Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.491
Filtrar
1.
Lipids Health Dis ; 23(1): 138, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734619

RESUMO

BACKGROUND: Skin barrier alterations play a crucial function in melasma development. Past researches have demonstrated variations in lipid content between the epidermis of melasma lesions and normal tissues, along with the varied expression of lipid-related genes in melasma. This study aimed to analyze the lipidome profiles of skin surface lipids (SSL) in patients with melasma before and after treatment to understand associated abnormalities. METHODS: Melasma was treated with tranexamic acid orally and hydroquinone cream topically. Disease was assessed using the Melasma Area and Severity Index (MASI), and the impact to life was evaluated with Melasma Quality of Life (MELASQoL) score. Epidermal melanin particles were observed using reflection confocal microscopy (RCM), whereas epidermal pigment and blood vessel morphology were observed using dermoscopy, and SSL samples were collected. Specific information regarding alterations in lipid composition was obtained through multivariate analysis of the liquid chromatography-mass spectrometry data. RESULTS: After treatment, patients with melasma exhibited decreased MASI and MELASQoL scores (P < 0.001); RCM revealed reduced melanin content in the lesions, and dermoscopy revealed fewer blood vessels. Fifteen lipid subclasses and 382 lipid molecules were identified using lipidomic assays. The expression levels of total lipids, phosphatidylcholine, and phosphatidylethanolamine in the melasma lesions decreased after treatment (P < 0.05). CONCLUSION: This study revealed alterations in the SSL composition after effective melasma treatment, suggesting a compensatory role for lipids in melasma barrier function. The mechanism involving SSL and the lipid barrier, which influences melasma's occurrence, needs further elucidation.


Assuntos
Hidroquinonas , Lipidômica , Melanose , Qualidade de Vida , Humanos , Melanose/tratamento farmacológico , Feminino , Adulto , Hidroquinonas/uso terapêutico , Hidroquinonas/administração & dosagem , Ácido Tranexâmico/uso terapêutico , Pessoa de Meia-Idade , Melaninas/metabolismo , Masculino , Lipídeos/sangue , Lipídeos/análise , Epiderme/metabolismo , Epiderme/efeitos dos fármacos , Epiderme/patologia , Fosfatidiletanolaminas/metabolismo , Fosfatidilcolinas/metabolismo , Pele/patologia , Pele/efeitos dos fármacos , Pele/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos
2.
Sci Rep ; 14(1): 10621, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729969

RESUMO

Asymptomatic Leucine-Rich Repeat Kinase 2 Gene (LRRK2) carriers are at risk for developing Parkinson's disease (PD). We studied presymptomatic substantia nigra pars compacta (SNc) regional neurodegeneration in asymptomatic LRRK2 carriers compared to idiopathic PD patients using neuromelanin-sensitive MRI technique (NM-MRI). Fifteen asymptomatic LRRK2 carriers, 22 idiopathic PD patients, and 30 healthy controls (HCs) were scanned using NM-MRI. We computed volume and contrast-to-noise ratio (CNR) derived from the whole SNc and the sensorimotor, associative, and limbic SNc regions. An analysis of covariance was performed to explore the differences of whole and regional NM-MRI values among the groups while controlling the effect of age and sex. In whole SNc, LRRK2 had significantly lower CNR than HCs but non-significantly higher volume and CNR than PD patients, and PD patients significantly lower volume and CNR compared to HCs. Inside SNc regions, there were significant group effects for CNR in all regions and for volumes in the associative region, with a trend in the sensorimotor region but no significant changes in the limbic region. PD had reduced volume and CNR in all regions compared to HCs. Asymptomatic LRRK2 carriers showed globally decreased SNc volume and CNR suggesting early nigral neurodegeneration in these subjects at risk of developing PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Imageamento por Ressonância Magnética , Melaninas , Doença de Parkinson , Substância Negra , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Melaninas/metabolismo , Imageamento por Ressonância Magnética/métodos , Doença de Parkinson/genética , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Doença de Parkinson/metabolismo , Substância Negra/diagnóstico por imagem , Substância Negra/patologia , Substância Negra/metabolismo , Idoso , Heterozigoto , Adulto , Estudos de Casos e Controles
3.
J Photochem Photobiol B ; 255: 112925, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703451

RESUMO

Visible light triggers free radical production in alive and intact Drosophila melanogaster. We exposed fruit flies to red (613-631 nm), green (515-535 nm), and blue (455-475 nm) light while we monitored changes in unpaired electron content with an electron spin resonance spectrometer (ESR/EPR). The immediate response to light is a rapid increase in spin content lasting approximately 10 s followed by a slower, linear increase for approximately 170 s. When the light is turned off, the spin population promptly decays with a similar time course, though never fully returning to baseline. The magnitude and time course of the spin production depends on the wavelength of the light. Initially, we surmised that eumelanin might be responsible for the spin change because of its documented ability for visible light absorption and its highly stable free radical content. To explore this, we utilized different fruit fly strains with varying eumelanin content and clarified the relation of melanin types with the spin response. Our findings revealed that flies with darker cuticle have at least three-fold more unpaired electrons than flies with yellow cuticle. However, to our surprise, the increase in unpaired electron population by light was not drastically different amongst the genotypes. This suggests that light-induced free radical production may not exclusively rely on the presence of black melanin, but may instead be dependent on light effects on quinone-based cuticular polymers.


Assuntos
Drosophila melanogaster , Luz , Melaninas , Animais , Radicais Livres/química , Drosophila melanogaster/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Melaninas/química , Melaninas/metabolismo , Melaninas/biossíntese
4.
Front Cell Infect Microbiol ; 14: 1369301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774630

RESUMO

Dual-specificity LAMMER kinases are highly evolutionarily conserved in eukaryotes and play pivotal roles in diverse physiological processes, such as growth, differentiation, and stress responses. Although the functions of LAMMER kinase in fungal pathogens in pathogenicity and stress responses have been characterized, its role in Cryptococcus neoformans, a human fungal pathogen and a model yeast of basidiomycetes, remains elusive. In this study, we identified a LKH1 homologous gene and constructed a strain with a deleted LKH1 and a complemented strain. Similar to other fungi, the lkh1Δ mutant showed intrinsic growth defects. We observed that C. neoformans Lkh1 was involved in diverse stress responses, including oxidative stress and cell wall stress. Particularly, Lkh1 regulates DNA damage responses in Rad53-dependent and -independent manners. Furthermore, the absence of LKH1 reduced basidiospore formation. Our observations indicate that Lkh1 becomes hyperphosphorylated upon treatment with rapamycin, a TOR protein inhibitor. Notably, LKH1 deletion led to defects in melanin synthesis and capsule formation. Furthermore, we found that the deletion of LKH1 led to the avirulence of C. neoformans in a systemic cryptococcosis murine model. Taken together, Lkh1 is required for the stress response, sexual differentiation, and virulence of C. neoformans.


Assuntos
Criptococose , Cryptococcus neoformans , Melaninas , Estresse Oxidativo , Estresse Fisiológico , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/genética , Cryptococcus neoformans/enzimologia , Virulência , Animais , Criptococose/microbiologia , Camundongos , Melaninas/metabolismo , Modelos Animais de Doenças , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Fosforilação , Dano ao DNA , Parede Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Cápsulas Fúngicas/metabolismo , Cápsulas Fúngicas/genética , Sirolimo/farmacologia , Camundongos Endogâmicos BALB C , Feminino , Esporos Fúngicos/crescimento & desenvolvimento
5.
Biomed Mater ; 19(4)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38729172

RESUMO

The sensitivity and diagnostic accuracy of magnetic resonance imaging mainly depend on the relaxation capacity of contrast agents (CAs) and their accumulated amount at the pathological region. Due to the better biocompatibility and high-spin capacity, Fe-complexes have been studied widely as an alternative to replace popular Gd-based CAs associated with potential biotoxicity. Compared with a variety of Fe complex-based CAs, such as small molecular, macrocyclic, multinuclear complexes, the form of nanoparticle exhibits outstanding longitudinal relaxation, but the clinical transformation was still limited by the inconspicuous difference of contrast between tumor and normal tissue. The enhanced effect of contrast is a positive relation as relaxation of CAs and their concentration in desired region. To specifically improve the amount of CAs accumulated in the tumor, pH-responsive polymer poly(2-ethyl-2-oxazoline) (PEOz) was modified on melanin, a ubiquitous natural pigment providing much active sites for chelating with Fe(III). The Fe(III)-Mel-PEOz we prepared could raise the tumor cell endocytosis efficiency via switching surface charge from anion to cation with the stimuli of the decreasing pH of tumor microenvironment. The change of pH has negligible effect on ther1of Fe(III)-Mel-PEOz, which is always maintained at around 1.0 mM-1s-1at 0.5 T. Moreover, Fe(III)-Mel-PEOz exhibited low cytotoxicity, and satisfactory enhancement of positive contrast effectin vivo. The excellent biocompatibility and stable relaxation demonstrate the high potential of Fe(III)-Mel-PEOz in the diagnosis of tumor.


Assuntos
Materiais Biocompatíveis , Meios de Contraste , Ferro , Imageamento por Ressonância Magnética , Melaninas , Melaninas/química , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química , Animais , Materiais Biocompatíveis/química , Humanos , Ferro/química , Camundongos , Linhagem Celular Tumoral , Poliaminas/química , Nanopartículas/química , Microambiente Tumoral
6.
Exp Dermatol ; 33(5): e15101, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770555

RESUMO

Skin hyperpigmentation is mainly caused by excessive synthesis of melanin; however, there is still no safe and effective therapy for its removal. Here, we found that the dermal freezer was able to improve UVB-induced hyperpigmentation of guinea pigs without causing obvious epidermal damage. We also mimic freezing stimulation at the cellular level by rapid freezing and observed that freezing treatments <2.5 min could not decrease cell viability or induce cell apoptosis in B16F10 and Melan-A cells. Critically, melanin content and tyrosinase activity in two cells were greatly reduced after freezing treatments. The dramatic decrease in tyrosinase activity was associated with the downregulation of MITF, TYR, TRP-1 and TRP-2 protein expression in response to freezing treatments for two cells. Furthermore, our results first demonstrated that freezing treatments significantly reduced the levels of p-GSK3ß and ß-catenin and the nuclear accumulation of ß-catenin in B16F10 and Melan-A cells. Together, these data suggest that fast freezing treatments can inhibit melanogenesis-related gene expression in melanocytes by regulating the Wnt/ß-catenin signalling pathway. The inhibition of melanin production eventually contributed to the improvement in skin hyperpigmentation induced by UVB. Therefore, fast freezing treatments may be a new alternative of skin whitening in the clinic in the future.


Assuntos
Congelamento , Hiperpigmentação , Melaninas , Melanócitos , Monofenol Mono-Oxigenase , Raios Ultravioleta , Via de Sinalização Wnt , beta Catenina , Animais , Melaninas/biossíntese , Melaninas/metabolismo , Melanócitos/metabolismo , Camundongos , Hiperpigmentação/metabolismo , beta Catenina/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Cobaias , Fator de Transcrição Associado à Microftalmia/metabolismo , Sobrevivência Celular , Oxirredutases Intramoleculares/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Apoptose , Oxirredutases/metabolismo , Interferon Tipo I , Proteínas da Gravidez
7.
Methods Mol Biol ; 2775: 257-268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758323

RESUMO

Melanin is a complex dark pigment synthetized by the phenoloxidase enzyme laccase in Cryptococcus neoformans. In vitro, this enzyme oxidizes exogenous catecholamines to produce melanin that may be secreted or incorporated into the fungal cell wall. This pigment has multiple roles in C. neoformans virulence during its interaction with different hosts and probably also in protecting fungal cells in the environment against predation and oxidative and radiation stresses, among others. However, it is important to note that laccase also has melanin-independent roles in C. neoformans interactions with host cells. In this chapter, we describe a quantitative laccase assay and a method for evaluating the kinetics of melanin production in C. neoformans colonies.


Assuntos
Cryptococcus neoformans , Lacase , Melaninas , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/enzimologia , Lacase/metabolismo , Melaninas/biossíntese , Melaninas/metabolismo , Ensaios Enzimáticos/métodos
8.
J Nucl Med ; 65(Suppl 1): 19S-28S, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719238

RESUMO

Melanin is one of the representative biomarkers of malignant melanoma and a potential target for diagnosis and therapy. With advancements in chemistry and radiolabeling technologies, promising strides have been made to synthesize radiolabeled melanin-binding molecules for various applications. We present an overview of melanin-targeted radiolabeled molecules and compare their features reported in preclinical studies. Clinical practice and trials are also discussed to elaborate on the safety and validity of the probes, and expanded applications beyond melanoma are reviewed. Melanin-targeted imaging holds potential value in the diagnosis, staging, and prognostic assessment of melanoma and other applications. Melanin-targeted radionuclide therapy possesses immense potential but requires more clinical validation. Furthermore, an intriguing avenue for future research involves expanding the application scope of melanin-targeted probes and exploring their value.


Assuntos
Melaninas , Pesquisa Translacional Biomédica , Humanos , Melaninas/metabolismo , Animais , Traçadores Radioativos , Melanoma/diagnóstico por imagem , Melanoma/metabolismo , Compostos Radiofarmacêuticos
9.
Exp Dermatol ; 33(5): e15094, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742793

RESUMO

Melasma is a common condition of hyperpigmented facial skin. Picosecond lasers are reported to be effective for the treatment of melasma. We aimed to identify the most effective therapeutic mode and elucidate the potential molecular mechanisms of picosecond lasers for the treatment of melasma. Female Kunming mice with melasma-like conditions were treated using four different picosecond laser modes. Concurrently, in vitro experiments were conducted to assess changes in melanin and autophagy in mouse melanoma B16-F10 cells treated with these laser modes. Changes in melanin in mouse skin were detected via Fontana-Masson staining, and melanin particles were evaluated in B16-F10 cells. Real-time polymerase chain reaction and western blotting were used to analyse the expression levels of melanosome and autophagy-related messenger ribonucleic acid (mRNA) and proteins. A combination of large-spot low-fluence 1064-nm and fractional 1064-nm picosecond lasers resulted insignificant decreases in melanin as well as in mRNA and protein expression of melanin-synthesizing enzymes (TYR, TRP-1 and MITF). This combination also led to increased expression of the autophagy-related proteins, Beclin1 and ATG5, with a marked decrease in p62 expression. Intervention with the PI3K activator, 740 Y-P, increased TYR, TRP-1, MITF, p-PI3K, p-AKT, p-mTOR and p62 expression but decreased the expression of LC3, ATG5 and Beclin1. A combination of large-spot low-fluence 1064-nm and fractional 1064-nm picosecond lasers proved more effective and safer. It inhibits melanin production, downregulates the PI3K/AKT/mTOR pathway, enhances melanocyte autophagy and accelerates melanin metabolism, thereby reducing melanin content.


Assuntos
Autofagia , Melaninas , Melanose , Melanossomas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Melanose/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Feminino , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Melaninas/metabolismo , Melanossomas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Terapia com Luz de Baixa Intensidade , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/radioterapia
10.
Exp Dermatol ; 33(5): e15093, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742821

RESUMO

Senile skin hyperpigmentation displays remarkable histopathological features of dermal aging. The crosstalk between melanocytes and dermal fibroblasts plays crucial roles in aging-related pigmentation. While senescent fibroblasts can upregulate pro-melanogenic factors, the role of anti-melanogenic factors, such as dickkopf1 (DKK1), and the upstream regulatory mechanism during aging remain obscure. This study investigated the roles of yes-associated protein (YAP) and DKK1 in the regulation of dermal fibroblast senescence and melanogenesis. Our findings demonstrated decreased YAP activity and DKK1 levels in intrinsic and extrinsic senescent fibroblasts. YAP depletion induced fibroblast senescence and downregulated the expression and secretion of DKK1, whereas YAP overexpression partially reversed the effect. The transcriptional regulation of DKK1 by YAP was supported by dual-luciferase reporter and chromatin immunoprecipitation assays. Moreover, YAP depletion in fibroblasts upregulated Wnt/ß-catenin in melanocytes and stimulated melanogenesis, which was partially rescued by the re-supplementation of DKK1. Conversely, overexpression of YAP in senescent fibroblasts decreased Wnt/ß-catenin levels in melanocytes and inhibited melanogenesis. Additionally, reduced levels of YAP and DKK1 were verified in the dermis of solar lentigines. These findings suggest that, during skin aging, epidermal pigmentation may be influenced by YAP in the dermal microenvironment via the paracrine effect of DKK1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Senescência Celular , Fibroblastos , Peptídeos e Proteínas de Sinalização Intercelular , Melaninas , Melanócitos , Comunicação Parácrina , Envelhecimento da Pele , Fatores de Transcrição , Proteínas de Sinalização YAP , Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Humanos , Melanócitos/metabolismo , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Melaninas/metabolismo , Melaninas/biossíntese , Via de Sinalização Wnt , Derme/citologia , Células Cultivadas , Melanogênese
11.
Biol Sex Differ ; 15(1): 33, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570844

RESUMO

Recent preclinical research exploring how neuropeptide transmitter systems regulate motivated behavior reveal the increasing importance of sex as a critical biological variable. Neuropeptide systems and their central circuits both contribute to sex differences in a range of motivated behaviors and regulate sex-specific behaviors. In this short review, we explore the current research of how sex as a biological variable influences several distinct motivated behaviors that are modulated by the melanin-concentrating hormone (MCH) neuropeptide system. First, we review how MCH regulates feeding behavior within the context of energy homeostasis differently between male and female rodents. Then, we focus on MCH's role in lactation as a sex-specific process within the context of energy homeostasis. Next, we discuss the sex-specific effects of MCH on maternal behavior. Finally, we summarize the role of MCH in drug-motivated behaviors. While these topics are traditionally investigated from different scientific perspectives, in this short review we discuss how these behaviors share commonalities within the larger context of motivated behaviors, and that sex differences discovered in one area of research may impact our understanding in another. Overall, our review highlights the need for further research into how sex differences in energy regulation associated with reproduction and parental care contribute to regulating motivated behaviors.


Assuntos
Hormônios Hipotalâmicos , Melaninas , Neuropeptídeos , Feminino , Masculino , Animais , Caracteres Sexuais , Hormônios Hipotalâmicos/farmacologia , Hormônios Hipotalâmicos/fisiologia , Hormônios Hipofisários/farmacologia , Hormônios Hipofisários/fisiologia
12.
Exp Dermatol ; 33(4): e15069, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568090

RESUMO

Topicals and chemical peels are the standard of care for management of facial hyperpigmentation. However, traditional therapies have come under recent scrutiny, such as topical hydroquinone (HQ) has some regulatory restrictions, and high concentration trichloroacetic acid (TCA) peel pose a risk in patients with skin of colour. The objective of our research was to identify, investigate and elucidate the mechanism of action of a novel TCA- and HQ-free professional-use chemical peel to manage common types of facial hyperpigmentation. Using computational modelling and in vitro assays on tyrosinase, we identified proprietary multi-acid synergistic technology (MAST). After a single application on human skin explants, MAST peel was found to be more effective than a commercial HQ peel in inhibiting melanin (histochemical imaging and gene expression). All participants completed the case study (N = 9) without any adverse events. After administration of the MAST peel by a dermatologist, the scoring and VISIA photography reported improvements in hyperpigmentation, texture and erythema, which could be linked to underlying pathophysiological changes in skin after peeling, visualized by non-invasive optical biopsy of face. Using reflectance confocal microscopy (VivaScope®) and multiphoton tomography (MPTflex™), we observed reduction in melanin, increase in metabolic activity of keratinocytes, and no signs of inflammatory cells after peeling. Subsequent swabbing of the cheek skin found no microbiota dysbiosis resulting from the chemical peel. The strong efficacy with minimum downtime and no adverse events could be linked to the synergistic action of the ingredients in the novel HQ- and TCA-free professional peel technology.


Assuntos
Hidroquinonas , Hiperpigmentação , Melaninas , Humanos , Hiperpigmentação/tratamento farmacológico , Pele , Biologia Computacional , Biópsia
13.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611771

RESUMO

To explore the composition of anthocyanins and expand their biological activities, anthocyanins were systematically isolated and purified from tubers of Solanum tuberosum L., and their tyrosinase inhibitory activity was investigated. In this study, two new anthocyanin degradation compounds, norpetanin (9) and 4-O-(p-coumaryl) rhamnose (10), along with 17 known anthocyanins and their derivatives, were isolated and purified from an acid-ethanolic extract of fresh purple potato tubers. Their structures were elucidated via 1D and 2D NMR and HR-ESI-MS and compared with those reported in the literature. The extracts were evaluated for anthocyanins and their derivatives using a tyrosinase inhibitor screening kit and molecular docking technology, and the results showed that petanin, norpetanin, 4-O-(p-coumaryl) rhamnose, and lyciruthephenylpropanoid D/E possessed tyrosinase inhibitory activity, with 50% inhibiting concentration (IC50) values of 122.37 ± 8.03, 115.53 ± 7.51, 335.03 ± 12.99, and 156.27 ± 11.22 µM (Mean ± SEM, n = 3), respectively. Furthermore, petanin was validated against melanogenesis in zebrafish; it was found that it could significantly inhibit melanin pigmentation (p < 0.001), and the inhibition rate of melanin was 17% compared with the normal group. This finding may provide potential treatments for diseases with abnormal melanin production, and high-quality raw materials for whitening cosmetics.


Assuntos
Antocianinas , Solanum tuberosum , Animais , Antocianinas/farmacologia , Monofenol Mono-Oxigenase , Melaninas , Simulação de Acoplamento Molecular , Ramnose , Peixe-Zebra
14.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612421

RESUMO

The retinal pigment epithelium (RPE), which ensures the normal functioning of the neural retina, is a pigmented single-cell layer that separates the retina from the Bruch's membrane and the choroid. There are three main types of pigment granules in the RPE cells of the human eye: lipofuscin granules (LG) containing the fluorescent "age pigment" lipofuscin, melanoprotein granules (melanosomes, melanolysosomes) containing the screening pigment melanin and complex melanolipofuscin granules (MLG) containing both types of pigments simultaneously-melanin and lipofuscin. This review examines the functional role of pigment granules in the aging process and in the development of oxidative stress and associated pathologies in RPE cells. The focus is on the process of light-induced oxidative degradation of pigment granules caused by reactive oxygen species. The reasons leading to increased oxidative stress in RPE cells as a result of the oxidative degradation of pigment granules are considered. A mechanism is proposed to explain the phenomenon of age-related decline in melanin content in RPE cells. The essence of the mechanism is that when the lipofuscin part of the melanolipofuscin granule is exposed to light, reactive oxygen species are formed, which destroy the melanin part. As more melanolipofuscin granules are formed with age and the development of degenerative diseases, the melanin in pigmented epithelial cells ultimately disappears.


Assuntos
Melaninas , Epitélio Pigmentado da Retina , Humanos , Lipofuscina , Espécies Reativas de Oxigênio , Retina
15.
BMC Oral Health ; 24(1): 451, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614977

RESUMO

BACKGROUND AND OBJECTIVE: The most frequently seen intra-oral soft tissue is the gingiva. Most often, it is seen as coral-pink tissue that surrounds the neck of the teeth. Gingiva that encircles the tooth necks and covers the alveolar processes of the jaws is an intra-oral tissue that exhibits biomimetic features. The wide range of colors of the gingiva depends on the configuration of gingival vascularity, the degree of epithelial cornification, level of melanogenesis, and the depth of epithelialization. However, the color of the gingiva varies depending on the degree of melanin pigmentation. The current study aimed to identify the different distribution patterns of gingival color and determine the correlation between skin color, gender, and geographical area of origin. MATERIALS AND METHODS: A total of 839 subjects were involved in the study where the gingival color and skin tone were measured using the Dummett-Gupta Oral pigmentation Index (DOPI) combined with VITA VMK MASTER and skin shade method developed by Revlon (USA) and L'Oreal (France) for makeup foundation shades. One investigator was calibrated for the examination of the colors after being tested for normal color vision and color aptitude using the line test. RESULTS: A significant association was found between skin color and gingival pigmentation (χ2 value (6) = 114.48; P = 0.001). It was also found that females (67.1%) significantly had darker gingiva than males (58.3%). The study statistics display that location of the individual was also statistically associated with melanin pigmentation of the gingiva (χ2 value (57) = 559.33; P = 0.001). CONCLUSION: The study concluded that gender, skin color, and individual location are significantly associated with gingival melanin pigmentation.


Assuntos
Doenças da Gengiva , Hiperpigmentação , Feminino , Masculino , Humanos , Gengiva , Melaninas , Pele
16.
Biochem Biophys Res Commun ; 710: 149917, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38604071

RESUMO

Melanin-concentrating hormone (MCH) receptor 1 (MCHR1), a G protein-coupled receptor, is poised for interaction with its ligands on the plasma membrane. Analyses of MCHR1 knockout mice suggest that this receptor could be a therapeutic target for the treatment of appetite disorders, glucose metabolism, psychiatric disorders, and inflammation. Binding of MCH to MCHR1 initiates calcium signaling, which is subsequently attenuated through receptor internalization. However, the ultimate destiny of the receptor post-internalization remains unexplored. In this study, we report the extracellular secretion of MCHR1 via exosomes. The recruitment of MCHR1 to exosomes occurs subsequent to its internalization, which is induced by stimulation with the ligand MCH. Although a highly glycosylated form of MCHR1, potentially representing a mature form, is selectively recruited to exosomes, the MCHR1 transferred into other cells does not exhibit functionality. The truncation of MCHR1 at the C-terminus not only impairs its response to MCH but also hinders its recruitment to exosomes. These findings imply that functional MCHR1 could be secreted extracellularly via exosomes, a process that may represent a mechanism for the termination of intracellular MCHR1 signaling.


Assuntos
Exossomos , Hormônios Hipotalâmicos , Receptores do Hormônio Hipofisário , Humanos , Camundongos , Animais , Exossomos/metabolismo , Receptores do Hormônio Hipofisário/metabolismo , Transdução de Sinais , Camundongos Knockout , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Melaninas/metabolismo
17.
Appl Microbiol Biotechnol ; 108(1): 291, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592509

RESUMO

Melanin is an Aspergillus flavus cell wall component that provides chemical and physical protection to the organism. However, the molecular and biological mechanisms modulating melanin-mediated host-pathogen interaction in A. flavus keratitis are not well understood. This work aimed to compare the morphology, surface proteome profile, and virulence of melanized conidia (MC) and non-melanized conidia (NMC) of A. flavus. Kojic acid treatment inhibited melanin synthesis in A. flavus, and the conidial surface protein profile was significantly different in kojic acid-treated non-melanized conidia. Several cell wall-associated proteins and proteins responsible for oxidative stress, carbohydrate, and chitin metabolic pathways were found only in the formic acid extracts of NMC. Scanning electron microscopy (SEM) analysis showed the conidial surface morphology difference between the NMC and MC, indicating the role of melanin in the structural integrity of the conidial cell wall. The levels of calcofluor white staining efficiency were different, but there was no microscopic morphology difference in lactophenol cotton blue staining between MC and NMC. Evaluation of the virulence of MC and NMC in the Galleria mellonella model showed NMC was less virulent compared to MC. Our findings showed that the integrity of the conidial surface is controlled by the melanin layer. The alteration in the surface protein profile indicated that many surface proteins are masked by the melanin layer, and hence, melanin can modulate the host response by preventing the exposure of fungal proteins to the host immune defense system. The G. mellonella virulence assay also confirmed that the NMC were susceptible to host defense as in other Aspergillus pathogens. KEY POINTS: • l-DOPA melanin production was inhibited in A. flavus isolates by kojic acid, and for the first time, scanning electron microscopy (SEM) analysis revealed morphological differences between MC and NMC of A. flavus strains • Proteome profile of non-melanized conidia showed more conidial surface proteins and these proteins were mainly involved in the virulence, oxidative stress, and metabolism pathways • Non-melanized conidia of A. flavus strains were shown to be less virulent than melanised conidia in an in vivo virulence experiment with the G. melonella model.


Assuntos
Melaninas , Proteínas de Membrana , Aspergillus flavus , Esporos Fúngicos , Proteoma , Virulência
18.
Proc Natl Acad Sci U S A ; 121(16): e2321323121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38607931

RESUMO

Extracellular vesicles (EVs) facilitate the transfer of proteins, lipids, and genetic material between cells and are recognized as an additional mechanism for sustaining intercellular communication. In the epidermis, the communication between melanocytes and keratinocytes is tightly regulated to warrant skin pigmentation. Melanocytes synthesize the melanin pigment in melanosomes that are transported along the dendrites prior to the transfer of melanin pigment to keratinocytes. EVs secreted by keratinocytes modulate pigmentation in melanocytes [(A. Lo Cicero et al., Nat. Commun. 6, 7506 (2015)]. However, whether EVs secreted by keratinocytes contribute to additional processes essential for melanocyte functions remains elusive. Here, we show that keratinocyte EVs enhance the ability of melanocytes to generate dendrites and mature melanosomes and promote their efficient transfer. Further, keratinocyte EVs carrying Rac1 induce important morphological changes, promote dendrite outgrowth, and potentiate melanin transfer to keratinocytes. Hence, in addition to modulating pigmentation, keratinocytes exploit EVs to control melanocyte plasticity and transfer capacity. These data demonstrate that keratinocyte-derived EVs, by regulating melanocyte functions, are major contributors to cutaneous pigmentation and expand our understanding of the mechanism underlying skin pigmentation via a paracrine EV-mediated communication.


Assuntos
Vesículas Extracelulares , Melanossomas , Melaninas , Melanócitos , Queratinócitos
19.
Bull Entomol Res ; 114(2): 271-280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623047

RESUMO

Genes involved in melanin production directly impact insect pigmentation and can affect diverse physiology and behaviours. The role these genes have on sex behaviour, however, is unclear. In the present study, the crucial melanin pigment gene black was functionally characterised in an urban pest, the German cockroach, Blattella germanica. RNAi knockdown of B. germanica black (Bgblack) had no effect on survival, but did result in black pigmentation of the thoraxes, abdomens, heads, wings, legs, antennae, and cerci due to cuticular accumulation of melanin. Sex-specific variation in the pigmentation pattern was apparent, with females exhibiting darker coloration on the abdomen and thorax than males. Bgblack knockdown also resulted in wing deformation and negatively impacted the contact sex pheromone-based courtship behaviour of males. This study provides evidence for black function in multiple aspects of B. germanica biology and opens new avenues of exploration for novel pest control strategies.


Assuntos
Blattellidae , Melaninas , Pigmentação , Animais , Blattellidae/genética , Blattellidae/fisiologia , Masculino , Feminino , Pigmentação/genética , Melaninas/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Comportamento Sexual Animal , Interferência de RNA
20.
Neurosci Biobehav Rev ; 161: 105690, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678736

RESUMO

Dopamine's role in addiction has been extensively studied, revealing disruptions in its functioning throughout all addiction stages. Neuromelanin in the substantia nigra (SN) may reflect dopamine auto-oxidation, and can be quantified using neuromelaninsensitive magnetic resonance imaging (neuromelanin-MRI) in a non-invasive manner.In this pre-registered systematic review, we assess the current body of evidence related to neuromelanin levels in substance use disorders, using both post-mortem and MRI examinations. The systematic search identified 10 relevant articles, primarily focusing on the substantia nigra. An early-stage meta-analysis (n = 6) revealed varied observations ranging from standardized mean differences of -3.55 to +0.62, with a pooled estimate of -0.44 (95 % CI = -1.52, 0.65), but there was insufficient power to detect differences in neuromelanin content among individuals with substance use disorders. Our gap analysis highlights the lack of sufficient replication studies, with existing studies lacking the power to detect a true difference, and a complete lack of neuromelanin studies on certain substances of clinical interest. We provide recommendations for future studies of dopaminergic neurobiology in addictions and related psychiatric comorbidities.


Assuntos
Melaninas , Transtornos Relacionados ao Uso de Substâncias , Humanos , Melaninas/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transtornos Relacionados ao Uso de Substâncias/diagnóstico por imagem , Substância Negra/metabolismo , Substância Negra/diagnóstico por imagem , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA