Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.956
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 375, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734632

RESUMO

BACKGROUND: Synovitis, characterized by inflammation of the synovial membrane, is commonly induced by meniscus tears. However, significant differences in inflammatory responses and the key inflammatory mediators of synovium induced by different types of meniscal tears remain unclear. METHODS: Magnetic resonance imaging (MRI) was employed to identify the type of meniscus tear, and the quantification of synovial inflammation was assessed through H&E staining assay. Transcription and expression levels of IL-1ß and IL-6 were evaluated using bioinformatics, ELISA, RT-qPCR, and IHC of CD68 staining assays. The therapeutic potential of Docosapentaenoic Acid (DPA) was determined through network pharmacology, ELISA, and RT-qPCR assays. The safety of DPA was assessed using colony formation and EdU staining assays. RESULTS: The results indicate that both IL-1ß and IL-6 play pivotal roles in synovitis pathogenesis, with distinct expression levels across various subtypes. Among tested meniscus tears, oblique tear and bucket handle tear induced the most severe inflammation, followed by radial tear and longitudinal tear, while horizontal tear resulted in the least inflammation. Furthermore, in synovial inflammation induced by specific meniscus tears, the anterior medial tissues exhibited significantly higher local inflammation than the anterior lateral and suprapatellar regions, highlighting the clinical relevance and practical guidance of anterior medial tissues' inflammatory levels. Additionally, we identified the essential omega-3 fatty acid DPA as a potential therapeutic agent for synovitis, demonstrating efficacy in blocking the transcription and expression of IL-1ß and IL-6 with minimal side effects. CONCLUSION: These findings provide valuable insights into the nuanced nature of synovial inflammation induced by various meniscal tear classifications and contribute to the development of new adjunctive therapeutic agents in the management of synovitis.


Assuntos
Ácidos Graxos Insaturados , Interleucina-1beta , Imageamento por Ressonância Magnética , Membrana Sinovial , Sinovite , Lesões do Menisco Tibial , Lesões do Menisco Tibial/tratamento farmacológico , Lesões do Menisco Tibial/metabolismo , Sinovite/tratamento farmacológico , Sinovite/metabolismo , Sinovite/patologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Humanos , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/uso terapêutico , Masculino , Interleucina-1beta/metabolismo , Animais , Interleucina-6/metabolismo , Feminino , Meniscos Tibiais/efeitos dos fármacos , Meniscos Tibiais/metabolismo , Camundongos , Modelos Animais de Doenças
2.
Sci Rep ; 14(1): 10610, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38719857

RESUMO

Histone lysine methylation is thought to play a role in the pathogenesis of rheumatoid arthritis (RA). We previously reported aberrant expression of the gene encoding mixed-lineage leukemia 1 (MLL1), which catalyzes methylation of histone H3 lysine 4 (H3K4), in RA synovial fibroblasts (SFs). The aim of this study was to elucidate the involvement of MLL1 in the activated phenotype of RASFs. SFs were isolated from synovial tissues obtained from patients with RA or osteoarthritis (OA) during total knee joint replacement. MLL1 mRNA and protein levels were determined after stimulation with tumor necrosis factor α (TNFα). We also examined changes in trimethylation of H3K4 (H3K4me3) levels in the promoters of RA-associated genes (matrix-degrading enzymes, cytokines, and chemokines) and the mRNA levels upon small interfering RNA-mediated depletion of MLL1 in RASFs. We then determined the levels of H3K4me3 and mRNAs following treatment with the WD repeat domain 5 (WDR5)/MLL1 inhibitor MM-102. H3K4me3 levels in the gene promoters were also compared between RASFs and OASFs. After TNFα stimulation, MLL1 mRNA and protein levels were higher in RASFs than OASFs. Silencing of MLL1 significantly reduced H3K4me3 levels in the promoters of several cytokine (interleukin-6 [IL-6], IL-15) and chemokine (C-C motif chemokine ligand 2 [CCL2], CCL5, C-X-C motif chemokine ligand 9 [CXCL9], CXCL10, CXCL11, and C-X3-C motif chemokine ligand 1 [CX3CL1]) genes in RASFs. Correspondingly, the mRNA levels of these genes were significantly decreased. MM-102 significantly reduced the promoter H3K4me3 and mRNA levels of the CCL5, CXCL9, CXCL10, and CXCL11 genes in RASFs. In addition, H3K4me3 levels in the promoters of the IL-6, IL-15, CCL2, CCL5, CXCL9, CXCL10, CXCL11, and CX3CL1 genes were significantly higher in RASFs than OASFs. Our findings suggest that MLL1 regulates the expression of particular cytokines and chemokines in RASFs and is associated with the pathogenesis of RA. These results could lead to new therapies for RA.


Assuntos
Artrite Reumatoide , Quimiocinas , Citocinas , Fibroblastos , Histona-Lisina N-Metiltransferase , Histonas , Proteína de Leucina Linfoide-Mieloide , Membrana Sinovial , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Fibroblastos/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Citocinas/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Histonas/metabolismo , Quimiocinas/metabolismo , Quimiocinas/genética , Regulação da Expressão Gênica , Fator de Necrose Tumoral alfa/metabolismo , Regiões Promotoras Genéticas , Feminino , Masculino , Células Cultivadas , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Idoso
3.
PLoS One ; 19(5): e0303506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38771826

RESUMO

OBJECTIVE: To elucidate potential molecular mechanisms differentiating osteoarthritis (OA) and rheumatoid arthritis (RA) through a bioinformatics analysis of differentially expressed genes (DEGs) in patient synovial cells, aiming to provide new insights for clinical treatment strategies. MATERIALS AND METHODS: Gene expression datasets GSE1919, GSE82107, and GSE77298 were downloaded from the Gene Expression Omnibus (GEO) database to serve as the training groups, with GSE55235 being used as the validation dataset. The OA and RA data from the GSE1919 dataset were merged with the standardized data from GSE82107 and GSE77298, followed by batch effect removal to obtain the merged datasets of differential expressed genes (DEGs) for OA and RA. Intersection analysis was conducted on the DEGs between the two conditions to identify commonly upregulated and downregulated DEGs. Enrichment analysis was then performed on these common co-expressed DEGs, and a protein-protein interaction (PPI) network was constructed to identify hub genes. These hub genes were further analyzed using the GENEMANIA online platform and subjected to enrichment analysis. Subsequent validation analysis was conducted using the GSE55235 dataset. RESULTS: The analysis of differentially expressed genes in the synovial cells from patients with Osteoarthritis (OA) and Rheumatoid Arthritis (RA), compared to a control group (individuals without OA or RA), revealed significant changes in gene expression patterns. Specifically, the genes APOD, FASN, and SCD were observed to have lower expression levels in the synovial cells of both OA and RA patients, indicating downregulation within the pathological context of these diseases. In contrast, the SDC1 gene was found to be upregulated, displaying higher expression levels in the synovial cells of OA and RA patients compared to normal controls.Additionally, a noteworthy observation was the downregulation of the transcription factor PPARG in the synovial cells of patients with OA and RA. The decrease in expression levels of PPARG further validates the alteration in lipid metabolism and inflammatory processes associated with the pathogenesis of OA and RA. These findings underscore the significance of these genes and the transcription factor not only as biomarkers for differential diagnosis between OA and RA but also as potential targets for therapeutic interventions aimed at modulating their expression to counteract disease progression. CONCLUSION: The outcomes of this investigation reveal the existence of potentially shared molecular mechanisms within Osteoarthritis (OA) and Rheumatoid Arthritis (RA). The identification of APOD, FASN, SDC1, TNFSF11 as key target genes, along with their downstream transcription factor PPARG, highlights common potential factors implicated in both diseases. A deeper examination and exploration of these findings could pave the way for new candidate targets and directions in therapeutic research aimed at treating both OA and RA. This study underscores the significance of leveraging bioinformatics approaches to unravel complex disease mechanisms, offering a promising avenue for the development of more effective and targeted treatments.


Assuntos
Artrite Reumatoide , Perfilação da Expressão Gênica , Osteoartrite , Mapas de Interação de Proteínas , Membrana Sinovial , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Humanos , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Mapas de Interação de Proteínas/genética , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Biologia Computacional/métodos , Redes Reguladoras de Genes , Regulação da Expressão Gênica , Bases de Dados Genéticas
4.
Cells ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727279

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disorder which can lead to long-term joint damage and significantly reduced quality of life if not promptly diagnosed and adequately treated. Despite significant advances in treatment, about 40% of patients with RA do not respond to individual pharmacological agents and up to 20% do not respond to any of the available medications. To address this large unmet clinical need, several recent studies have focussed on an in-depth histological and molecular characterisation of the synovial tissue to drive the application of precision medicine to RA. Currently, RA patients are clinically divided into "seropositive" or "seronegative" RA, depending on the presence of routinely checked antibodies. Recent work has suggested that over the last two decades, long-term outcomes have improved significantly in seropositive RA but not in seronegative RA. Here, we present up-to-date differences in epidemiology, clinical features, and serological biomarkers in seronegative versus seropositive RA and discuss how histological and molecular synovial signatures, revealed by recent large synovial biopsy-based clinical trials, may be exploited to refine the classification of RA patients, especially in the seronegative group.


Assuntos
Artrite Reumatoide , Biomarcadores , Fenótipo , Membrana Sinovial , Humanos , Artrite Reumatoide/sangue , Artrite Reumatoide/patologia , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/imunologia , Biomarcadores/sangue , Membrana Sinovial/patologia
5.
Sci Transl Med ; 16(742): eadk3506, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598614

RESUMO

It has been presumed that rheumatoid arthritis (RA) joint pain is related to inflammation in the synovium; however, recent studies reveal that pain scores in patients do not correlate with synovial inflammation. We developed a machine-learning approach (graph-based gene expression module identification or GbGMI) to identify an 815-gene expression module associated with pain in synovial biopsy samples from patients with established RA who had limited synovial inflammation at arthroplasty. We then validated this finding in an independent cohort of synovial biopsy samples from patients who had early untreated RA with little inflammation. Single-cell RNA sequencing analyses indicated that most of these 815 genes were most robustly expressed by lining layer synovial fibroblasts. Receptor-ligand interaction analysis predicted cross-talk between human lining layer fibroblasts and human dorsal root ganglion neurons expressing calcitonin gene-related peptide (CGRP+). Both RA synovial fibroblast culture supernatant and netrin-4, which is abundantly expressed by lining fibroblasts and was within the GbGMI-identified pain-associated gene module, increased the branching of pain-sensitive murine CGRP+ dorsal root ganglion neurons in vitro. Imaging of solvent-cleared synovial tissue with little inflammation from humans with RA revealed CGRP+ pain-sensing neurons encasing blood vessels growing into synovial hypertrophic papilla. Together, these findings support a model whereby synovial lining fibroblasts express genes associated with pain that enhance the growth of pain-sensing neurons into regions of synovial hypertrophy in RA.


Assuntos
Artrite Reumatoide , Peptídeo Relacionado com Gene de Calcitonina , Humanos , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Artrite Reumatoide/complicações , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Membrana Sinovial/patologia , Inflamação/patologia , Fibroblastos/patologia , Dor/metabolismo , Expressão Gênica , Células Cultivadas
6.
Eur Rev Med Pharmacol Sci ; 28(7): 2670-2676, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639506

RESUMO

BACKGROUND: Synovial chondromatosis is a non-malignant synovial disorder characterized by the presence of cartilage formation within the synovial membrane, leading to the emergence of multiple cartilaginous nodules that may be either attached or unattached. The presence of this anatomical feature is frequently observed in articulations such as the knee, hip, elbow, and ankle. CASE REPORT: In this study, we present a case of synovial chondromatosis in the knee joint of a healthy male in his early 60s. Notably, the patient exhibited the simultaneous presence of 87 large loose bodies. The occurrence of a substantial quantity of unattached entities of notable dimensions within the joint is highly uncommon. CONCLUSIONS: The patient had several synovial chondromas, a rare disease. Synovial chondromatosis is a benign disorder; however, growing synovium can cause pyogenic cartilage nodules. Most loose bodies in joints can abrade and degenerate articular cartilage, causing long-term discomfort. Thus, an early-stage procedure to remove loose bodies and carefully excise synovial tissue is necessary to treat this condition.


Assuntos
Cartilagem Articular , Condromatose Sinovial , Humanos , Masculino , Condromatose Sinovial/diagnóstico por imagem , Condromatose Sinovial/cirurgia , Condromatose Sinovial/patologia , Membrana Sinovial/patologia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Articulação do Joelho/patologia , Cartilagem Articular/patologia , Articulação do Tornozelo
7.
J Nanobiotechnology ; 22(1): 197, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644475

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by synovial inflammation, causing substantial disability and reducing life quality. While macrophages are widely appreciated as a master regulator in the inflammatory response of RA, the precise mechanisms underlying the regulation of proliferation and inflammation in RA-derived fibroblast-like synoviocytes (RA-FLS) remain elusive. Here, we provide extensive evidence to demonstrate that macrophage contributes to RA microenvironment remodeling by extracellular vesicles (sEVs) and downstream miR-100-5p/ mammalian target of rapamycin (mTOR) axis. RESULTS: We showed that bone marrow derived macrophage (BMDM) derived-sEVs (BMDM-sEVs) from collagen-induced arthritis (CIA) mice (cBMDM-sEVs) exhibited a notable increase in abundance compared with BMDM-sEVs from normal mice (nBMDM-sEVs). cBMDM-sEVs induced significant RA-FLS proliferation and potent inflammatory responses. Mechanistically, decreased levels of miR-100-5p were detected in cBMDM-sEVs compared with nBMDM-sEVs. miR-100-5p overexpression ameliorated RA-FLS proliferation and inflammation by targeting the mTOR pathway. Partial attenuation of the inflammatory effects induced by cBMDM-sEVs on RA-FLS was achieved through the introduction of an overexpression of miR-100-5p. CONCLUSIONS: Our work reveals the critical role of macrophages in exacerbating RA by facilitating the transfer of miR-100-5p-deficient sEVs to RA-FLS, and sheds light on novel disease mechanisms and provides potential therapeutic targets for RA interventions.


Assuntos
Artrite Reumatoide , Macrófagos , MicroRNAs , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Humanos , Masculino , Camundongos , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Experimental/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Proliferação de Células , Vesículas Extracelulares/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos DBA , MicroRNAs/genética , MicroRNAs/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Sinoviócitos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
8.
Nat Rev Rheumatol ; 20(5): 258-271, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600215

RESUMO

In rheumatoid arthritis, juvenile idiopathic arthritis and other forms of inflammatory arthritis, the immune system targets certain joints but not others. The pattern of joints affected varies by disease and by individual, with flares most commonly involving joints that were previously inflamed. This phenomenon, termed joint-specific memory, is difficult to explain by systemic immunity alone. Mechanisms of joint-specific memory include the involvement of synovial resident memory T cells that remain in the joint during remission and initiate localized disease recurrence. In addition, arthritis-induced durable changes in synovial fibroblasts and macrophages can amplify inflammation in a site-specific manner. Together with ongoing systemic processes that promote extension of arthritis to new joints, these local factors set the stage for a stepwise progression in disease severity, a paradigm for arthritis chronicity that we term the joint accumulation model. Although durable drug-free remission through early treatment remains elusive for most forms of arthritis, the joint accumulation paradigm defines new therapeutic targets, emphasizes the importance of sustained treatment to prevent disease extension to new joints, and identifies a rolling window of opportunity for altering the natural history of arthritis that extends well beyond the initiation phase of disease.


Assuntos
Artrite Reumatoide , Células T de Memória , Humanos , Células T de Memória/imunologia , Artrite Reumatoide/imunologia , Articulações/imunologia , Articulações/patologia , Memória Imunológica/imunologia , Progressão da Doença , Animais , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Artrite/imunologia
9.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674142

RESUMO

The gradual deterioration of articular cartilage was thought to be the central event in osteoarthritis (OA), but recent studies demonstrated the importance of low-grade synovitis in the progression of OA. The Syndecan (SDC) family of membrane proteoglycans is known to be involved in the regulation of inflammation, but there is limited evidence considering the role of syndecans in OA synovitis. Our study aimed to investigate the hip OA synovial membrane expression patterns of SDC1, SDC2 and SDC4, as well as exostosins and sulfotransferases (enzymes involved in the polymerisation and modification of syndecans' heparan sulphate chains). Synovial membrane samples of patients with OA (24) were divided into two groups according to their Krenn synovitis score severity. The immunohistochemical expressions of SDC1, SDC2, SDC4, EXT1, EXT2, NDST1 and NDST2 in synovial intima and subintima were then analysed and compared with the control group (patients with femoral neck fracture). According to our study, the immunoexpression of SDC1, NDST1 and EXT2 is significantly increased in the intimal cells of OA synovial membrane in patients with lower histological synovitis scores and SDC4 in patients with higher synovitis scores, in comparison with non-OA controls. The difference in the expression of SDC2 among the OA and non-OA groups was insignificant. SDC1, SDC4, NDST1 and EXT2 seem to be involved as inflammation moderators in low-grade OA synovitis and, therefore, should be further investigated as potential markers of disease progression and therapeutic goals.


Assuntos
Biomarcadores , Osteoartrite do Quadril , Sulfotransferases , Sindecanas , Sinovite , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inflamação/metabolismo , Inflamação/patologia , N-Acetilglucosaminiltransferases , Osteoartrite do Quadril/metabolismo , Osteoartrite do Quadril/patologia , Sulfotransferases/metabolismo , Sindecanas/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Sinovite/metabolismo , Sinovite/patologia , Biomarcadores/análise
10.
Int Immunopharmacol ; 133: 111727, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636369

RESUMO

Rheumatoid arthritis (RA) is an inflammatory autoimmune disease and management of it still a challenge. Given report evaluates protective effect of phlorizin on RA and also postulates the molecular mechanism of its action. Bovine type II collagen (CIA) and Freund's incomplete adjuvant (1:1 and 1 mg/ml) was administered on 1st and 8th day of protocol to induce RA in rats and treatment with phlorizin 60 and 120 mg/kg was started after 4th week of protocol. Level of inflammatory cytokines and expression of proteins were estimated in phlorizin treated RA rats. Moreover in-vitro study was performed on Fibroblast-like synoviocytes (FLSs) and effect of phlorizin was estimated on proliferation, apoptosis and expression of mTOR pathway protein after stimulating these cell lines with Tumour Necrosis Factor alpha (TNF-α). Data of study suggest that phlorizin reduces inflammation and improves weight in CIA induced RA rats. Level of inflammatory cytokines in the serum and expression of Akt/PI3K/mTOR proteins in the join tissue was reduced in phlorizin treated RA rats. Phlorizin also reported to reverse the histopathological changes in the joint tissue of RA rats. In-vitro study supports that phlorizin reduces proliferation and no apoptotic effect on TNF-α stimulated FLSs. Expression of Akt/PI3K/mTOR proteins also downregulated in phlorizin treated TNF-α stimulated FLSs. In conclusion, phlorizin protects inflammation and reduces injury to the synovial tissues in RA, as it reduces autophagy by regulating Akt/PI3K/mTOR pathway.


Assuntos
Artrite Experimental , Artrite Reumatoide , Hiperplasia , Florizina , Transdução de Sinais , Sinoviócitos , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Transdução de Sinais/efeitos dos fármacos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/patologia , Hiperplasia/tratamento farmacológico , Ratos , Florizina/farmacologia , Florizina/uso terapêutico , Citocinas/metabolismo , Masculino , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/patologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ratos Wistar , Células Cultivadas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Cytokine ; 179: 156616, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38626647

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory disease induced by TNF-α, which increases fibroblast-like synoviocytes inflammation, resulting in cartilage destruction. The current work sought to comprehend the pathophysiological importance of TNF-α stimulation on differential protein expression and their regulation by apigenin using in-vitro and in-vivo models of RA. METHODS: The human RA synovial fibroblast cells were stimulated with or without TNF-α (10 ng/ml) and treated with 40 µM apigenin. In-silico, in-vitro and in-vivo studies were performed to confirm the pathophysiological significance of apigenin on pro-inflammatory cytokines and on differential expression of TTR and RAGE proteins. RESULTS: TNF-α induced inflammatory response in synoviocytes revealed higher levels of IL-6, IL-1ß, and TNF-α cytokines and upregulated differential expression of TTR and RAGE. In-silico results demonstrated that apigenin has a binding affinity towards TNF-α, indicating its potential effect in the inflammatory process. Both in-vitro and in-vivo results obtained by Western Blot analysis suggested that apigenin reduced the level of p65 (p = 0.005), TTR (p = 0.002), and RAGE (p = 0.020). CONCLUSION: The findings of this study suggested that TNF-α promotes the differential expression of pro-inflammatory cytokines, TTR, and RAGE via NF-kB pathways activation. Anti-inflammatory effect of apigenin impedes TNF-α mediated dysregulation or expression associated with RA pathogenesis.


Assuntos
Apigenina , Artrite Reumatoide , Receptor para Produtos Finais de Glicação Avançada , Fator de Necrose Tumoral alfa , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Apigenina/farmacologia , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Sinoviócitos/metabolismo , Sinoviócitos/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/patologia , Citocinas/metabolismo , Animais , Inflamação/metabolismo , Inflamação/tratamento farmacológico
12.
J Nanobiotechnology ; 22(1): 188, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632657

RESUMO

Rheumatoid arthritis (RA) is a progressive autoimmune disease accompanied by joint swelling, cartilage erosion and bone damage. Drug therapy for RA has been restricted due to poor therapeutic effect, recurrence and adverse effects. Macrophages and synovial fibroblasts both play important roles in the pathology of RA. Macrophages secrete large amount of pro-inflammatory cytokines, while synovial fibroblasts are tightly correlated with hypoxia synovium microenvironment, cytokine release, recruitment of pro-inflammatory cells, bone and cartilage erosion. Therefore, in this timely research, an injectable and pH-sensitive peptide hydrogel loading methotrexate (MTX) and bismuthene nanosheet/polyethyleneimine (BiNS/PEI) has been developed to reduce the activity of macrophages and eliminate over-proliferated synovial fibroblasts simultaneously. MTX can reduce the cytokine secretion of macrophages/anti-apoptosis property of synovial fibroblasts and BiNS/PEI can eliminate synovial fibroblasts via photodynamic therapy (PDT) and photothermal therapy (PTT) routes. The hydrogel was injected into the acidic inflammatory synovium for precise targeting and served as a drug reservoir for pH responsive and sustained drug release, while improving the bioavailability and reducing the toxicity of MTX. Excellent therapeutic efficacy has been achieved in both in vivo and in vitro studies, and this unique drug delivery system provides a new and robust strategy to eliminate synovial fibroblasts and modulate immune system for RA treatment in clinical.


Assuntos
Artrite Reumatoide , Hidrogéis , Humanos , Hidrogéis/farmacologia , Membrana Sinovial/patologia , Macrófagos , Metotrexato/farmacologia , Citocinas , Fibroblastos
13.
In Vivo ; 38(3): 1182-1191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688626

RESUMO

BACKGROUND/AIM: Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, and management of it is still a challenge. The present investigation assessed the potential preventive effect of phlorizin on rats with RA. MATERIALS AND METHODS: A total of 40 healthy Wistar rats were used for this study. Bovine type II collagen and Freund's incomplete adjuvant (1:1 and 1 mg/ml) were administered on days 1 and 8 of the protocol to induce RA in rats; treatment with phlorizin at 60 or 120 mg/kg was started after the 4th week of the protocol, and its effect on inflammation, level of inflammatory cytokines, and expression of proteins were estimated in RA rats. Moreover, an in vitro study was performed on fibroblast-like synoviocytes (FLSs), and the effects of phlorizin on proliferation, apoptosis, and expression of the mechanistic target of rapamycin kinase pathway protein after stimulating these cells with tumor necrosis factor α (TNF-α) were estimated. RESULTS: The data obtained from the study indicate that phlorizin has the potential to mitigate inflammation and enhance weight management in rats with RA induced by bovine type II collagen (CII). The level of inflammatory cytokines in the serum and the expression of protein kinase B (AKT), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), and mechanistic target of rapamycin kinase (mTOR) proteins in the joint tissue were reduced in phlorizin-treated rats with RA. In this investigation, phlorizin was shown to reverse the histological abnormalities in the joint tissue of rats with RA. The in-vitro study showed that phlorizin reduced proliferation and had no apoptotic effect on TNF-α-stimulated FLSs. Expression of AKT, PI3K, and mTOR proteins was also down-regulated in phlorizin-treated TNF-α-stimulated FLSs. CONCLUSION: Phlorizin protects against inflammation and reduces injury to synovial tissues in RA by modulating the AKT/PI3K/mTOR pathway.


Assuntos
Artrite Reumatoide , Hiperplasia , Inflamação , Florizina , Transdução de Sinais , Sinoviócitos , Serina-Treonina Quinases TOR , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Serina-Treonina Quinases TOR/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Florizina/farmacologia , Inflamação/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Modelos Animais de Doenças , Citocinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Masculino , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Ratos Wistar , Proteínas Proto-Oncogênicas c-akt/metabolismo
14.
Int Immunopharmacol ; 132: 112016, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593506

RESUMO

Osteoarthritis (OA) is a low-grade inflammatory joint illness in which monocytes migrate and infiltrate synovial tissue, differentiating into the pro-inflammatory M1 macrophage phenotype. IL-17 is a proinflammatory mediator principally generated by Th17 cells, which is elevated in OA patients; nevertheless, investigators have yet to elucidate the function of IL-17 in M1 polarization during OA development. Our analysis of clinical tissues and results from the open online dataset discovered that the level of M1 macrophage markers is elevated in human OA tissue samples than in normal tissue. High-throughput screening demonstrated that MCP-1 is a potential candidate factor after IL-17 treatment in OA synovial fibroblasts (OASFs). Immunohistochemistry data revealed that the level of MCP-1 is higher in humans and mice with OA than in normal tissues. IL-17 stimulation facilitates MCP-1-dependent macrophage polarization to the M1 phenotype. It also appears that IL-17 enhances MCP-1 synthesis in human OASFs, enhancing monocyte migration via the JAK and STAT3 signaling cascades. Our findings indicate the IL-17/MCP-1 axis as a novel strategy for the remedy of OA.


Assuntos
Movimento Celular , Quimiocina CCL2 , Interleucina-17 , Macrófagos , Monócitos , Osteoartrite , Animais , Humanos , Masculino , Camundongos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL2/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Interleucina-17/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Osteoartrite/imunologia , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/patologia
15.
Clin Exp Med ; 24(1): 84, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662111

RESUMO

The study of neuroimmune crosstalk and the involvement of neurotransmitters in inflammation and bone health has illustrated their significance in joint-related conditions. One important mode of cell-to-cell communication in the synovial fluid (SF) is through extracellular vesicles (EVs) carrying microRNAs (miRNAs). The role of neurotransmitter receptors in the pathogenesis of inflammatory joint diseases, and whether there are specific miRNAs regulating differentially expressed HTR2A, contributing to the inflammatory processes and bone metabolism is unclear. Expression of neurotransmitter receptors and their correlated inflammatory molecules were identified in rheumatoid arthritis (RA) and osteoarthritis (OA) synovium from a scRNA-seq dataset. Immunohistochemistry staining of synovial tissue (ST) from RA and OA patients was performed for validation. Expression of miRNAs targeting HTR2A carried by SF EVs was screened in low- and high-grade inflammation RA from a public dataset and validated by qPCR. HTR2A reduction by target miRNAs was verified by miRNAs mimics transfection into RA fibroblasts. HTR2A was found to be highly expressed in fibroblasts derived from RA synovial tissue. Its expression showed a positive correlation with the degree of inflammation observed. 5 miRNAs targeting HTR2A were decreased in RA SF EVs compared to OA, three of which, miR-214-3p, miR-3120-5p and miR-615-3p, mainly derived from monocytes in the SF, were validated as regulators of HTR2A expression. The findings suggest that fibroblast HTR2A may play a contributory role in inflammation and the pathogenesis of RA. Additionally, targeting miRNAs that act upon HTR2A could present novel therapeutic strategies for alleviating inflammation in RA.


Assuntos
Artrite Reumatoide , Fibroblastos , MicroRNAs , Osteoartrite , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/patologia , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/genética , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
16.
Int Immunopharmacol ; 132: 111913, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38603855

RESUMO

Resident synoviocytes and synovial microvasculature, together with immune cells from circulation, contribute to pannus formation, the main pathological feature of rheumatoid arthritis (RA), leading to destruction of adjacent cartilage and bone. Seeds, fibroblast-like synoviocytes (FLSs), macrophages, dendritic cells (DCs), B cells, T cells and endothelial cells (ECs) seeds with high metabolic demands undergo metabolic reprogramming from oxidative phosphorylation to glycolysis in response to poor soil of RA synovium with hypoxia, nutrient deficiency and inflammatory stimuli. Glycolysis provides rapid energy supply and biosynthetic precursors to support pathogenic growth of these seeds. The metabolite lactate accumulated during this process in turn condition the soil microenvironment and affect seeds growth by modulating signalling pathways and directing lactylation modifications. This review explores in depth the survival mechanism of seeds with high metabolic demands in the poor soil of RA synovium, providing useful support for elucidating the etiology of RA. In addition, we discuss the role and major post-translational modifications of proteins and enzymes linked to glycolysis to inspire the discovery of novel anti-rheumatic targets.


Assuntos
Artrite Reumatoide , Glicólise , Membrana Sinovial , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Humanos , Animais , Membrana Sinovial/patologia , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Transdução de Sinais
17.
Ann Plast Surg ; 92(5): 528-532, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38685493

RESUMO

ABSTRACT: Synovial lipomatosis is a rare condition characterized by adipocyte proliferation within joint synovial tissue. It most commonly affects the knee and is typically intra-articular. Only 5 published case reports describe extra-articular synovial lipomatosis of the wrist. We present a case of a sexagenarian patient seen for his wrist arthropathy. His x-ray revealed pan-wrist arthritis and inflammatory soft tissue swelling. The patient was slated for a wrist fusion and Darrach procedure. Following the dorsal skin incision in the operating room, an unusual adipose mass was identified infiltrating all extensor compartments: midcarpal, radiocarpal, and distal radioulnar joints. The mass was excised and sent to pathology prior to proceeding with the slated surgery. Synovial lipomatosis was diagnosed postoperatively based on histopathology. Six weeks postoperatively, the wrist fusion had healed clinically and radiographically, and his pain had improved. There was no evidence of recurrence. Synovial lipomatosis is a rare entity that may imitate multiple other pathologies. It is possible that synovial lipomatosis may represent a secondary occurrence following degenerative articular disease or trauma in older patients. This is the first case report to date describing synovial lipomatosis of the wrist with extra-articular extension in the setting of pan-carpal wrist arthritis.


Assuntos
Lipomatose , Membrana Sinovial , Articulação do Punho , Humanos , Masculino , Lipomatose/cirurgia , Lipomatose/diagnóstico , Lipomatose/patologia , Articulação do Punho/cirurgia , Articulação do Punho/patologia , Articulação do Punho/diagnóstico por imagem , Membrana Sinovial/patologia , Artrite/diagnóstico , Artrite/cirurgia , Artrite/etiologia , Idoso
18.
Int J Immunogenet ; 51(3): 130-142, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38462560

RESUMO

Osteoarthritis (OA) is one of the most common degenerative diseases characterised by joint pain, swelling and decreased mobility, with its main pathological features being articular synovitis, cartilage degeneration and osteophyte formation. Inflammatory cytokines and chemokines secreted by activated immunocytes can trigger various inflammatory and immune responses in articular cartilage and synovium, contributing to the genesis and development of OA. A series of monocyte/macrophage chemokines, including monocyte chemotaxis protein (MCP)-1/CCL2, MCP2/CCL8, macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1ß/CCL4, MIP-3α/CCL20, regulated upon activation, normal T-cell expressed and secreted /CCL5, CCL17 and macrophage-derived chemokine/CCL22, was proven to transmit cell signals by binding to G protein-coupled receptors on recipient cell surface, mediating and promoting inflammation in OA joints. However, the underlying mechanism of these chemokines in the pathogenesis of OA remains still elusive. Here, published literature was reviewed, and the function and mechanisms of monocyte/macrophage chemokines in OA pathogenesis were summarised. The symptoms and disease progression of OA were found to be effectively alleviated when the expression of these chemokines is inhibited. Elucidating these mechanisms could contribute to further understand how OA develops and provide potential targets for the early diagnosis of arthritis and drug treatment to delay or even halt OA progression.


Assuntos
Quimiocinas , Macrófagos , Monócitos , Osteoartrite , Humanos , Osteoartrite/imunologia , Osteoartrite/patologia , Osteoartrite/metabolismo , Quimiocinas/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Cartilagem Articular/patologia , Cartilagem Articular/imunologia , Cartilagem Articular/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Membrana Sinovial/metabolismo
19.
Arthritis Res Ther ; 26(1): 77, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532447

RESUMO

OBJECTIVES: Peptidoglycan (PG) is an arthritogenic bacterial cell wall component whose role in human osteoarthritis is poorly understood. The purpose of this study was to determine if PG is present in synovial tissue of osteoarthritis patients at the time of primary total knee arthroplasty (TKA), and if its presence is associated with inflammation and patient reported outcomes. METHODS: Intraoperative synovial tissue and synovial fluid samples were obtained from 56 patients undergoing primary TKA, none of whom had history of infection. PG in synovial tissue was detected by immunohistochemistry (IHC) and immunofluorescence microscopy (IFM). Synovial tissue inflammation and fibrosis were assessed by histopathology and synovial fluid cytokine quantification. Primary human fibroblasts isolated from arthritis synovial tissue were stimulated with PG to determine inflammatory cytokine response. RESULTS: A total of 33/56 (59%) of primary TKA synovial tissue samples were positive for PG by IHC, and PG staining colocalized with markers of synovial macrophages and fibroblasts by IFM. Synovial tissue inflammation and elevated IL-6 in synovial fluid positively correlated with PG positivity. Primary human fibroblasts stimulated with PG secreted high levels of IL-6, consistent with ex vivo findings. Interestingly, we observed a significant inverse correlation between PG and age at time of TKA, indicating younger age at time of TKA was associated with higher PG levels. CONCLUSION: Peptidoglycan is commonly found in synovial tissue from patients undergoing TKA. Our data indicate that PG may play an important role in inflammatory synovitis, particularly in patients who undergo TKA at a relatively younger age.


Assuntos
Osteoartrite , Peptidoglicano , Humanos , Interleucina-6 , Membrana Sinovial/patologia , Osteoartrite/patologia , Líquido Sinovial , Citocinas , Inflamação/patologia , Parede Celular/patologia
20.
J Bone Miner Res ; 39(2): 161-176, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38477740

RESUMO

Osteoarthritis (OA) affects multiple tissues in the knee joint, including the synovium and intra-articular adipose tissue (IAAT) that are attached to each other. However, whether these two tissues share the same progenitor cells and hence function as a single unit in joint homeostasis and diseases is largely unknown. Single-cell transcriptomic profiling of synovium and infrapatellar fat pad (IFP), the largest IAAT, from control and OA mice revealed five mesenchymal clusters and predicted mesenchymal progenitor cells (MPCs) as the common progenitors for other cells: synovial lining fibroblasts (SLFs), myofibroblasts (MFs), and preadipocytes 1 and 2. Histologic examination of joints in reporter mice having Dpp4-CreER and Prg4-CreER that label MPCs and SLFs, respectively, demonstrated that Dpp4+ MPCs reside in the synovial sublining layer and give rise to Prg4+ SLFs and Perilipin+ adipocytes during growth and OA progression. After OA injury, both MPCs and SLFs gave rise to MFs, which remained in the thickened synovium at later stages of OA. In culture, Dpp4+ MPCs possessed mesenchymal progenitor properties, such as proliferation and multilineage differentiation. In contrast, Prg4+ SLFs did not contribute to adipocytes in IFP and Prg4+ cells barely grew in vitro. Taken together, we demonstrate that the synovium and joint fat pad are one integrated functional tissue sharing common mesenchymal progenitors and undergoing coordinated changes during OA progression.


Both synovium and intra-articular adipose tissue (IAAT) in knee joint play a critical role in joint health and osteoarthritis (OA) progression. Recent single-cell RNA-sequencing studies have been performed on the mouse and human synovium. However, IAATs residing in close proximity to the synovium have not been studied yet. Our study reveals mesenchymal cell heterogeneity of synovium/infrapatellar fat pad (Syn/IFP) tissue and their OA responses. We identify Dpp4+ multipotent progenitors as a source that give rise to Prg4+ lining layer fibroblasts in the synovium, adipocytes in the IFP, and myofibroblasts in the OA Syn/IFP tissue. Our work demonstrates that Syn/IFP is a functionally connected tissue that shares common mesenchymal progenitors and undergoes coordinated OA changes. This novel insight advances our knowledge of previously understudied joint tissues and provides new directions for drug discovery to treat joint disorders.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Membrana Sinovial , Animais , Membrana Sinovial/patologia , Membrana Sinovial/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Camundongos , Osteoartrite/patologia , Osteoartrite/metabolismo , Patela/patologia , Patela/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA