidence for a role of system xc- in the biochemical processes underlying central sensitization. We propose that the reduced hypersensitivity observed in the transgenic mice lacking xCT or in sulfasalazine-treated mice is mediated by a reduced gliosis in the lumbar spinal cord and/or a shift in microglial M1/M2 polarization towards an anti-inflammatory phenotype in the absence of system xc-. These findings suggest that drugs targeting system xc- could contribute to prevent or reduce neuropathic pain.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Camundongos Endogâmicos C57BL , Neuralgia , Doenças Neuroinflamatórias , Medula Espinal , Animais , Camundongos , Neuralgia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Masculino , Medula Espinal/metabolismo , Medula Espinal/patologia , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Modelos Animais de Doenças , Camundongos Knockout , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêutico , Hiperalgesia/metabolismo , Hiperalgesia/etiologia , Camundongos Transgênicos
3.
Curr Top Dev Biol ; 159: 168-231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729676

RESUMO

The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Tubo Neural , Transdução de Sinais , Tubo Neural/embriologia , Tubo Neural/metabolismo , Tubo Neural/citologia , Animais , Padronização Corporal/genética , Humanos , Redes Reguladoras de Genes , Medula Espinal/embriologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Diferenciação Celular , Movimento Celular
4.
Synapse ; 78(3): e22291, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38733105

RESUMO

Spinal serotonin enables neuro-motor recovery (i.e., plasticity) in patients with debilitating paralysis. While there exists time of day fluctuations in serotonin-dependent spinal plasticity, it is unknown, in humans, whether this is due to dynamic changes in spinal serotonin levels or downstream signaling processes. The primary objective of this study was to determine if time of day variations in spinal serotonin levels exists in humans. To assess this, intrathecal drains were placed in seven adults with cerebrospinal fluid (CSF) collected at diurnal (05:00 to 07:00) and nocturnal (17:00 to 19:00) intervals. High performance liquid chromatography with mass spectrometry was used to quantify CSF serotonin levels with comparisons being made using univariate analysis. From the 7 adult patients, 21 distinct CSF samples were collected: 9 during the diurnal interval and 12 during nocturnal. Diurnal CSF samples demonstrated an average serotonin level of 216.6 ± $ \pm $ 67.7 nM. Nocturnal CSF samples demonstrated an average serotonin level of 206.7 ± $ \pm $ 75.8 nM. There was no significant difference between diurnal and nocturnal CSF serotonin levels (p = .762). Within this small cohort of spine healthy adults, there were no differences in diurnal versus nocturnal spinal serotonin levels. These observations exclude spinal serotonin levels as the etiology for time of day fluctuations in serotonin-dependent spinal plasticity expression.


Assuntos
Ritmo Circadiano , Serotonina , Humanos , Serotonina/líquido cefalorraquidiano , Masculino , Adulto , Feminino , Ritmo Circadiano/fisiologia , Pessoa de Meia-Idade , Medula Espinal/metabolismo , Cromatografia Líquida de Alta Pressão , Idoso
5.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731901

RESUMO

Growing demand for therapeutic tissue repair recurrently focusses scientists' attention on critical assessment of postmortal collection of live cells, especially stem cells. Our study aimed to assess the survival of neuronal progenitors in postmortal spinal cord and their differentiation potential. Postmortal samples of spinal cords were obtained from human-sized animals (goats) at 6, 12, 24, 36, and 54 h after slaughter. Samples were studied by immunohistology, differentiation assay, Western blot and flow cytometry for the presence and location of GD2-positive neural progenitors and their susceptibility to cell death. TUNEL staining of the goat spinal cord samples over 6-54 h postmortem revealed no difference in the number of positive cells per cross-section. Many TUNEL-positive cells were located in the gray commissure around the central canal of the spinal cord; no increase in TUNEL-positive cells was recorded in either posterior or anterior horns of the gray matter where many GD2-positive neural progenitors can be found. The active caspase 3 amount as measured by Western blot at the same intervals was moderately increasing over time. Neuronal cells were enriched by magnetic separation with antibodies against CD24; among them, the GD2-positive neural progenitor subpopulation did not overlap with apoptotic cells having high pan-caspase activity. Apoptotic cell death events are relatively rare in postmortal spinal cords and are not increased in areas of the neural progenitor cell's location, within measured postmortal intervals, or among the CD24/GD2-positive cells. Data from our study suggest postmortal spinal cords as a valuable source for harvesting highly viable allogenic neural progenitor cells.


Assuntos
Apoptose , Cabras , Células-Tronco Neurais , Medula Espinal , Animais , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Medula Espinal/metabolismo , Medula Espinal/citologia , Diferenciação Celular , Sobrevivência Celular , Caspase 3/metabolismo
6.
Bull Exp Biol Med ; 176(5): 666-671, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38727956

RESUMO

This paper shows for the first time that co-transplantation of human olfactory ensheathing cells with neurotrophin-3 into spinal cord cysts is more effective for activation of remyelination than transplantation of cells with brain-derived neurotrophic factor and a combination of these two factors. The studied neurotrophic factors do not affect proliferation and migration of ensheathing cells in vitro. It can be concluded that the maximum improvement of motor function in rats receiving ensheathing cells with neurotrophin-3 is largely determined by activation of remyelination.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neurotrofina 3 , Bulbo Olfatório , Remielinização , Animais , Ratos , Neurotrofina 3/metabolismo , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Remielinização/fisiologia , Bulbo Olfatório/citologia , Proliferação de Células , Medula Espinal/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/fisiologia , Células Cultivadas , Movimento Celular , Cistos/patologia , Feminino , Cistos do Sistema Nervoso Central/cirurgia , Cistos do Sistema Nervoso Central/patologia
7.
Mol Brain ; 17(1): 23, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750560

RESUMO

This study aimed to unveil the central mechanism of moxibustion treating chronic inflammatory visceral pain (CIVP) from the angle of circRNA-miRNA-mRNA networks in the spinal cord. The rat CIVP model was established using a mixture of 5% (w/v) 2,4,6-trinitrobenzene sulfonic acid and 50% ethanol at a volume ratio of 2:1 via enema. Rats in the moxibustion group received herb-partitioned moxibustion at Tianshu (ST25, bilateral) and Qihai (CV6) points. The abdominal withdrawal reflex (AWR), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL) were adopted for pain behavior observation and pain sensitivity assessment. The circRNA, miRNA, and mRNA expression profiles were detected using the high-throughput sequencing technique. Relevant databases and bioinformatics analysis methods were used to screen for differentially expressed (DE) RNAs and build a circRNA-miRNA-mRNA (competing endogenous RNA) ceRNA regulatory network. The real-time quantitative PCR was employed to verify the sequencing result. CIVP rat models had a significantly higher AWR and lower TWL and MWT than normal rats. Between normal and model rats, there were 103 DE-circRNAs, 16 DE-miRNAs, and 397 DE-mRNAs in the spinal cord. Compared with the model group, the moxibustion group had a lower AWR and higher TWL and MWT; between these two groups, there were 118 DE-circRNAs, 15 DE-miRNAs, and 804 DE-mRNAs in the spinal cord. Two ceRNA networks were chosen to be verified. As a result, moxibustion's analgesic effect on visceral pain in CIVP rats may be associated with regulating the circRNA_02767/rno-miR-483-3p/Gfap network in the spinal cord and improving central sensitization.


Assuntos
Redes Reguladoras de Genes , MicroRNAs , Moxibustão , RNA Circular , RNA Mensageiro , Ratos Sprague-Dawley , Medula Espinal , Dor Visceral , Animais , Moxibustão/métodos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Dor Visceral/genética , Dor Visceral/terapia , Masculino , Inflamação/genética , Inflamação/patologia , Dor Crônica/terapia , Dor Crônica/genética , Ratos , Regulação da Expressão Gênica
8.
PLoS One ; 19(5): e0303235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728287

RESUMO

Excitotoxicity represents the primary cause of neuronal death following spinal cord injury (SCI). While autophagy plays a critical and intricate role in SCI, the specific mechanism underlying the relationship between excitotoxicity and autophagy in SCI has been largely overlooked. In this study, we isolated primary spinal cord neurons from neonatal rats and induced excitotoxic neuronal injury by high concentrations of glutamic acid, mimicking an excitotoxic injury model. Subsequently, we performed transcriptome sequencing. Leveraging machine learning algorithms, including weighted correlation network analysis (WGCNA), random forest analysis (RF), and least absolute shrinkage and selection operator analysis (LASSO), we conducted a comprehensive investigation into key genes associated with spinal cord neuron injury. We also utilized protein-protein interaction network (PPI) analysis to identify pivotal proteins regulating key gene expression and analyzed key genes from public datasets (GSE2599, GSE20907, GSE45006, and GSE174549). Our findings revealed that six genes-Anxa2, S100a10, Ccng1, Timp1, Hspb1, and Lgals3-were significantly upregulated not only in vitro in neurons subjected to excitotoxic injury but also in rats with subacute SCI. Furthermore, Hspb1 and Lgals3 were closely linked to neuronal autophagy induced by excitotoxicity. Our findings contribute to a better understanding of excitotoxicity and autophagy, offering potential targets and a theoretical foundation for SCI diagnosis and treatment.


Assuntos
Autofagia , Galectina 3 , Aprendizado de Máquina , Neurônios , Animais , Neurônios/metabolismo , Ratos , Galectina 3/metabolismo , Galectina 3/genética , Ratos Sprague-Dawley , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/genética , Mapas de Interação de Proteínas , Ácido Glutâmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética
9.
Nat Commun ; 15(1): 4331, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773121

RESUMO

The adult zebrafish spinal cord displays an impressive innate ability to regenerate after traumatic insults, yet the underlying adaptive cellular mechanisms remain elusive. Here, we show that while the cellular and tissue responses after injury are largely conserved among vertebrates, the large-size fast spinal zebrafish motoneurons are remarkably resilient by remaining viable and functional. We also reveal the dynamic changes in motoneuron glutamatergic input, excitability, and calcium signaling, and we underscore the critical role of calretinin (CR) in binding and buffering the intracellular calcium after injury. Importantly, we demonstrate the presence and the dynamics of a neuron-to-neuron bystander neuroprotective biochemical cooperation mediated through gap junction channels. Our findings support a model in which the intimate and dynamic interplay between glutamate signaling, calcium buffering, gap junction channels, and intercellular cooperation upholds cell survival and promotes the initiation of regeneration.


Assuntos
Junções Comunicantes , Neurônios Motores , Traumatismos da Medula Espinal , Medula Espinal , Peixe-Zebra , Animais , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Junções Comunicantes/metabolismo , Neurônios Motores/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Calbindina 2/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Ácido Glutâmico/metabolismo , Sobrevivência Celular
10.
Eur Rev Med Pharmacol Sci ; 28(7): 2654-2661, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639504

RESUMO

OBJECTIVE: This study aimed to explore the effect of flipped venous catheters combined with spinal cord electrical stimulation on functional recovery in patients with sciatic nerve injury. PATIENTS AND METHODS: 160 patients with hip dislocation and sciatic nerve injury were divided into conventional release and flipped catheter + electrical stimulation groups according to the treatment methods (n=80). Motor nerve conduction velocity (MCV) and lower limb motor function were compared. Serum neurotrophic factors brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were compared. The frequency of complications and quality of life were also compared. RESULTS: The MCV levels of the common peroneal nerve and tibial nerve in the flipped catheter + electrical stimulation group were greater than the conventional lysis group (p<0.05). After treatment, the lower extremity motor score (LMEs) in the flipped catheter + electrical stimulation group was greater than the conventional lysis group (p<0.05). The serum levels of BDNF and NGF in the flip catheter + electrical stimulation group were higher than the conventional lysis group (p<0.05). The complication rate in the flipped catheter + electrical stimulation group was lower than in the conventional release group (6.25% vs. 16.25%, p<0.05). The quality-of-life score in the flip catheter + electrical stimulation group was greater than the conventional lysis group (p<0.05). CONCLUSIONS: The flipped venous catheter combined with spinal cord electrical stimulation can improve nerve conduction velocity, lower limb motor function, serum BDNF and NGF levels, reduce complications, and help improve the quality of life of sufferers with sciatic nerve injury. Chictr.org.cn ID: ChiCTR2400080984.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neuropatia Ciática , Ratos , Animais , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos Sprague-Dawley , Fator de Crescimento Neural/metabolismo , Qualidade de Vida , Neuropatia Ciática/metabolismo , Neuropatia Ciática/terapia , Medula Espinal/metabolismo , Nervo Isquiático , Catéteres , Estimulação Elétrica/métodos
11.
Genes (Basel) ; 15(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38674338

RESUMO

Microribonucleic acids (miRNAs) comprising miR-23a/b clusters, specifically miR-23a and miR-27a, are recognized for their divergent roles in myelination within the central nervous system. However, cluster-specific miRNA functions remain controversial as miRNAs within the same cluster have been suggested to function complementarily. This study aims to clarify the role of miR-23a/b clusters in myelination using mice with a miR-23a/b cluster deletion (KO mice), specifically in myelin expressing proteolipid protein (PLP). Inducible conditional KO mice were generated by crossing miR-23a/b clusterflox/flox mice with PlpCre-ERT2 mice; the offspring were injected with tamoxifen at 10 days or 10 weeks of age to induce a myelin-specific miR-23a/b cluster deletion. Evaluation was performed at 10 weeks or 12 months of age and compared with control mice that were not treated with tamoxifen. KO mice exhibit impaired motor function and hypoplastic myelin sheaths in the brain and spinal cord at 10 weeks and 12 months of age. Simultaneously, significant decreases in myelin basic protein (MBP) and PLP expression occur in KO mice. The percentages of oligodendrocyte precursors and mature oligodendrocytes are consistent between the KO and control mice. However, the proportion of oligodendrocytes expressing MBP is significantly lower in KO mice. Moreover, changes in protein expression occur in KO mice, with increased leucine zipper-like transcriptional regulator 1 expression, decreased R-RAS expression, and decreased phosphorylation of extracellular signal-regulated kinases. These findings highlight the significant influence of miR-23a/b clusters on myelination during postnatal growth and aging.


Assuntos
Envelhecimento , MicroRNAs , Bainha de Mielina , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos , Bainha de Mielina/metabolismo , Bainha de Mielina/genética , Envelhecimento/genética , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/crescimento & desenvolvimento , Camundongos Knockout , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Medula Espinal/metabolismo , Medula Espinal/crescimento & desenvolvimento , Proteína Básica da Mielina/metabolismo , Proteína Básica da Mielina/genética , Oligodendroglia/metabolismo , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento
12.
ACS Biomater Sci Eng ; 10(5): 3218-3231, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38593429

RESUMO

Spinal cord organoids are of significant value in the research of spinal cord-related diseases by simulating disease states, thereby facilitating the development of novel therapies. However, the complexity of spinal cord structure and physiological functions, along with the lack of human-derived inducing components, presents challenges in the in vitro construction of human spinal cord organoids. Here, we introduce a novel human decellularized placenta-derived extracellular matrix hydrogel (DPECMH) and, combined with a new induction protocol, successfully construct human spinal cord organoids. The human placenta-sourced decellularized extracellular matrix (dECM), verified through hematoxylin and eosin staining, DNA quantification, and immunofluorescence staining, retained essential ECM components such as elastin, fibronectin, type I collagen, laminin, and so forth. The temperature-sensitive hydrogel made from human placenta dECM demonstrated good biocompatibility and promoted the differentiation of human induced pluripotent stem cell (hiPSCs)-derived spinal cord organoids into neurons. It displayed enhanced expression of laminar markers in comparison to Matrigel and showed higher expression of laminar markers compared to Matrigel, accelerating the maturation process of spinal cord organoids and demonstrating its potential as an organoid culture substrate. DPECMH has the potential to replace Matrigel as the standard additive for human spinal cord organoids, thus advancing the development of spinal cord organoid culture protocols and their application in the in vitro modeling of spinal cord-related diseases.


Assuntos
Diferenciação Celular , Matriz Extracelular Descelularizada , Hidrogéis , Células-Tronco Pluripotentes Induzidas , Organoides , Placenta , Medula Espinal , Humanos , Organoides/citologia , Organoides/metabolismo , Organoides/efeitos dos fármacos , Feminino , Placenta/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Gravidez , Hidrogéis/química , Hidrogéis/farmacologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Diferenciação Celular/efeitos dos fármacos , Matriz Extracelular Descelularizada/farmacologia , Matriz Extracelular Descelularizada/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Laminina/farmacologia , Laminina/química
13.
Glia ; 72(7): 1319-1339, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38577970

RESUMO

Neuroinflammation and chronic activation of microglial cells are the prominent features of amyotrophic lateral sclerosis (ALS) pathology. While alterations in the mRNA profile of diseased microglia have been well documented, the actual microglia proteome remains poorly characterized. Here we performed a functional characterization together with proteome analyses of microglial cells at different stages of disease in the SOD1-G93A model of ALS. Functional analyses of microglia derived from the lumbar spinal cord of symptomatic mice revealed: (i) remarkably high mitotic index (close to 100% cells are Ki67+) (ii) significant decrease in phagocytic capacity when compared to age-matched control microglia, and (iii) diminished response to innate immune challenges in vitro and in vivo. Proteome analysis revealed a development of two distinct molecular signatures at early and advanced stages of disease. While at early stages of disease, we identified several proteins implicated in microglia immune functions such as GPNMB, HMBOX1, at advanced stages of disease microglia signature at protein level was characterized with a robust upregulation of several unconventional proteins including rootletin, major vaults proteins and STK38. Upregulation of GPNMB and rootletin has been also found in the spinal cord samples of sporadic ALS. Remarkably, the top biological functions of microglia, in particular in the advanced disease, were not related to immunity/immune response, but were highly enriched in terms linked to RNA metabolism. Together, our results suggest that, over the course of disease, chronically activated microglia develop unconventional protein signatures and gradually lose their immune identity ultimately turning into functionally inefficient immune cells.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos Transgênicos , Microglia , Proteoma , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/genética , Microglia/metabolismo , Microglia/imunologia , Animais , Proteoma/metabolismo , Camundongos , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/imunologia , Modelos Animais de Doenças , Fagocitose/fisiologia , Humanos , Feminino , Camundongos Endogâmicos C57BL , Masculino
14.
Brain Res ; 1834: 148915, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582414

RESUMO

Bestrophin-1 and anoctamin-1 are members of the calcium-activated chloride channels (CaCCs) family and are involved in inflammatory and neuropathic pain. However, their role in pain hypersensitivity induced by REM sleep deprivation (REMSD) has not been studied. This study aimed to determine if anoctamin-1 and bestrophin-1 are involved in the pain hypersensitivity induced by REMSD. We used the multiple-platform method to induce REMSD. REM sleep deprivation for 48 h induced tactile allodynia and a transient increase in corticosterone concentration at the beginning of the protocol (12 h) in female and male rats. REMSD enhanced c-Fos and α2δ-1 protein expression but did not change activating transcription factor 3 (ATF3) and KCC2 expression in dorsal root ganglia and dorsal spinal cord. Intrathecal injection of CaCCinh-A01, a non-selective bestrophin-1 blocker, and T16Ainh-A01, a specific anoctamin-1 blocker, reverted REMSD-induced tactile allodynia. However, T16Ainh-A01 had a higher antiallodynic effect in male than female rats. In addition, REMSD increased bestrophin-1 protein expression in DRG but not in DSC in male and female rats. In marked contrast, REMSD decreased anoctamin-1 protein expression in DSC but not in DRG, only in female rats. Bestrophin-1 and anoctamin-1 promote pain and maintain tactile allodynia induced by REM sleep deprivation in both male and female rats, but their expression patterns differ between the sexes.


Assuntos
Bestrofinas , Gânglios Espinais , Hiperalgesia , Privação do Sono , Medula Espinal , Animais , Privação do Sono/metabolismo , Privação do Sono/complicações , Hiperalgesia/metabolismo , Masculino , Feminino , Ratos , Gânglios Espinais/metabolismo , Medula Espinal/metabolismo , Bestrofinas/metabolismo , Canais de Cloreto/metabolismo , Sono REM/fisiologia , Ratos Wistar , Anoctamina-1 , Canais de Cálcio Tipo L
15.
Brain Res Bull ; 211: 110943, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614408

RESUMO

BACKGROUND: Existing evidence suggests that the composition of the gut microbiota is associated with neuropathic pain (NP), but the mechanistic link is elusive. Peroxisome proliferator-activated receptor α (PPARα) has been shown to be a pharmacological target for the treatment of metabolic disorders, and its expression is also involved in inflammatory regulation. The aim of this study was to investigate the important modulatory effects of PPARα on gut microbiota and spinal cord metabolites in mice subjected to chronic constriction injury. METHODS: We analyzed fecal microbiota and spinal cord metabolic alterations in mice from the sham, CCI, GW7647 (PPARα agonist) and GW6471 (PPARα antagonist) groups by 16 S rRNA amplicon sequencing and untargeted metabolomics analysis. On this basis, the intestinal microbiota and metabolites that were significantly altered between treatment groups were analyzed in a combined multiomics analysis. We also investigated the effect of PPARα on the polarization fractionation of spinal microglia. RESULTS: PPARα agonist significantly reduce paw withdrawal threshold and paw withdrawal thermal latency, while PPARα antagonist significantly increase paw withdrawal threshold and paw withdrawal thermal latency. 16 S rRNA gene sequencing showed that intraperitoneal injection of GW7647 or GW6471 significantly altered the abundance, homogeneity and composition of the gut microbiome. Analysis of the spinal cord metabolome showed that the levels of spinal cord metabolites were shifted after exposure to GW7647 or GW6471. Alterations in the composition of gut microbiota were significantly associated with the abundance of various spinal cord metabolites. The abundance of Licheniformes showed a significant positive correlation with nicotinamide, benzimidazole, eicosanoids, and pyridine abundance. Immunofluorescence results showed that intraperitoneal injection of GW7647 or GW6471 altered microglial activation and polarization levels. CONCLUSION: Our study shows that PPARα can promote M2-type microglia polarization, as well as alter gut microbiota and metabolites in CCI mice. This study enhances our understanding of the mechanism of PPARα in the treatment of neuropathic pain.


Assuntos
Microbioma Gastrointestinal , Metabolômica , Neuralgia , PPAR alfa , RNA Ribossômico 16S , Medula Espinal , Animais , Masculino , Camundongos , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/efeitos dos fármacos , Neuralgia/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/microbiologia , Oxazóis , PPAR alfa/metabolismo , RNA Ribossômico 16S/genética , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Tirosina/análogos & derivados
16.
Mol Pain ; 20: 17448069241252654, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658141

RESUMO

Painful Diabetic Neuropathy (PDN) is a common diabetes complication that frequently causes severe hyperalgesia and allodynia and presents treatment challenges. Mitochondrial-derived peptide (MOTS-c), a novel mitochondrial-derived peptide, has been shown to regulate glucose metabolism, insulin sensitivity, and inflammatory responses. This study aimed to evaluate the effects of MOTS-c in streptozocin (STZ)-induced PDN model and investigate the putative underlying mechanisms. We found that endogenous MOTS-c levels in plasma and spinal dorsal horn were significantly lower in STZ-treated mice than in control animals. Accordingly, MOTS-c treatment significantly improves STZ-induced weight loss, elevation of blood glucose, mechanical allodynia, and thermal hyperalgesia; however, these effects were blocked by dorsomorphin, an adenosine monophosphate-activated protein kinase (AMPK) inhibitor. In addition, MOTS-c treatment significantly enhanced AMPKα1/2 phosphorylation and PGC-1α expression in the lumbar spinal cord of PDN mice. Mechanistic studies indicated that MOTS-c significantly restored mitochondrial biogenesis, inhibited microglia activation, and decreased the production of pro-inflammatory factors, which contributed to the alleviation of pain. Moreover, MOTS-c decreased STZ-induced pain hypersensitivity in PDN mice by activating AMPK/PGC-1α signaling pathway. This provides the pharmacological and biological evidence for developing mitochondrial peptide-based therapeutic agents for PDN.


Assuntos
Neuropatias Diabéticas , Hiperalgesia , Mitocôndrias , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Estreptozocina , Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/patologia , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Peptídeos/farmacologia , Camundongos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo
17.
Mol Pain ; 20: 17448069241249455, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597175

RESUMO

Although the molecular mechanisms of chronic pain have been extensively studied, a global picture of alternatively spliced genes and events in the peripheral and central nervous systems of chronic pain is poorly understood. The current study analyzed the changing pattern of alternative splicing (AS) in mouse brain, dorsal root ganglion, and spinal cord tissue under inflammatory and neuropathic pain. In total, we identified 6495 differentially alternatively spliced (DAS) genes. The molecular functions of shared DAS genes between these two models are mainly enriched in calcium signaling pathways, synapse organization, axon regeneration, and neurodegeneration disease. Additionally, we identified 509 DAS in differentially expressed genes (DEGs) shared by these two models, accounting for a small proportion of total DEGs. Our findings supported the hypothesis that the AS has an independent regulation pattern different from transcriptional regulation. Taken together, these findings indicate that AS is one of the important molecular mechanisms of chronic pain in mammals. This study presents a global description of AS profile changes in the full path of neuropathic and inflammatory pain models, providing new insights into the underlying mechanisms of chronic pain and guiding genomic clinical diagnosis methods and rational medication.


Assuntos
Processamento Alternativo , Perfilação da Expressão Gênica , Inflamação , Camundongos Endogâmicos C57BL , Neuralgia , Transcriptoma , Animais , Neuralgia/genética , Neuralgia/metabolismo , Processamento Alternativo/genética , Inflamação/genética , Transcriptoma/genética , Masculino , Gânglios Espinais/metabolismo , Camundongos , Medula Espinal/metabolismo , Medula Espinal/patologia , Regulação da Expressão Gênica , Modelos Animais de Doenças
18.
Free Radic Biol Med ; 219: 1-16, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614227

RESUMO

Bupivacaine (BUP) is an anesthetic commonly used in clinical practice that when used for spinal anesthesia, might exert neurotoxic effects. Thioredoxin-interacting protein (TXNIP) is a member of the α-arrestin protein superfamily that binds covalently to thioredoxin (TRX) to inhibit its function, leading to increased oxidative stress and activation of apoptosis. The role of TXNIP in BUP-induced oxidative stress and apoptosis remains to be elucidated. In this context, the present study aimed to explore the effects of TXNIP knockdown on BUP-induced oxidative stress and apoptosis in the spinal cord of rats and in PC12 cells through the transfection of adeno-associated virus-TXNIP short hairpin RNA (AAV-TXNIP shRNA) and siRNA-TXNIP, respectively. In vivo, a rat model of spinal neurotoxicity was established by intrathecally injecting rats with BUP. The BUP + TXNIP shRNA and the BUP + Control shRNA groups of rats were injected with an AAV carrying the TXNIP shRNA and the Control shRNA, respectively, into the subarachnoid space four weeks prior to BUP treatment. The Basso, Beattie & Bresnahan (BBB) locomotor rating score, % MPE of TFL, H&E staining, and Nissl staining analyses were conducted. In vitro, 0.8 mM BUP was determined by CCK-8 assay to establish a cytotoxicity model in PC12 cells. Transfection with siRNA-TXNIP was carried out to suppress TXNIP expression prior to exposing PC12 cells to BUP. The results revealed that BUP effectively induced neurological behavioral dysfunction and neuronal damage and death in the spinal cord of the rats. Similarly, BUP triggered cytotoxicity and apoptosis in PC12 cells. In addition, treated with BUP both in vitro and in vivo exhibited upregulated TXNIP expression and increased oxidative stress and apoptosis. Interestingly, TXNIP knockdown in the spinal cord of rats through transfection of AAV-TXNIP shRNA exerted a protective effect against BUP-induced spinal neurotoxicity by ameliorating behavioral and histological outcomes and promoting the survival of spinal cord neurons. Similarly, transfection with siRNA-TXNIP mitigated BUP-induced cytotoxicity in PC12 cells. In addition, TXNIP knockdown mitigated the upregulation of ROS, MDA, Bax, and cleaved caspase-3 and restored the downregulation of GSH, SOD, CAT, GPX4, and Bcl2 induced upon BUP exposure. These findings suggested that TXNIP knockdown protected against BUP-induced spinal neurotoxicity by suppressing oxidative stress and apoptosis. In summary, TXNIP could be a central signaling hub that positively regulates oxidative stress and apoptosis during neuronal damage, which renders TXNIP a promising target for treatment strategies against BUP-induced spinal neurotoxicity.


Assuntos
Apoptose , Bupivacaína , Proteínas de Transporte , Técnicas de Silenciamento de Genes , Estresse Oxidativo , RNA Interferente Pequeno , Medula Espinal , Animais , Ratos , Estresse Oxidativo/efeitos dos fármacos , Bupivacaína/toxicidade , Bupivacaína/efeitos adversos , Células PC12 , Apoptose/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/efeitos dos fármacos , RNA Interferente Pequeno/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Masculino , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Injeções Espinhais , Ratos Sprague-Dawley , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/etiologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo
19.
Int Immunopharmacol ; 133: 112031, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38631219

RESUMO

BACKGROUND: Neuromedin B (Nmb) plays a pivotal role in the transmission of neuroinflammation, particularly during spinal cord ischemia-reperfusion injury (SCII). However, the detailed molecular mechanisms underlying this process remain elusive. METHODS: The SCII model was established by clamping the abdominal aorta of male Sprague-Dawley (SD) rats for 60 min. The protein expression levels of Nmb, Cav3.2, and IL-1ß were detected by Western blotting, while miR-214-3p expression was quantified by qRT-PCR. The targeted regulation between miR-214-3p and Nmb was investigated using a dual-luciferase reporter gene assay. The cellular localization of Nmb and Cav3.2 with cell-specific markers was visualized by immunofluorescence staining. The specific roles of miR-214-3p on the Nmb/Cav3.2 interactions in SCII-injured rats were explored by intrathecal injection of Cav3.2-siRNA, PD168368 (a specific NmbR inhibitor) and synthetic miR-214-3p agomir and antagomir in separate experiments. Additionally, hind-limb motor function was evaluated using the modified Tarlov scores. RESULTS: Compared to the Sham group, the protein expression levels of Nmb, Cav3.2, and the proinflammatory factor Interleukin(IL)-1ß were significantly elevated at 24 h post-SCII. Intrathecal injection of PD168368 and Cav3.2-siRNA significantly suppressed the expression of Cav3.2 and IL-1ß compared to the SCII group. The miRDB database and dual-luciferase reporter gene assay identified Nmb as a direct target of miR-214-3p. As expected, in vivo overexpression of miR-214-3p by agomir-214-3p pretreatment significantly inhibited the increases in Nmb, Cav3.2 and IL-1ß expression and improved lower limb motor function in SCII-injured rats, while antagomiR-214-3p pretreatment reversed these effects. CONCLUSIONS: Nmb protein levels positively correlated with Cav3.2 expression in SCII rats. Upregulating miR-214-3p ameliorated hind-limb motor function and protected against neuroinflammation via inhibiting the aberrant Nmb/Cav3.2 interactions and downstream IL-1ß release. These findings provide novel therapeutic targets for clinical prevention and treatment of SCII.


Assuntos
MicroRNAs , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Transdução de Sinais , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão/metabolismo , Masculino , Ratos , Isquemia do Cordão Espinal/metabolismo , Isquemia do Cordão Espinal/genética , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/tratamento farmacológico , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Interleucina-1beta/metabolismo , Medula Espinal/metabolismo , Modelos Animais de Doenças
20.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673852

RESUMO

One of the challenges of the mature nervous system is to maintain the stability of neural networks while providing a degree of plasticity to generate experience-dependent modifications. This plasticity-stability dynamism is regulated by perineuronal nets (PNNs) and is crucial for the proper functioning of the system. Previously, we found a relation between spinal PNNs reduction and maladaptive plasticity after spinal cord injury (SCI), which was attenuated by maintaining PNNs with activity-dependent therapies. Moreover, transgenic mice lacking the cartilage link protein 1 (Crtl1 KO mice) showed aberrant spinal PNNs and increased spinal plasticity. Therefore, the aim of this study is to evaluate the role of link protein 1 in the activity-dependent modulation of spinal PNNs surrounding motoneurons and its impact on the maladaptive plasticity observed following SCI. We first studied the activity-dependent modulation of spinal PNNs using a voluntary wheel-running protocol. This training protocol increased spinal PNNs in WT mice but did not modify PNN components in Crtl1 KO mice, suggesting that link protein 1 mediates the activity-dependent modulation of PNNs. Secondly, a thoracic SCI was performed, and functional outcomes were evaluated for 35 days. Interestingly, hyperreflexia and hyperalgesia found at the end of the experiment in WT-injured mice were already present at basal levels in Crtl1 KO mice and remained unchanged after the injury. These findings demonstrated that link protein 1 plays a dual role in the correct formation and in activity-dependent modulation of PNNs, turning it into an essential element for the proper function of PNN in spinal circuits.


Assuntos
Proteínas da Matriz Extracelular , Camundongos Knockout , Traumatismos da Medula Espinal , Medula Espinal , Animais , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Camundongos , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Plasticidade Neuronal , Neurônios Motores/metabolismo , Rede Nervosa/metabolismo , Masculino , Proteoglicanas/metabolismo , Proteoglicanas/genética , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA