Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.171
Filtrar
1.
BMC Plant Biol ; 24(1): 391, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735929

RESUMO

BACKGROUND: Unreduced gamete formation during meiosis plays a critical role in natural polyploidization. However, the unreduced gamete formation mechanisms in Triticum turgidum-Aegilops umbellulata triploid F1 hybrid crosses and the chromsome numbers and compostions in T. turgidum-Ae. umbellulata F2 still not known. RESULTS: In this study, 11 T.turgidum-Ae. umbellulata triploid F1 hybrid crosses were produced by distant hybridization. All of the triploid F1 hybrids had 21 chromosomes and two basic pathways of meiotic restitution, namely first-division restitution (FDR) and single-division meiosis (SDM). Only FDR was found in six of the 11 crosses, while both FDR and SDM occurred in the remaining five crosses. The chromosome numbers in the 127 selfed F2 seeds from the triploid F1 hybrid plants of 10 crosses (no F2 seeds for STU 16) varied from 35 to 43, and the proportions of euploid and aneuploid F2 plants were 49.61% and 50.39%, respectively. In the aneuploid F2 plants, the frequency of chromosome loss/gain varied among genomes. The chromosome loss of the U genome was the highest (26.77%) among the three genomes, followed by that of the B (22.83%) and A (11.81%) genomes, and the chromosome gain for the A, B, and U genomes was 3.94%, 3.94%, and 1.57%, respectively. Of the 21 chromosomes, 7U (16.54%), 5 A (3.94%), and 1B (9.45%) had the highest loss frequency among the U, A, and B genomes. In addition to chromosome loss, seven chromosomes, namely 1 A, 3 A, 5 A, 6 A, 1B, 1U, and 6U, were gained in the aneuploids. CONCLUSION: In the aneuploid F2 plants, the frequency of chromosome loss/gain varied among genomes, chromsomes, and crosses. In addition to variations in chromosome numbers, three types of chromosome translocations including 3UL·2AS, 6UL·1AL, and 4US·6AL were identified in the F2 plants. Furthermore, polymorphic fluorescence in situ hybridization karyotypes for all the U chromosomes were also identified in the F2 plants when compared with the Ae. umbellulata parents. These results provide useful information for our understanding the naturally occurred T. turgidum-Ae. umbellulata amphidiploids.


Assuntos
Aegilops , Instabilidade Cromossômica , Cromossomos de Plantas , Hibridização Genética , Triticum , Triticum/genética , Cromossomos de Plantas/genética , Aegilops/genética , Meiose/genética , Triploidia , Poliploidia , Genoma de Planta
2.
Zool Res ; 45(3): 601-616, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38766744

RESUMO

Meiosis is a highly complex process significantly influenced by transcriptional regulation. However, studies on the mechanisms that govern transcriptomic changes during meiosis, especially in prophase I, are limited. Here, we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes. This event, conserved in mice, involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset. Furthermore, we identified 282 transcriptional regulators (TRs) that underwent activation or deactivation subsequent to this process. Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes, while secreted ENHO signals may alter metabolic patterns in these cells. Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia (NOA). This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.


Assuntos
Comunicação Celular , Meiose , Animais , Masculino , Camundongos , Meiose/fisiologia , Humanos , Células de Sertoli/metabolismo , Células de Sertoli/fisiologia , Testículo/metabolismo , Testículo/citologia , Espermatogênese/fisiologia , Regulação da Expressão Gênica , Azoospermia/genética , Transcrição Gênica , RNA Citoplasmático Pequeno/genética , RNA Citoplasmático Pequeno/metabolismo , Análise da Expressão Gênica de Célula Única
3.
Cell Mol Biol Lett ; 29(1): 68, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730334

RESUMO

BACKGROUND: Members of the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing (NLRP) family regulate various physiological and pathological processes. However, none have been shown to regulate actin cap formation or spindle translocation during the asymmetric division of oocyte meiosis I. NLRP4E has been reported as a candidate protein in female fertility, but its function is unknown. METHODS: Immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR), and western blotting were employed to examine the localization and expression levels of NLRP4E and related proteins in mouse oocytes. small interfering RNA (siRNA) and antibody transfection were used to knock down NLRP4E and other proteins. Immunoprecipitation (IP)-mass spectrometry was used to identify the potential proteins interacting with NLRP4E. Coimmunoprecipitation (Co-IP) was used to verify the protein interactions. Wild type (WT) or mutant NLRP4E messenger RNA (mRNA) was injected into oocytes for rescue experiments. In vitro phosphorylation was employed to examine the activation of steroid receptor coactivator (SRC) by NLRP4E. RESULTS: NLRP4E was more predominant within oocytes compared with other NLRP4 members. NLRP4E knockdown significantly inhibited actin cap formation and spindle translocation toward the cap region, resulting in the failure of polar body extrusion at the end of meiosis I. Mechanistically, GRIN1, and GANO1 activated NLRP4E by phosphorylation at Ser429 and Thr430; p-NLRP4E is translocated and is accumulated in the actin cap region during spindle translocation. Next, we found that p-NLRP4E directly phosphorylated SRC at Tyr418, while p-SRC negatively regulated p-CDC42-S71, an inactive form of CDC42 that promotes actin cap formation and spindle translocation in the GTP-bound form. CONCLUSIONS: NLRP4E activated by GRIN1 and GANO1 regulates actin cap formation and spindle translocation toward the cap region through upregulation of p-SRC-Tyr418 and downregulation of p-CDC42-S71 during meiosis I.


Assuntos
Actinas , Meiose , Oócitos , Proteína cdc42 de Ligação ao GTP , Animais , Oócitos/metabolismo , Camundongos , Feminino , Actinas/metabolismo , Actinas/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Fosforilação , Fuso Acromático/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(19): e2401386121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696471

RESUMO

In the meiotic prophase, programmed DNA double-strand breaks are repaired by meiotic recombination. Recombination-defective meiocytes are eliminated to preserve genome integrity in gametes. BRCA1 is a critical protein in somatic homologous recombination, but studies have suggested that BRCA1 is dispensable for meiotic recombination. Here we show that BRCA1 is essential for meiotic recombination. Interestingly, BRCA1 also has a function in eliminating recombination-defective oocytes. Brca1 knockout (KO) rescues the survival of Dmc1 KO oocytes far more efficiently than removing CHK2, a vital component of the DNA damage checkpoint in oocytes. Mechanistically, BRCA1 activates chromosome asynapsis checkpoint by promoting ATR activity at unsynapsed chromosome axes in Dmc1 KO oocytes. Moreover, Brca1 KO also rescues the survival of asynaptic Spo11 KO oocytes. Collectively, our study not only unveils an unappreciated role of chromosome asynapsis in eliminating recombination-defective oocytes but also reveals the dual functions of BRCA1 in safeguarding oocyte genome integrity.


Assuntos
Proteína BRCA1 , Proteínas de Ciclo Celular , Camundongos Knockout , Oócitos , Oócitos/metabolismo , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Feminino , Camundongos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Meiose/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Quebras de DNA de Cadeia Dupla , Pareamento Cromossômico/genética , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Recombinação Genética , Recombinação Homóloga , Instabilidade Genômica
5.
Elife ; 122024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747713

RESUMO

During mammalian oocyte meiosis, spindle migration and asymmetric cytokinesis are unique steps for the successful polar body extrusion. The asymmetry defects of oocytes will lead to the failure of fertilization and embryo implantation. In present study, we reported that an actin nucleating factor Formin-like 2 (FMNL2) played critical roles in the regulation of spindle migration and organelle distribution in mouse and porcine oocytes. Our results showed that FMNL2 mainly localized at the oocyte cortex and periphery of spindle. Depletion of FMNL2 led to the failure of polar body extrusion and large polar bodies in oocytes. Live-cell imaging revealed that the spindle failed to migrate to the oocyte cortex, which caused polar body formation defects, and this might be due to the decreased polymerization of cytoplasmic actin by FMNL2 depletion in the oocytes of both mice and pigs. Furthermore, mass spectrometry analysis indicated that FMNL2 was associated with mitochondria and endoplasmic reticulum (ER)-related proteins, and FMNL2 depletion disrupted the function and distribution of mitochondria and ER, showing with decreased mitochondrial membrane potential and the occurrence of ER stress. Microinjecting Fmnl2-EGFP mRNA into FMNL2-depleted oocytes significantly rescued these defects. Thus, our results indicate that FMNL2 is essential for the actin assembly, which further involves into meiotic spindle migration and ER/mitochondria functions in mammalian oocytes.


Assuntos
Actinas , Retículo Endoplasmático , Forminas , Meiose , Mitocôndrias , Oócitos , Animais , Retículo Endoplasmático/metabolismo , Oócitos/metabolismo , Forminas/metabolismo , Forminas/genética , Mitocôndrias/metabolismo , Camundongos , Actinas/metabolismo , Suínos , Feminino , Fuso Acromático/metabolismo
6.
Cell Biol Toxicol ; 40(1): 26, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691186

RESUMO

Copper ionophore NSC319726 has attracted researchers' attention in treating diseases, particularly cancers. However, its potential effects on male reproduction during medication are unclear. This study aimed to determine whether NSC319726 exposure affected the male reproductive system. The reproductive toxicity of NSC319726 was evaluated in male mice following a continuous exposure period of 5 weeks. The result showed that NSC319726 exposure caused testis index reduction, spermatogenesis dysfunction, and architectural damage in the testis and epididymis. The exposure interfered with spermatogonia proliferation, meiosis initiation, sperm count, and sperm morphology. The exposure also disturbed androgen synthesis and blood testis barrier integrity. NSC319726 treatment could elevate the copper ions in the testis to induce cuproptosis in the testis. Copper chelator rescued the elevated copper ions in the testis and partly restored the spermatogenesis dysfunction caused by NSC319726. NSC319726 treatment also decreased the level of retinol dehydrogenase 10 (RDH10), thereby inhibiting the conversion of retinol to retinoic acid, causing the inability to initiate meiosis. Retinoic acid treatment could rescue the meiotic initiation and spermatogenesis while not affecting the intracellular copper ion levels. The study provided an insight into the bio-safety of NSC319726. Retinoic acid could be a potential therapy for spermatogenesis impairment in patients undergoing treatment with NSC319726.


Assuntos
Cobre , Espermatogênese , Testículo , Tretinoína , Masculino , Animais , Espermatogênese/efeitos dos fármacos , Tretinoína/farmacologia , Cobre/toxicidade , Camundongos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Meiose/efeitos dos fármacos , Epididimo/efeitos dos fármacos , Epididimo/metabolismo , Epididimo/patologia
7.
Nat Commun ; 15(1): 3734, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702312

RESUMO

Mutations in DNA damage response (DDR) factors are associated with human infertility, which affects up to 15% of the population. The DDR is required during germ cell development and meiosis. One pathway implicated in human fertility is DNA translesion synthesis (TLS), which allows replication impediments to be bypassed. We find that TLS is essential for pre-meiotic germ cell development in the embryo. Loss of the central TLS component, REV1, significantly inhibits the induction of human PGC-like cells (hPGCLCs). This is recapitulated in mice, where deficiencies in TLS initiation (Rev1-/- or PcnaK164R/K164R) or extension (Rev7 -/-) result in a > 150-fold reduction in the number of primordial germ cells (PGCs) and complete sterility. In contrast, the absence of TLS does not impact the growth, function, or homeostasis of somatic tissues. Surprisingly, we find a complete failure in both activation of the germ cell transcriptional program and in DNA demethylation, a critical step in germline epigenetic reprogramming. Our findings show that for normal fertility, DNA repair is required not only for meiotic recombination but for progression through the earliest stages of germ cell development in mammals.


Assuntos
Desmetilação do DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA , Células Germinativas , Animais , Humanos , Camundongos , Células Germinativas/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Masculino , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Feminino , Dano ao DNA , Camundongos Knockout , Meiose/genética , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Epigênese Genética , Síntese de DNA Translesão
8.
Chromosome Res ; 32(2): 7, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702576

RESUMO

Species frequently differ in the number and structure of chromosomes they harbor, but individuals that are heterozygous for chromosomal rearrangements may suffer from reduced fitness. Chromosomal rearrangements like fissions and fusions can hence serve as a mechanism for speciation between incipient lineages, but their evolution poses a paradox. How can rearrangements get fixed between populations if heterozygotes have reduced fitness? One solution is that this process predominantly occurs in small and isolated populations, where genetic drift can override natural selection. However, fixation is also more likely if a novel rearrangement is favored by a transmission bias, such as meiotic drive. Here, we investigate chromosomal transmission distortion in hybrids between two wood white (Leptidea sinapis) butterfly populations with extensive karyotype differences. Using data from two different crossing experiments, we uncover that there is a transmission bias favoring the ancestral chromosomal state for derived fusions, a result that shows that chromosome fusions actually can fix in populations despite being counteracted by meiotic drive. This means that meiotic drive not only can promote runaway chromosome number evolution and speciation, but also that it can be a conservative force acting against karyotypic change and the evolution of reproductive isolation. Based on our results, we suggest a mechanistic model for why chromosome fusion mutations may be opposed by meiotic drive and discuss factors contributing to karyotype evolution in Lepidoptera.


Assuntos
Borboletas , Meiose , Animais , Borboletas/genética , Meiose/genética , Hibridização Genética , Cariótipo , Cromossomos de Insetos/genética , Feminino , Masculino
9.
Proc Natl Acad Sci U S A ; 121(21): e2402285121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739785

RESUMO

Reproductive phasiRNAs (phased, small interfering RNAs) are broadly present in angiosperms and play crucial roles in sustaining male fertility. While the premeiotic 21-nt (nucleotides) phasiRNAs and meiotic 24-nt phasiRNA pathways have been extensively studied in maize (Zea mays) and rice (Oryza sativa), a third putative category of reproductive phasiRNAs-named premeiotic 24-nt phasiRNAs-have recently been reported in barley (Hordeum vulgare) and wheat (Triticum aestivum). To determine whether premeiotic 24-nt phasiRNAs are also present in maize and related species and begin to characterize their biogenesis and function, we performed a comparative transcriptome and degradome analysis of premeiotic and meiotic anthers from five maize inbred lines and three teosinte species/subspecies. Our data indicate that a substantial subset of the 24-nt phasiRNA loci in maize and teosinte are already highly expressed at the premeiotic phase. The premeiotic 24-nt phasiRNAs are similar to meiotic 24-nt phasiRNAs in genomic origin and dependence on DCL5 (Dicer-like 5) for biogenesis, however, premeiotic 24-nt phasiRNAs are unique in that they are likely i) not triggered by microRNAs, ii) not loaded by AGO18 proteins, and iii) not capable of mediating PHAS precursor cleavage. In addition, we also observed a group of premeiotic 24-nt phasiRNAs in rice using previously published data. Together, our results indicate that the premeiotic 24-nt phasiRNAs constitute a unique class of reproductive phasiRNAs and are present more broadly in the grass family (Poaceae) than previously known.


Assuntos
Meiose , RNA de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Meiose/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcriptoma , Oryza/genética , Oryza/metabolismo
10.
Elife ; 122024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629825

RESUMO

Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/metabolismo , Centrômero/metabolismo , Cinetocoros/metabolismo , Meiose , Plantas/genética , Resposta ao Choque Térmico , Segregação de Cromossomos
11.
Nat Commun ; 15(1): 2941, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580643

RESUMO

Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We uncover in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms. Both IHO1 phosphorylation and formation of axial IHO1 platforms are diminished by chemical inhibition of DBF4-dependent kinase (DDK), suggesting that DDK contributes to the control of the axial DSB-machinery. Furthermore, we show that axial IHO1 platforms are based on an interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.


Assuntos
Proteínas de Ciclo Celular , Quebras de DNA de Cadeia Dupla , Camundongos , Animais , Proteínas de Ciclo Celular/metabolismo , DNA , Meiose/genética , Complexo Sinaptonêmico/metabolismo , Recombinação Genética , Recombinação Homóloga
12.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612384

RESUMO

3-methyl-4-nitrophenol (PNMC), a well-known constituent of diesel exhaust particles and degradation products of insecticide fenitrothion, is a widely distributed environmental contaminant. PNMC is toxic to the female reproductive system; however, how it affects meiosis progression in oocytes is unknown. In this study, in vitro maturation of mouse oocytes was applied to investigate the deleterious effects of PNMC. We found that exposure to PNMC significantly compromised oocyte maturation. PNMC disturbed the spindle stability; specifically, it decreased the spindle density and increased the spindle length. The weakened spindle pole location of microtubule-severing enzyme Fignl1 may result in a defective spindle apparatus in PNMC-exposed oocytes. PNMC exposure induced significant mitochondrial dysfunction, including mitochondria distribution, ATP production, mitochondrial membrane potential, and ROS accumulation. The mRNA levels of the mitochondria-related genes were also significantly impaired. Finally, the above-mentioned alterations triggered early apoptosis in the oocytes. In conclusion, PNMC exposure affected oocyte maturation and quality through the regulation of spindle stability and mitochondrial function.


Assuntos
Doenças Mitocondriais , Oócitos , Feminino , Animais , Camundongos , Cresóis , DNA Mitocondrial , Meiose
13.
Semin Cell Dev Biol ; 163: 14-21, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38664120

RESUMO

Chromosomal regions with meiotic drivers exhibit biased transmission (> 50 %) over their competing homologous chromosomal region. These regions often have two prominent genetic features: suppressed meiotic crossing over and rapidly evolving multicopy gene families. Heteromorphic sex chromosomes (e.g., XY) often share these two genetic features with chromosomal regions exhibiting meiotic drive. Here, we discuss parallels between meiotic drive and sex chromosome evolution, how the divergence of heteromorphic sex chromosomes can be influenced by meiotic drive, experimental approaches to study meiotic drive on sex chromosomes, and meiotic drive in traditional and non-traditional model organisms with high-quality genome assemblies. The newly available diversity of high-quality sex chromosome sequences allows us to revisit conventional models of sex chromosome evolution through the lens of meiotic drive.


Assuntos
Evolução Molecular , Meiose , Cromossomos Sexuais , Meiose/genética , Cromossomos Sexuais/genética , Animais , Humanos
14.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674111

RESUMO

Coatomer Protein Complex-II (COPII) mediates anterograde vesicle transport from the endoplasmic reticulum (ER) to the Golgi apparatus. Here, we report that the COPII coatomer complex is constructed dependent on a small GTPase, Sar1, in spermatocytes before and during Drosophila male meiosis. COPII-containing foci co-localized with transitional endoplasmic reticulum (tER)-Golgi units. They showed dynamic distribution along astral microtubules and accumulated around the spindle pole, but they were not localized on the cleavage furrow (CF) sites. The depletion of the four COPII coatomer subunits, Sec16, or Sar1 that regulate COPII assembly resulted in multinucleated cell production after meiosis, suggesting that cytokinesis failed in both or either of the meiotic divisions. Although contractile actomyosin and anilloseptin rings were formed once plasma membrane ingression was initiated, they were frequently removed from the plasma membrane during furrowing. We explored the factors conveyed toward the CF sites in the membrane via COPII-mediated vesicles. DE-cadherin-containing vesicles were formed depending on Sar1 and were accumulated in the cleavage sites. Furthermore, COPII depletion inhibited de novo plasma membrane insertion. These findings suggest that COPII vesicles supply the factors essential for the anchoring and/or constriction of the contractile rings at cleavage sites during male meiosis in Drosophila.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Citocinese , Proteínas de Drosophila , Meiose , Proteínas de Transporte Vesicular , Animais , Masculino , Caderinas/metabolismo , Membrana Celular/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Citocinese/fisiologia , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Meiose/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Espermatócitos/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
15.
Ageing Res Rev ; 97: 102292, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582380

RESUMO

Age-related aneuploidy in human oocytes is a major factor contributing to decreased fertility and adverse reproductive outcomes. As females age, their oocytes are more prone to meiotic chromosome segregation errors, leading primarily to aneuploidy. Elevated aneuploidy rates have also been observed in oocytes from very young, prepubertal conceptions. A key barrier to developing effective treatments for age-related oocyte aneuploidy is our incomplete understanding of the molecular mechanisms involved. The challenge is becoming increasingly critical as more people choose to delay childbearing, a trend that has significant societal implications. In this review, we summarize current knowledge regarding the process of oocyte meiosis and folliculogenesis, highlighting the relationship between age and chromosomal aberrations in oocytes and embryos, and integrate proposed mechanisms of age-related meiotic disturbances across structural, protein, and genomic levels. Our goal is to spur new research directions and therapeutic avenues.


Assuntos
Aneuploidia , Idade Materna , Oócitos , Humanos , Oócitos/fisiologia , Feminino , Meiose/genética , Animais , Reprodução/genética , Reprodução/fisiologia
16.
Curr Biol ; 34(10): 2085-2093.e6, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38670094

RESUMO

Proper chromosome segregation in meiosis I relies on the formation of connections between homologous chromosomes. Crossovers between homologs provide a connection that allows them to attach correctly to the meiosis I spindle. Tension is transmitted across the crossover when the partners attach to microtubules from opposing poles of the spindle. Tension stabilizes microtubule attachments that will pull the partners toward opposite poles at anaphase. Paradoxically, in many organisms, non-crossover partners segregate correctly. The mechanism by which non-crossover partners become bioriented on the meiotic spindle is unknown. Both crossover and non-crossover partners pair their centromeres early in meiosis (prophase). In budding yeast, centromere pairing is correlated with subsequent correct segregation of the partners. The mechanism by which centromere pairing, in prophase, promotes later correct attachment of the partners to the metaphase spindle is unknown. We used live cell imaging to track the biorientation process of non-crossover chromosomes. We find that centromere pairing allows the establishment of connections between the partners that allows their later interdependent attachment to the meiotic spindle using tension-sensing biorientation machinery. Because all chromosome pairs experience centromere pairing, our findings suggest that crossover chromosomes also utilize this mechanism to achieve maximal segregation fidelity.


Assuntos
Centrômero , Segregação de Cromossomos , Meiose , Saccharomyces cerevisiae , Centrômero/metabolismo , Segregação de Cromossomos/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/metabolismo , Fuso Acromático/fisiologia , Pareamento Cromossômico , Cromossomos Fúngicos/genética , Microtúbulos/metabolismo
17.
Ecotoxicol Environ Saf ; 276: 116312, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608383

RESUMO

The use of bisphenol A (BPA) has been restricted due to its endocrine-disrupting effects. As a widely used alternative to BPA today, environmental levels of bisphenol Z (BPZ) continue to rise and accumulate in humans. Oocyte quality is critical for a successful pregnancy. Nevertheless, the toxic impacts of BPZ on the maturation of mammalian oocytes remain unexplored. Therefore, the impacts of BPZ and BPA on oocyte meiotic maturation were compared in an in vitro mouse oocyte culture model. Exposure to 150 µM of both BPZ and BPA disrupted the assembly of the meiotic spindle and the alignment of chromosomes, and BPZ exerted stronger toxicological effects than BPA. Furthermore, BPZ resulted in aberrant expression of F-actin, preventing the formation of the actin cap. Mechanistically, BPZ exposure disrupted the mitochondrial localization pattern, reduced mitochondrial membrane potential and ATP content, leading to impaired mitochondrial function. Further studies revealed that BPZ exposure resulted in oxidative stress and altered expression of genes associated with anti-oxidative stress. Moreover, BPZ induced severe DNA damage and triggered early apoptosis in oocytes, accompanied by impaired lysosomal function. Overall, the data in this study suggest that BPZ is not a safe alternative to BPA. BPZ can trigger early apoptosis by affecting mitochondrial function and causing oxidative stress and DNA damage in oocytes. These processes disrupt cytoskeletal assembly, arrest the cell cycle, and ultimately inhibit oocyte meiotic maturation.


Assuntos
Compostos Benzidrílicos , Dano ao DNA , Disruptores Endócrinos , Meiose , Mitocôndrias , Oócitos , Estresse Oxidativo , Fenóis , Animais , Fenóis/toxicidade , Oócitos/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Meiose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Feminino , Disruptores Endócrinos/toxicidade , Apoptose/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Actinas/metabolismo
18.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575358

RESUMO

For establishing sister chromatid cohesion and proper chromosome segregation in mitosis in fission yeast, the acetyltransferase Eso1 plays a key role. Eso1 acetylates cohesin complexes, at two conserved lysine residues K105 and K106 of the cohesin subunit Psm3. Although Eso1 also contributes to reductional chromosome segregation in meiosis, the underlying molecular mechanisms have remained elusive. Here, we purified meiosis-specific Rec8 cohesin complexes localized at centromeres and identified a new acetylation at Psm3-K1013, which largely depends on the meiotic kinetochore factor meikin (Moa1). Our molecular genetic analyses indicate that Psm3-K1013 acetylation cooperates with canonical acetylation at Psm3-K105 and K106, and plays a crucial role in establishing reductional chromosome segregation in meiosis.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Coesinas , Segregação de Cromossomos/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Acetilação , Meiose/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
19.
Cell Mol Life Sci ; 81(1): 168, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587639

RESUMO

Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.


Assuntos
Cinesinas , Oócitos , Animais , Camundongos , Transporte Biológico , Cinesinas/genética , Meiose , Metáfase
20.
Sci Rep ; 14(1): 9550, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664461

RESUMO

DNA double-strand breaks (DSBs) activate DNA damage responses (DDRs) in both mitotic and meiotic cells. A single-stranded DNA (ssDNA) binding protein, Replication protein-A (RPA) binds to the ssDNA formed at DSBs to activate ATR/Mec1 kinase for the response. Meiotic DSBs induce homologous recombination monitored by a meiotic DDR called the recombination checkpoint that blocks the pachytene exit in meiotic prophase I. In this study, we further characterized the essential role of RPA in the maintenance of the recombination checkpoint during Saccharomyces cerevisiae meiosis. The depletion of an RPA subunit, Rfa1, in a recombination-defective dmc1 mutant, fully alleviates the pachytene arrest with the persistent unrepaired DSBs. RPA depletion decreases the activity of a meiosis-specific CHK2 homolog, Mek1 kinase, which in turn activates the Ndt80 transcriptional regulator for pachytene exit. These support the idea that RPA is a sensor of ssDNAs for the activation of meiotic DDR. Rfa1 depletion also accelerates the prophase I delay in the zip1 mutant defective in both chromosome synapsis and the recombination, consistent with the notion that the accumulation of ssDNAs rather than defective synapsis triggers prophase I delay in the zip1 mutant.


Assuntos
Quebras de DNA de Cadeia Dupla , Meiose , Proteína de Replicação A , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Recombinação Genética , Recombinação Homóloga , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 1/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA