Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Obesity (Silver Spring) ; 32(6): 1047-1058, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577709

RESUMO

OBJECTIVE: The objective of this meta-analysis was to quantify the overall effects of gene mutations in the leptin-melanocortin pathway on short- and long-term weight loss after bariatric surgery. METHODS: MEDLINE, PubMed, and Embase were searched, and data were analyzed using ReviewManager (RevMan) version 5.4. The datasets were divided into two subgroups based on postoperative time, and the outcome measure was the percentage of total weight loss. Meta-regression analysis was performed, and the outcome was presented as the weighed mean difference of percentage of total weight loss. RESULTS: The results showed that patients with mutations in the leptin-melanocortin pathway experienced 3.03% lower total weight loss after bariatric surgery (mean difference, -3.03; 95% CI: -3.63 to -2.44), mainly reflected in lower long-term postoperative weight loss (mean difference, -3.43; 95% CI: -4.09 to -2.77), whereas mutation carriers exhibited a magnitude of short-term postoperative weight loss that was similar to patients without such mutations (total difference value, -1.13; 95% CI: -2.57 to 0.31). CONCLUSIONS: Mutations in leptin-melanocortin pathway genes reduce long-term weight loss after bariatric surgery, whereas this effect may not be reflected during the period of rapid weight loss within 12 months. These genetic variants increase the difficulties in maintaining patients' long-term weight loss.


Assuntos
Cirurgia Bariátrica , Leptina , Mutação , Redução de Peso , Humanos , Leptina/genética , Leptina/sangue , Redução de Peso/genética , Melanocortinas/genética , Obesidade Mórbida/cirurgia , Obesidade Mórbida/genética , Transdução de Sinais , Obesidade/cirurgia , Obesidade/genética
2.
Sci Rep ; 14(1): 7067, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528040

RESUMO

Mutations leading to a reduced or loss of function in genes of the leptin-melanocortin system confer a risk for monogenic forms of obesity. Yet, gain of function variants in the melanocortin-4-receptor (MC4R) gene predispose to a lower BMI. In individuals with reduced body weight, we thus expected mutations leading to an enhanced function in the respective genes, like leptin (LEP) and MC4R. Therefore, we have Sanger sequenced the coding regions of LEP and MC4R in 462 female patients with anorexia nervosa (AN), and 445 healthy-lean controls. In total, we have observed four and eight variants in LEP and MC4R, respectively. Previous studies showed different functional in vitro effects for the detected frameshift and non-synonymous variants: (1) LEP: reduced/loss of function (p.Val94Met), (2) MC4R: gain of function (p.Val103Ile, p.Ile251Leu), reduced or loss of function (p.Thr112Met, p.Ser127Leu, p.Leu211fsX) and without functional in vitro data (p.Val50Leut). In LEP, the variant p.Val94Met was detected in one patient with AN. For MC4R variants, one patient with AN carried the frameshift variant p.Leu211fsX. One patient with AN was heterozygous for two variants at the MC4R (p.Val103Ile and p.Ser127Leu). All other functionally relevant variants were detected in similar frequencies in patients with AN and lean individuals.


Assuntos
Anorexia Nervosa , Leptina , Receptor Tipo 4 de Melanocortina , Feminino , Humanos , Anorexia Nervosa/genética , Leptina/genética , Melanocortinas/genética , Mutação , Obesidade/genética , Receptor Tipo 4 de Melanocortina/genética
3.
Diabetes Obes Metab ; 26 Suppl 2: 46-63, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504134

RESUMO

Over the past few decades, there has been a global surge in the prevalence of obesity, rendering it a globally recognized epidemic. Contrary to simply being a medical condition, obesity is an intricate disease with a multifactorial aetiology. Understanding the precise cause of obesity remains a challenge; nevertheless, there seems to be a complex interplay among biological, psychosocial and behavioural factors. Studies on the genetic factors of obesity have revealed several pathways in the brain that play a crucial role in food intake regulation. The best characterized pathway, thus far, is the leptin-melanocortin pathway, from which disruptions are responsible for the majority of monogenic obesity disorders. The effectiveness of conservative lifestyle interventions in addressing monogenic obesity has been limited. Therefore, it is crucial to complement the management strategy with pharmacological and surgical options. Emphasis has been placed on developing drugs aimed at replacing the absent signals, with the goal of restoring the pathway. In both monogenic and polygenic forms of obesity, outcomes differ across various interventions, likely due to the multifaceted nature of the disease. This underscores the need to explore alternative therapeutic strategies that can mitigate this heterogeneity. Precision medicine can be regarded as a powerful tool that can address this concern, as it values the understanding of the underlying abnormality triggering the disease and provides a tailored treatment accordingly. This would assist in optimizing outcomes of the current therapeutic approaches and even aid in the development of novel treatments capable of more effectively managing the global obesity epidemic.


Assuntos
Manejo da Obesidade , Humanos , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Medicina de Precisão , Obesidade/epidemiologia , Obesidade/genética , Obesidade/terapia , Leptina/genética , Leptina/metabolismo , Melanocortinas/uso terapêutico , Melanocortinas/genética
4.
World J Pediatr ; 20(1): 26-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37725322

RESUMO

BACKGROUND: Obesity is a multifactorial chronic disease with a high, increasing worldwide prevalence. Genetic causes account for 7% of the cases in children with extreme obesity. DATA SOURCES: This narrative review was conducted by searching for papers published in the PubMed/MEDLINE, Embase and SciELO databases and included 161 articles. The search used the following search terms: "obesity", "obesity and genetics", "leptin", "Prader-Willi syndrome", and "melanocortins". The types of studies included were systematic reviews, clinical trials, prospective cohort studies, cross-sectional and prospective studies, narrative reviews, and case reports. RESULTS: The leptin-melanocortin pathway is primarily responsible for the regulation of appetite and body weight. However, several important aspects of the pathophysiology of obesity remain unknown. Genetic causes of obesity can be grouped into syndromic, monogenic, and polygenic causes and should be assessed in children with extreme obesity before the age of 5 years, hyperphagia, or a family history of extreme obesity. A microarray study, an analysis of the melanocortin type 4 receptor gene mutations and leptin levels should be performed for this purpose. There are three therapeutic levels: lifestyle modifications, pharmacological treatment, and bariatric surgery. CONCLUSIONS: Genetic study technologies are in constant development; however, we are still far from having a personalized approach to genetic causes of obesity. A significant proportion of the affected individuals are associated with genetic causes; however, there are still barriers to its approach, as it continues to be underdiagnosed. Video Abstract (MP4 1041807 KB).


Assuntos
Leptina , Obesidade Mórbida , Criança , Humanos , Pré-Escolar , Leptina/genética , Estudos Prospectivos , Estudos Transversais , Obesidade , Obesidade Mórbida/genética , Melanocortinas/genética
5.
Eur J Pediatr ; 182(11): 4781-4793, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37607976

RESUMO

Obesity represents a major health problem in the pediatric population with an increasing prevalence worldwide, associated with cardiovascular and metabolic disorders, and due to both genetic and environmental factors. Rare forms of obesity are mostly monogenic, and less frequently due to polygenic influence. Polygenic form of obesity is usually the common obesity with single gene variations exerting smaller impact on weight and is commonly non-syndromic.Non-syndromic monogenic obesity is associated with variants in single genes typically related to the hypothalamic leptin-melanocortin signalling pathway, which plays a key role in hunger and satiety regulation, thus body weight control. Patients with these genetic defects usually present with hyperphagia and early-onset severe obesity. Significant progress in genetic diagnostic testing has recently made for early identification of patients with genetic obesity, which guarantees prompt intervention in terms of therapeutic management of the disease. What is Known: • Obesity represents a major health problem among children and adolescents, with an increasing prevalence worldwide, associated with cardiovascular disease and metabolic abnormalities, and it can be due to both genetic and environmental factors. • Non-syndromic monogenic obesity is linked to modifications in single genes usually involved in the hypothalamic leptin-melanocortin signalling pathway, which plays a key role in hunger and satiety regulation. What is New: • The increasing understanding of rare forms of monogenic obesity has provided significant insights into the genetic causes of pediatric obesity, and our current knowledge of the various genes associated with childhood obesity is rapidly expanding. • A useful diagnostic algorithm for early identification of genetic obesity has been proposed, which can ensure a prompt intervention in terms of therapeutic management of the disease and an early prevention of the development of associated metabolic conditions.


Assuntos
Obesidade Infantil , Criança , Adolescente , Humanos , Obesidade Infantil/diagnóstico , Obesidade Infantil/genética , Leptina/genética , Testes Genéticos , Melanocortinas/genética
6.
Biomolecules ; 13(6)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37371543

RESUMO

Tryptophan hydroxylase 2 (TPH2) is the key and rate-limited enzyme of serotonin (5-HT) synthesis in the brain. The C1473G mutation in the Tph2 gene results in a two-fold decrease in enzyme activity in the mouse brain. The lethal yellow (AY) mutation in the Raly-Agouti locus results in the overexpression of the Agouti gene in the brain and causes obesity and depressive-like behavior in mice. Herein, the possible influences of these mutations and their combination on body mass, behavior, brain 5-HT and melanocortin systems in mice of the B6-1473CC/aa. B6-1473CC/AYa, B6-1473GG/aa are investigated. B6-1473GG/AYa genotypes were studied. The 1473G and AY alleles increase the activity of TPH2 and the expression of the Agouti gene, respectively, but they do not alter 5-HT and 5-HIAA levels or the expression of the genes Tph2, Maoa, Slc6a4, Htr1a, Htr2a, Mc3r and Mc4r in the brain. The 1473G allele attenuates weight gain and depressive-like immobility in the forced swim test, while the AY allele increases body weight gain and depressive-like immobility. The combination of these alleles results in hind limb dystonia in the B6-1473GG/AYa mice. This is the first evidence for the interaction between the C1473G and AY mutations.


Assuntos
Encéfalo , Depressão , Melanocortinas , Obesidade , Serotonina , Triptofano Hidroxilase , Animais , Camundongos , Encéfalo/metabolismo , Depressão/etiologia , Depressão/genética , Depressão/metabolismo , Mutação , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Serotonina/genética , Serotonina/metabolismo , Natação , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Melanocortinas/genética , Melanocortinas/metabolismo
7.
J Comp Neurol ; 531(1): 89-115, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36217593

RESUMO

The melanocortin system is a key regulator of appetite and food intake in vertebrates. This system includes the neuropeptides neuropeptide y (NPY), agouti-related peptide (AGRP), cocaine- and amphetamine-regulated transcript (CART), and pro-opiomelanocortin (POMC). An important center for appetite control in mammals is the hypothalamic arcuate nucleus, with neurons that coexpress either the orexigenic NPY/AGRP or the anorexigenic CART/POMC neuropeptides. In ray-finned fishes, such a center is less characterized. The Atlantic salmon (Salmo salar) has multiple genes of these neuropeptides due to whole-genome duplication events. To better understand the potential involvement of the melanocortin system in appetite and food intake control, we have mapped the mRNA expression of npy, agrp, cart, and pomc in the brain of Atlantic salmon parr using in situ hybridization. After identifying hypothalamic mRNA expression, we investigated the possible intracellular coexpression of npy/agrp and cart/pomc in the tuberal hypothalamus by fluorescent in situ hybridization. The results showed that the neuropeptides were widely distributed, especially in sensory and neuroendocrine brain regions. In the hypothalamic lateral tuberal nucleus, the putative homolog to the mammalian arcuate nucleus, npya, agrp1, cart2b, and pomca were predominantly localized in distinct neurons; however, some neurons coexpressed cart2b/pomca. This is the first demonstration of coexpression of cart2b/pomca in the tuberal hypothalamus of a teleost. Collectively, our data suggest that the lateral tuberal nucleus is the center for appetite control in salmon, similar to that of mammals. Extrahypothalamic brain regions might also be involved in regulating food intake, including the olfactory bulb, telencephalon, midbrain, and hindbrain.


Assuntos
Neuropeptídeos , Salmo salar , Animais , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Pró-Opiomelanocortina/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Melanocortinas/genética , Melanocortinas/metabolismo , Hibridização in Situ Fluorescente , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Hipotálamo/metabolismo , Encéfalo/metabolismo , RNA Mensageiro/metabolismo , Mamíferos
8.
Fish Shellfish Immunol ; 131: 838-846, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334699

RESUMO

The melanocortin system is an ancient neuroendocrine system conserved from teleosts to mammals. The melanocortin system is a set of complex neuroendocrine signaling pathways involved in numerous physiological processes, and particularly associated with the hypothalamic-pituitary-interrenal (HPI) axis response. The melanocortin 1 receptor (MC1R) is the central melanocortin receptor involved in pigmentation in vertebrates, including fish. In order to assess the immune role of MC1R, this study used a homozygous Mc1r knockout zebrafish. Hence, skin cortisol levels, variations in the blood leucocyte population, as well as the expression levels of immune genes in various tissues of wild-type TU strain (Tübingen, Nüsslein-Volhard Lab) (WT) and homozygous mc1r knockout zebrafish (mc1rK.O.) stimulated with LPS was carried out. Results show that the mc1rK.O. mutant fish produce lower levels of cortisol in mucus and fewer macrophages in blood after exposure to LPS compared to control fish. Regarding the expression of immune genes, mutant fish show a significant increase in the expression of the anti-inflammatory interleukin il10. These results suggest that the mc1rK.O. mutant fish may follow an alternative mechanism among the immune responses, where macrophages seem to have an anti-inflammatory function, attenuating nitric oxide (NO) production and providing an advantage through the mitigation of excessive or strong inflammatory reactions. Nonetheless, a lower number of this cell type could imply a reduced phagocytic potential in the face of an infection. At the same time, lower cortisol levels in the mc1rK.O. mutant fish could be an advantage as for the lower susceptibility to stress and the physiological and metabolic consequences of high cortisol levels.


Assuntos
Receptor Tipo 1 de Melanocortina , Peixe-Zebra , Animais , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Hidrocortisona , Lipopolissacarídeos , Melanocortinas/genética , Imunidade , Anti-Inflamatórios , Mutação , Mamíferos/metabolismo
9.
Nat Commun ; 13(1): 5733, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175420

RESUMO

MicroRNAs (miRNAs) modulate physiological responses by repressing the expression of gene networks. We found that global deletion of microRNA-7 (miR-7), the most enriched miRNA in the hypothalamus, causes obesity in mice. Targeted deletion of miR-7 in Single-minded homolog 1 (Sim1) neurons, a critical component of the hypothalamic melanocortin pathway, causes hyperphagia, obesity and increased linear growth, mirroring Sim1 and Melanocortin-4 receptor (MC4R) haplo-insufficiency in mice and humans. We identified Snca (α-Synuclein) and Igsf8 (Immunoglobulin Superfamily Member 8) as miR-7 target genes that act in Sim1 neurons to regulate body weight and endocrine axes. In humans, MIR-7-1 is located in the last intron of HNRNPK, whose promoter drives the expression of both genes. Genetic variants at the HNRNPK locus that reduce its expression are associated with increased height and truncal fat mass. These findings demonstrate that miR-7 suppresses gene networks involved in the hypothalamic melanocortin pathway to regulate mammalian energy homeostasis.


Assuntos
Melanocortinas , MicroRNAs , Animais , Homeostase/genética , Humanos , Imunoglobulinas , Mamíferos , Melanocortinas/genética , Camundongos , MicroRNAs/genética , Obesidade/genética , Receptor Tipo 4 de Melanocortina/genética , Fatores de Transcrição , alfa-Sinucleína
10.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955479

RESUMO

The melanocortin receptors are G-protein-coupled receptors, which are essential components of the hypothalamic-pituitary-adrenal axis, and they mediate the actions of melanocortins (melanocyte-stimulating hormones: α-MSH, ß-MSH, and γ-MSH) as well as the adrenocorticotropin hormone (ACTH) in skin pigmentation, adrenal steroidogenesis, and stress response. Three melanocortin receptor genes (MC1R, MC2R, and MC5R) contribute to the risk of major depressive disorder (MDD), and one melanocortin receptor gene (MC4R) contributes to the risk of type 2 diabetes (T2D). MDD increases T2D risk in drug-naïve patients; thus, MDD and T2D commonly coexist. The five melanocortin receptor genes might confer risk for both disorders. However, they have never been investigated jointly to evaluate their potential contributing roles in the MDD-T2D comorbidity, specifically within families. In 212 Italian families with T2D and MDD, we tested 11 single nucleotide polymorphisms (SNPs) in the MC1R gene, 9 SNPs in MC2R, 3 SNPs in MC3R, 4 SNPs in MC4R, and 2 SNPs in MC5R. The testing used 2-point parametric linkage and linkage disequilibrium (LD) (i.e., association) analysis with four models (dominant with complete penetrance (D1), dominant with incomplete penetrance (D2), recessive with complete penetrance (R1), and recessive with incomplete penetrance (R2)). We detected significant (p ≤ 0.05) linkage and/or LD (i.e., association) to/with MDD for one SNP in MC2R (rs111734014) and one SNP in MC5R (rs2236700), and to/with T2D for three SNPs in MC1R (rs1805007 and rs201192930, and rs2228479), one SNP in MC2R (rs104894660), two SNPs in MC3R (rs3746619 and rs3827103), and one SNP in MC4R genes (Chr18-60372302). The linkage/LD/association was significant across different linkage patterns and different modes of inheritance. All reported variants are novel in MDD and T2D. This is the first study to report risk variants in MC1R, MC2R, and MC3R genes in T2D. MC2R and MC5R genes are replicated in MDD, with one novel variant each. Within our dataset, only the MC2R gene appears to confer risk for both MDD and T2D, albeit with different risk variants. To further clarity the role of the melanocortin receptor genes in MDD-T2D, these findings should be sought among other ethnicities as well.


Assuntos
Transtorno Depressivo Maior , Diabetes Mellitus Tipo 2 , Comorbidade , Depressão , Diabetes Mellitus Tipo 2/genética , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Melanocortinas/genética , Melanocortinas/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo
15.
Nat Rev Endocrinol ; 18(10): 623-637, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35902734

RESUMO

Obesity is a multifactorial and complex disease that often manifests in early childhood with a lifelong burden. Polygenic and monogenic obesity are driven by the interaction between genetic predisposition and environmental factors. Polygenic variants are frequent and confer small effect sizes. Rare monogenic obesity syndromes are caused by defined pathogenic variants in single genes with large effect sizes. Most of these genes are involved in the central nervous regulation of body weight; for example, genes of the leptin-melanocortin pathway. Clinically, patients with monogenic obesity present with impaired satiety, hyperphagia and pronounced food-seeking behaviour in early childhood, which leads to severe early-onset obesity. With the advent of novel pharmacological treatment options emerging for monogenic obesity syndromes that target the central melanocortin pathway, genetic testing is recommended for patients with rapid weight gain in infancy and additional clinical suggestive features. Likewise, patients with obesity associated with hypothalamic damage or other forms of syndromic obesity involving energy regulatory circuits could benefit from these novel pharmacological treatment options. Early identification of patients affected by syndromic obesity will lead to appropriate treatment, thereby preventing the development of obesity sequelae, avoiding failure of conservative treatment approaches and alleviating stigmatization of patients and their families.


Assuntos
Leptina , Obesidade , Pré-Escolar , Predisposição Genética para Doença/genética , Humanos , Hiperfagia , Leptina/genética , Melanocortinas/genética , Obesidade/tratamento farmacológico , Obesidade/genética , Fenótipo , Receptores para Leptina/genética
16.
Arq. ciências saúde UNIPAR ; 26(2): 159-174, maio-ago. 2022.
Artigo em Português | LILACS | ID: biblio-1372969

RESUMO

A obesidade é definida pelo excesso de gordura corporal acumulada no tecido adiposo quando o indivíduo atinge valores de IMC igual ou superior a 30 Kg/m2. Constitui um dos principais fatores de risco para várias doenças não transmissíveis (DNTs) como por exemplo, diabetes mellitus tipo 2 (DM2), doenças cardiovasculares, hipertensão arterial, acidente vascular cerebral e até mesmo o câncer. Embora a obesidade esteja diretamente relacionada com o consumo calórico excessivo em relação ao gasto energético diário, sua etiologia pode estar associada aos baixos níveis de atividade física, às alterações neuroendócrinas e aos fatores genéticos. Considerando o componente genético, esta pode ser classificada como sindrômicas e estar associada às alterações cromossômicas estruturais ou numéricas, ou como não sindrômica, quando relacionada, principalmente, com os polimorfismos de nucleotídeos simples (SNPs) em alelos que atuam como herança monogênica, ou ainda com a interação vários genes (poligênica multifatorial). Apesar de existirem muitas etiologias diferentes, normalmente a obesidade é tratada a partir da mesma abordagem, desconsiderando a fisiologia que a desencadeou. Dessa forma, o objetivo do presente trabalho foi abordar a obesidade genética não sindrômica por meio a) da descrição breve de perspectiva histórica sobre seu entendimento; b) da exposição dos principais mecanismos moleculares envolvidos com o controle de peso; c) da compilação dos principais genes e SNPs relacionados; d) da definição dos principais genes; e e) da abordagem das principais perspectivas de intervenção.


Obesity is defined as excess body fat accumulated in the adipose tissue when the individual reaches BMI values equal to or greater than 30 kg/m2. It is one of the main risk factors for several non-communicable diseases (NCDs), such as Type 2 Diabetes mellitus (T2D), cardiovascular diseases, high blood pressure, stroke and even cancer. Although obesity is directly related to excessive calorie intake in relation to daily energy expenditure, its etiology may be associated with low levels of physical activity, neuroendocrine changes, and genetic factors. Considering the genetic component, it can be classified as syndromic and be associated with chromosomal or numerical changes, or as non-syndromic and being related mainly to single nucleotide polymorphisms (SNPs) in alleles that act as monogenic inheritance, or with an interaction of several genes (multifactorial polygenic). Although there are many different etiologies, obesity is usually treated using the same approach, disregarding the physiology that triggered it. Thus, the aim of this study was to address non-syndromic genetic obesity through a) a brief description of a historical perspective on its understanding; b) the exposure of the main molecular mechanisms involved in weight control, c) the compilation of the key genes and related SNPs, d) the definition of the key genes and e) the approach of the main intervention representations.


Assuntos
Humanos , Masculino , Feminino , Peso Corporal/genética , Epigenômica , Genes/genética , Obesidade/genética , Índice de Massa Corporal , Expressão Gênica/genética , Polimorfismo de Nucleotídeo Único/genética , Receptor Tipo 4 de Melanocortina/genética , Melanocortinas/genética , Receptores para Leptina/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Hipotálamo/fisiopatologia , Obesidade/fisiopatologia
17.
Front Endocrinol (Lausanne) ; 13: 832911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574020

RESUMO

Monogenic obesity is a severe, genetically determined disorder that affects up to 1/1000 newborns. Recent reports on potential new therapeutics and innovative clinical approaches have highlighted the need for early identification of individuals with rare genetic variants that can alter the functioning of the leptin-melanocortin signalling pathway, in order to speed up clinical intervention and reduce the risk of chronic complications. Therefore, next-generation DNA sequencing of central genes in the leptin-melanocortin pathway was performed in 1508 children and adolescents with and without obesity, aged 2-19 years. The recruited cohort comprised approximately 5% of the national paediatric population with obesity. The model-estimated effect size of rare variants in the leptin-melanocortin signalling pathway on longitudinal weight gain between carriers and non-carriers was derived. In total, 21 (1.4%) participants had known disease-causing heterozygous variants (DCVs) in the genes under investigation, and 62 (4.1%) participants were carriers of rare variants of unknown clinical significance (VUS). The estimated frequency of potential genetic variants associated with obesity (including rare VUS) ranged between 1/150 (VUS and DCV) and 1/850 (DCV) and differed significantly between participants with and without obesity. On average, the variants identified would result in approximately 7.6 kg (7.0-12.9 kg at the 95th percentile of body weight) (girls) and 8.4 kg (8.2-14.4 kg) (boys) of additional weight gain in carriers at age 18 years compared with subjects without obesity. In conclusion, children with a genetic predisposition to obesity can be promptly identified and may account for more than 6% of obesity cases. Early identification of genetic variants in the LEPR, PCSK1, POMC, MC3R and MC4R genes could reduce the societal burden and improve the clinical management of early severe childhood obesity and its implementation should be further investigated.


Assuntos
Obesidade Mórbida , Obesidade Infantil , Adolescente , Criança , Feminino , Genes Recessivos , Humanos , Recém-Nascido , Leptina/genética , Masculino , Melanocortinas/genética , Obesidade Mórbida/genética , Obesidade Infantil/genética , Receptor Tipo 4 de Melanocortina/genética , Receptores para Leptina/genética , Aumento de Peso
18.
J Mol Endocrinol ; 66(1): 23-34, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33151902

RESUMO

White adipose tissue (WAT) browning is a potent mechanism to dissipate energy as heat and, thus, its activation constitutes a promise therapeutic approach to obesity. We previously reported the melanocortin α-melanocyte stimulating hormone (α-MSH) ability to increase the number of beige cells in subcutaneous inguinal WAT (ingWAT) in high fat diet (HFD)-fed mice. The current study examined the browning effect of intraperitoneally administered α-MSH on diverse fat depots from mice fed with HFD or standard rodent diet (SD). For this, mRNA expression of browning hallmark genes was quantified concomitantly with histological examination of the adipose tissue samples (epidydimal (eWAT), mesenteric (mWAT), retroperitoneal (rpWAT) or ingWAT). As well, α-MSH impact on body weight, serum profile, WAT mass and lipolytic rates were evaluated. In the visceral depots mWAT, eWAT and rpWAT from HFD-fed mice, α-MSH was not able to induce a browning mechanism. Surprisingly, in SD-fed mice, α-MSH decreased the expression of several beige-specific genes in rpWAT and promoted an increase of the size of lipid droplets. No browning effect was observed in ingWAT from SD-fed mice. We also verified that HFD ingestion per se stimulated the browning mechanisms in rpWAT, but not in mWAT and eWAT. In conclusion, the fat depots from diverse anatomical locations respond differently to α-MSH treatment when exposed to different diets.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade/genética , alfa-MSH/genética , Animais , Peso Corporal , Dieta Hiperlipídica , Regulação da Expressão Gênica , Melanocortinas/genética , Melanocortinas/metabolismo , Camundongos , Obesidade/etiologia , Obesidade/metabolismo , Especificidade de Órgãos , alfa-MSH/metabolismo
19.
Genes (Basel) ; 11(11)2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233816

RESUMO

Obesity is one of the most prevalent health conditions in humans and companion animals globally. It is associated with premature mortality, metabolic dysfunction, and multiple health conditions across species. Obesity is, therefore, of importance in the fields of medicine and veterinary medicine. The regulation of adiposity is a homeostatic process vulnerable to disruption by a multitude of genetic and environmental factors. It is well established that the heritability of obesity is high in humans and laboratory animals, with ample evidence that the same is true in companion animals. In this review, we provide an overview of how genes link to obesity in humans, drawing on a wealth of information from laboratory animal models, and summarise the mechanisms by which obesity causes related disease. Throughout, we focus on how large-scale human studies and niche investigations of rare mutations in severely affected patients have improved our understanding of obesity biology and can inform our ability to interpret results of animal studies. For dogs, cats, and horses, we compare the similarities in obesity pathophysiology to humans and review the genetic studies that have been previously reported in those species. Finally, we discuss how veterinary genetics may learn from humans about studying precise, nuanced phenotypes and implementing large-scale studies, but also how veterinary studies may be able to look past clinical findings to mechanistic ones and demonstrate translational benefits to human research.


Assuntos
Doenças do Gato/genética , Doenças do Cão/genética , Doenças dos Cavalos/genética , Obesidade/genética , Obesidade/veterinária , Animais , Gatos , Comorbidade , Cães , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Cavalos , Humanos , Leptina/genética , Leptina/metabolismo , Melanocortinas/genética , Melanocortinas/metabolismo , Doenças Metabólicas/genética , Doenças Metabólicas/veterinária , Obesidade/epidemiologia , Obesidade/metabolismo , Animais de Estimação
20.
J Mol Cell Biol ; 12(10): 785-797, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32976556

RESUMO

The prevalence of obesity and the associated comorbidities highlight the importance of understanding the regulation of energy homeostasis. The central melanocortin system plays a critical role in controlling body weight balance. Melanocortin neurons sense and integrate the neuronal and hormonal signals, and then send regulatory projections, releasing anorexigenic or orexigenic melanocortin neuropeptides, to downstream neurons to regulate the food intake and energy expenditure. This review summarizes the latest progress in our understanding of the role of the melanocortin pathway in energy homeostasis. We also review the advances in the identification of human genetic variants that cause obesity via mechanisms that affect the central melanocortin system, which have provided rational targets for treatment of genetically susceptible patients.


Assuntos
Melanocortinas/metabolismo , Obesidade/metabolismo , Animais , Peso Corporal/genética , Metabolismo Energético , Variação Genética , Humanos , Melanocortinas/genética , Modelos Biológicos , Obesidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA