Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Respir Res ; 25(1): 271, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987753

RESUMO

BACKGROUND: Airway epithelial cell (AEC) necroptosis contributes to airway allergic inflammation and asthma exacerbation. Targeting the tumor necrosis factor-like ligand 1 A (TL1A)/death receptor 3 (DR3) axis has a therapeutic effect on asthmatic airway inflammation. The role of TL1A in mediating necroptosis of AECs challenged with ovalbumin (OVA) and its contribution to airway inflammation remains unclear. METHODS: We evaluated the expression of the receptor-interacting serine/threonine-protein kinase 3(RIPK3) and the mixed lineage kinase domain-like protein (MLKL) in human serum and lung, and histologically verified the level of MLKL phosphorylation in lung tissue from asthmatics and OVA-induced mice. Next, using MLKL knockout mice and the RIPK3 inhibitor GSK872, we investigated the effects of TL1A on airway inflammation and airway barrier function through the activation of necroptosis in experimental asthma. RESULTS: High expression of necroptosis marker proteins was observed in the serum of asthmatics, and necroptosis was activated in the airway epithelium of both asthmatics and OVA-induced mice. Blocking necroptosis through MLKL knockout or RIPK3 inhibition effectively attenuated parabronchial inflammation, mucus hypersecretion, and airway collagen fiber accumulation, while also suppressing type 2 inflammatory factors secretion. In addition, TL1A/ DR3 was shown to act as a death trigger for necroptosis in the absence of caspases by silencing or overexpressing TL1A in HBE cells. Furthermore, the recombinant TL1A protein was found to induce necroptosis in vivo, and knockout of MLKL partially reversed the pathological changes induced by TL1A. The necroptosis induced by TL1A disrupted the airway barrier function by decreasing the expression of tight junction proteins zonula occludens-1 (ZO-1) and occludin, possibly through the activation of the NF-κB signaling pathway. CONCLUSIONS: TL1A-induced airway epithelial necroptosis plays a significant role in promoting airway inflammation and barrier dysfunction in asthma. Inhibition of the TL1A-induced necroptosis pathway could be a promising therapeutic strategy.


Assuntos
Asma , Camundongos Knockout , Necroptose , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Animais , Asma/metabolismo , Asma/patologia , Necroptose/fisiologia , Humanos , Camundongos , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Masculino , Feminino , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Camundongos Endogâmicos C57BL , Proteínas Quinases/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Ovalbumina/toxicidade
2.
Int J Biol Macromol ; 275(Pt 2): 133703, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38986982

RESUMO

Despite the high mortality rate associated with sepsis, no specific drugs are available. Decoy receptor 3 (DcR3) is now considered a valuable biomarker and therapeutic target for managing inflammatory conditions. DcR3-SUMO, an analog of DcR3, has a simple production process and high yield. However, its precise underlying mechanisms in sepsis remain unclear. This study investigated the protective effects of DcR3-SUMO on lipopolysaccharide (LPS)-induced inflammatory cells and septic mice. We evaluated the effects of DcR3 intervention and overexpression on intracellular inflammatory cytokine levels in vitro. DcR3-SUMO significantly reduced cytokine levels within inflammatory cells, and notably increased DcR3 protein and mRNA levels in LPS-induced septic mice, confirming its anti-inflammatory efficacy. Our in vitro and in vivo results demonstrated comparable anti-inflammatory effects between DcR3-SUMO and native DcR3. DcR3-SUMO protein administration in septic mice notably enhanced tissue morphology, decreased sepsis scores, and elevated survival rates. Furthermore, DcR3-SUMO treatment effectively lowered inflammatory cytokine levels in the serum, liver, and lung tissues, and mitigated the extent of tissue damage. AlphaFold3 structural predictions indicated that DcR3-SUMO, similar to DcR3, effectively interacts with the three pro-apoptotic ligands, namely TL1A, LIGHT, and FasL. Collectively, DcR3-SUMO and DcR3 exhibit comparable anti-inflammatory effects, making DcR3-SUMO a promising therapeutic agent for sepsis.


Assuntos
Citocinas , Lipopolissacarídeos , Membro 6b de Receptores do Fator de Necrose Tumoral , Sepse , Animais , Sepse/metabolismo , Sepse/tratamento farmacológico , Membro 6b de Receptores do Fator de Necrose Tumoral/metabolismo , Membro 6b de Receptores do Fator de Necrose Tumoral/genética , Camundongos , Citocinas/metabolismo , Inflamação/metabolismo , Masculino , Humanos , Proteínas Recombinantes de Fusão/farmacologia , Anti-Inflamatórios/farmacologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Camundongos Endogâmicos C57BL
3.
Int Immunopharmacol ; 137: 112360, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38852524

RESUMO

Sarcoidosis is a systemic granulomatous disease characterized by non-caseating epithelioid cell granulomas. One of its immunological hallmarks is the differentiation of CD4 + naïve T cells into Th1/Th17 cells, accompanied by the release of numerous pro-inflammatory cytokines. The TL1A/DR3 signaling pathway plays a crucial role in activating effector lymphocytes, thereby triggering pro-inflammatory responses. The primary aim of this investigation was to scrutinize the impact of anti-TL1A monoclonal antibody on the dysregulation of Th1/Th17 cells and granuloma formation in sarcoidosis. Initially, the abnormal activation of the TL1A/DR3 signaling pathway in pulmonary tissues of sarcoidosis patients was confirmed using qPCR and immunohistochemistry techniques. Subsequently, employing a murine model of sarcoidosis, the inhibitory effects of anti-TL1A monoclonal antibody on the TL1A/DR3 signaling pathway in sarcoidosis were investigated through qPCR, immunohistochemistry, and Western blot experiments. The influence of anti-TL1A monoclonal antibody on granulomas was assessed through HE staining, while their effects on sarcoidosis Th1/Th17 cells and associated cytokine mRNA levels were evaluated using flow cytometry and qPCR, respectively. Immunofluorescence and Western blot experiments corroborated the inhibitory effects of anti-TL1A monoclonal antibody on the aberrant activation of the PI3K/AKT signaling pathway in sarcoidosis. The findings of this study indicate that the TL1A/DR3 signaling pathway is excessively activated in sarcoidosis. Anti-TL1A monoclonal antibody effectively inhibit this abnormal activation in sarcoidosis, thereby alleviating the dysregulation of Th1/Th17 cells and reducing the formation of pulmonary granulomas. This effect may be associated with the inhibition of the downstream PI3K/AKT signaling pathway. Anti-TL1A monoclonal antibody hold promise as a potential novel therapeutic intervention for sarcoidosis.


Assuntos
Anticorpos Monoclonais , Granuloma , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Sarcoidose , Transdução de Sinais , Células Th1 , Células Th17 , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Animais , Células Th1/imunologia , Células Th17/imunologia , Transdução de Sinais/efeitos dos fármacos , Humanos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/imunologia , Granuloma/imunologia , Granuloma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/imunologia , Feminino , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Masculino , Sarcoidose/imunologia , Sarcoidose/tratamento farmacológico , Camundongos , Adulto , Pessoa de Meia-Idade , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/imunologia , Pulmão/imunologia , Pulmão/patologia , Citocinas/metabolismo , Citocinas/imunologia , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
4.
Curr Med Sci ; 44(3): 519-528, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842774

RESUMO

OBJECTIVE: Intestinal fibrosis is a refractory complication of inflammatory bowel disease (IBD). Tumor necrosis factor ligand-related molecule-1A (TL1A) is important for IBD-related intestinal fibrosis in a dextran sodium sulfate (DSS)-induced experimental colitis model. This study aimed to explore the effects of TL1A on human colonic fibroblasts. METHODS: A trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis model of LCK-CD2-TL1A-GFP transgenic (Tg) or wild-type (WT) mice was established to determine the effect and mechanism of TL1A on intestinal fibrosis. The human colonic fibroblast CCD-18Co cell line was treated concurrently with TL1A and human peripheral blood mononuclear cell (PBMC) supernatant. The proliferation and activation of CCD-18Co cells were detected by BrdU assays, flow cytometry, immunocytochemistry and Western blotting. Collagen metabolism was tested by Western blotting and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: The level of collagen metabolism in the TNBS+ethyl alcohol (EtOH)/Tg group was greater than that in the TNBS+EtOH/WT group. Transforming growth factor-ß1 (TGF-ß1) and p-Smad3 in the TNBS+EtOH/Tg group were upregulated as compared with those in the TNBS+EtOH/WT group. The proliferation of CCD-18Co cells was promoted by the addition of human PBMC supernatant supplemented with 20 ng/mL TL1A, and the addition of human PBMC supernatant and TL1A increased CCD-18Co proliferation by 24.4% at 24 h. TL1A promoted cell activation and increased the levels of COL1A2, COL3A1, and TIMP-1 in CCD-18Co cells. Treatment of CCD-18Co cells with TL1A increased the expression of TGF-ß1 and p-Smad3. CONCLUSION: TL1A promotes TGF-ß1-mediated intestinal fibroblast activation, proliferation, and collagen deposition and is likely related to an increase in the TGF-ß1/Smad3 signaling pathway.


Assuntos
Proliferação de Células , Fibroblastos , Fibrose , Transdução de Sinais , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Humanos , Fibroblastos/metabolismo , Fibroblastos/patologia , Animais , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Camundongos , Colo/metabolismo , Colo/patologia , Colite/metabolismo , Colite/induzido quimicamente , Colite/patologia , Colite/genética , Linhagem Celular , Camundongos Transgênicos , Ácido Trinitrobenzenossulfônico , Modelos Animais de Doenças , Leucócitos Mononucleares/metabolismo
5.
Cell Mol Immunol ; 21(8): 807-825, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38839915

RESUMO

Acute systemic inflammation critically alters the function of the immune system, often promoting myelopoiesis at the expense of lymphopoiesis. In the thymus, systemic inflammation results in acute thymic atrophy and, consequently, impaired T-lymphopoiesis. The mechanism by which systemic inflammation impacts the thymus beyond suppressing T-cell development is still unclear. Here, we describe how the synergism between TL1A and IL-18 suppresses T-lymphopoiesis to promote thymic myelopoiesis. The protein levels of these two cytokines were elevated in the thymus during viral-induced thymus atrophy infection with murine cytomegalovirus (MCMV) or pneumonia virus of mice (PVM). In vivo administration of TL1A and IL-18 induced acute thymic atrophy, while thymic neutrophils expanded. Fate mapping with Ms4a3-Cre mice demonstrated that thymic neutrophils emerge from thymic granulocyte-monocyte progenitors (GMPs), while Rag1-Cre fate mapping revealed a common developmental path with lymphocytes. These effects could be modeled ex vivo using neonatal thymic organ cultures (NTOCs), where TL1A and IL-18 synergistically enhanced neutrophil production and egress. NOTCH blockade by the LY411575 inhibitor increased the number of neutrophils in the culture, indicating that NOTCH restricted steady-state thymic granulopoiesis. To promote myelopoiesis, TL1A, and IL-18 synergistically increased GM-CSF levels in the NTOC, which was mainly produced by thymic ILC1s. In support, TL1A- and IL-18-induced granulopoiesis was completely prevented in NTOCs derived from Csf2rb-/- mice and by GM-CSFR antibody blockade, revealing that GM-CSF is the essential factor driving thymic granulopoiesis. Taken together, our findings reveal that TL1A and IL-18 synergism induce acute thymus atrophy while  promoting extramedullary thymic granulopoiesis in a NOTCH and GM-CSF-controlled manner.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Interleucina-18 , Timo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Animais , Interleucina-18/metabolismo , Timo/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Camundongos , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Granulócitos/metabolismo , Mielopoese , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptores Notch/metabolismo , Linfopoese , Atrofia
6.
Med ; 5(5): 386-400, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38574740

RESUMO

The pivotal role of TL1A in modulating immune pathways crucial for inflammatory bowel disease (IBD) and intestinal fibrosis offers a promising therapeutic target. Phase 2 trials (TUSCANY and ARTEMIS-UC) evaluating an anti-TL1A antibody show progress in expanding IBD therapeutic options. First-in-human data reveal reduced expression of genes associated with extracellular matrix remodeling and fibrosis post-anti-TL1A treatment. Investigational drug TEV-48574, potentially exerting dual antifibrotic and anti-inflammatory effects, is undergoing a phase 2 basket study in both ulcerative colitis (UC) and Crohn disease (CD). Results are eagerly awaited, marking advancements in IBD therapeutics. This critical review comprehensively examines the existing literature, illuminating TL1A and the intricate role of DR3 in IBD, emphasizing the evolving therapeutic landscape and ongoing clinical trials, with potential implications for more effective IBD management.


Assuntos
Fibrose , Doenças Inflamatórias Intestinais , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Humanos , Fibrose/tratamento farmacológico , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/antagonistas & inibidores , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Doença de Crohn/tratamento farmacológico , Doença de Crohn/imunologia , Doença de Crohn/patologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia
7.
Mucosal Immunol ; 17(4): 537-553, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38493956

RESUMO

Multi-cytokine-producing Th9 cells secrete IL-9 and type 2 cytokines and mediate mouse and human allergic inflammation. However, the cytokines that promote a multi-cytokine secreting phenotype have not been defined. Tumor necrosis factor superfamily member TL1A signals through its receptor DR3 to increase IL-9. Here we demonstrate that TL1A increases expression of IL-9 and IL-13 co-expressing cells in murine Th9 cell cultures, inducing a multi-cytokine phenotype. Mechanistically, this is linked to histone modifications allowing for increased accessibility at the Il9 and Il13 loci. We further show that TL1A alters the transcription factor network underlying expression of IL-9 and IL-13 in Th9 cells and increases binding of transcription factors to Il9 and Il13 loci. TL1A-priming enhances the pathogenicity of Th9 cells in murine models of allergic airway disease through the increased expression of IL-9 and IL-13. Lastly, in both chronic and memory-recall models of allergic airway disease, blockade of TL1A signaling decreases the multi-cytokine Th9 cell population and attenuates the allergic phenotype. Taken together, these data demonstrate that TL1A promotes the development of multi-cytokine Th9 cells that drive allergic airway diseases and that targeting pathogenic T helper cell-promoting cytokines could be an effective approach for modifying disease.


Assuntos
Asma , Modelos Animais de Doenças , Interleucina-9 , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Animais , Camundongos , Asma/imunologia , Asma/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Interleucina-9/metabolismo , Interleucina-9/genética , Linfócitos T Auxiliares-Indutores/imunologia , Humanos , Fenótipo , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/genética , Transdução de Sinais , Citocinas/metabolismo , Interleucina-13/metabolismo , Camundongos Knockout , Inflamação/imunologia , Células Cultivadas
8.
Cell Death Dis ; 15(2): 118, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331883

RESUMO

Diabetic retinopathy is a common microvascular complication of diabetes and a leading cause of blindness. Pyroptosis has emerged as a mechanism of cell death involved in diabetic retinopathy pathology. This study explored the role of GSDME-mediated pyroptosis and its regulation by TNFSF15 in diabetic retinopathy. We found GSDME was upregulated in the progression of diabetic retinopathy. High glucose promoted GSDME-induced pyroptosis in retinal endothelial cells and retinal pigment epithelial cells, attributed to the activation of caspase-3 which cleaves GSDME to generate the pyroptosis-executing N-terminal fragment. TNFSF15 was identified as a binding partner and inhibitor of GSDME-mediated pyroptosis. TNFSF15 expression was increased by high glucose but suppressed by the caspase-3 activator Raptinal. Moreover, TNFSF15 protein inhibited high glucose- and Raptinal-induced pyroptosis by interacting with GSDME in retinal cells. Collectively, our results demonstrate TNFSF15 inhibits diabetic retinopathy progression by blocking GSDME-dependent pyroptosis of retinal cells, suggesting the TNFSF15-GSDME interaction as a promising therapeutic target for diabetic retinopathy.


Assuntos
Ciclopentanos , Diabetes Mellitus , Retinopatia Diabética , Fluorenos , Humanos , Piroptose/fisiologia , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Caspase 3/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Diabetes Mellitus/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
9.
Cancer Biol Med ; 20(11)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37921408

RESUMO

OBJECTIVE: Immature vasculature lacking pericyte coverage substantially contributes to tumor growth, drug resistance, and cancer cell dissemination. We previously demonstrated that tumor necrosis factor superfamily 15 (TNFSF15) is a cytokine with important roles in modulating hematopoiesis and vascular homeostasis. The main purpose of this study was to explore whether TNFSF15 might promote freshly isolated myeloid cells to differentiate into CD11b+ cells and further into pericytes. METHODS: A model of Lewis lung cancer was established in mice with red fluorescent bone marrow. After TNFSF15 treatment, CD11b+ myeloid cells and vascular pericytes in the tumors, and the co-localization of pericytes and vascular endothelial cells, were assessed. Additionally, CD11b+ cells were isolated from wild-type mice and treated with TNFSF15 to determine the effects on the differentiation of these cells. RESULTS: We observed elevated percentages of bone marrow-derived CD11b+ myeloid cells and vascular pericytes in TNFSF15-treated tumors, and the latter cells co-localized with vascular endothelial cells. TNFSF15 protected against CD11b+ cell apoptosis and facilitated the differentiation of these cells into pericytes by down-regulating Wnt3a-VEGFR1 and up-regulating CD49e-FN signaling pathways. CONCLUSIONS: TNFSF15 facilitates the production of CD11b+ cells in the bone marrow and promotes the differentiation of these cells into pericytes, which may stabilize the tumor neovasculature.


Assuntos
Neoplasias , Pericitos , Animais , Humanos , Camundongos , Diferenciação Celular , Células Endoteliais , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Neoplasias/metabolismo , Pericitos/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/farmacologia , Fatores de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/farmacologia
10.
Proc Natl Acad Sci U S A ; 120(34): e2120771120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579137

RESUMO

The binding of tumor necrosis factor-like cytokine 1A (TL1A) to death receptor 3 (DR3) plays an important role in the interaction between dendritic cells (DCs) and T cells and contributes to intestinal inflammation development. However, the mechanism by which DCs expressing TL1A mediate helper T (Th) cell differentiation in the intestinal lamina propria (LP) during the pathogenesis of inflammatory bowel disease remains unclear. In this study, we found that TL1A/DR3 promoted Th1 and Th17 cell differentiation in T-T and DC-T cell interaction-dependent manners. TL1A-deficient CD4+ T cells failed to polarize into Th1/Th17 cells and did not cause colonic inflammation in a T cell transfer colitis model. Notably, TL1A was located in the cytoplasm and nuclei of DCs, positively regulated the DC-specific ICAM-grabbing nonintegrin/RAF1/nuclear factor κB signaling pathway, enhanced the antigen uptake ability of DCs, and promoted TLR4-mediated DC activation, inducing naive CD4+ T cell differentiation into Th1 and Th17 cells. Our work reveals that TL1A plays a regulatory role in inflammatory bowel disease pathogenesis.


Assuntos
Doenças Inflamatórias Intestinais , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Humanos , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Inflamação/metabolismo , Fator de Necrose Tumoral alfa
11.
Stem Cell Rev Rep ; 19(7): 2481-2496, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37535186

RESUMO

BACKGROUND: Protection of cardiac function following myocardial infarction was largely enhanced by bradykinin-pretreated cardiac-specific c-kit+ (BK-c-kit+) cells, even without significant engraftment, indicating that paracrine actions of BK-c-kit+ cells play a pivotal role in angiogenesis. Nevertheless, the active components of the paracrine actions of BK-c-kit+ cells and the underlying mechanisms remain unknown. This study aimed to define the active components of exosomes from BK-c-kit+ cells and elucidate their underlying protective mechanisms. METHODS: Matrigel tube formation assay, cell cycle, and mobility in human umbilical vein endothelial cells (HUVECs) and hindlimb ischemia (HLI) in mice were applied to determine the angiogenic effect of condition medium (CM) and exosomes. Proteome profiler, microRNA sponge, Due-luciferase assay, microRNA-sequencing, qRT-PCR, and Western blot were used to determine the underlying mechanism of the angiogenic effect of exosomes from BK-c-kit+. RESULTS: As a result, BK-c-kit+ CM and exosomes promoted tube formation in HUVECs and the repair of HLI in mice. Angiogenesis-related proteomic profiling and microRNA sequencing revealed highly enriched miR-3059-5p as a key angiogenic component of BK-c-kit+ exosomes. Meanwhile, loss- and gain-of-function experiments revealed that the promotion of angiogenesis by miR-3059-5p was mainly through suppression of TNFSF15-inhibited effects on vascular tube formation, cell proliferation and cell migration. Moreover, enhanced angiogenesis of miR-3059-5p-inhibited TNFSF15 has been associated with Akt/Erk1/2/Smad2/3-modulated signaling pathway. CONCLUSION: Our results demonstrated a novel finding that BK-c-kit+ cells enrich exosomal miR-3059-5p to suppress TNFSF15 and promote angiogenesis against hindlimb ischemia in mice.


Assuntos
Bradicinina , MicroRNAs , Humanos , Camundongos , Animais , Bradicinina/metabolismo , Proteômica , Neovascularização Fisiológica/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Isquemia/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Membro Posterior/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
12.
Chemosphere ; 336: 139204, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315852

RESUMO

In the last decades, per- and poly-fluoroalkyl substances (PFAS), widely used industrial chemicals, have been in the center of attention because of their omnipotent presence in water and soils worldwide. Although efforts have been made to substitute long-chain PFAS towards safer alternatives, their persistence in humans still leads to exposure to these compounds. PFAS immunotoxicity is poorly understood as no comprehensive analyses on certain immune cell subtypes exist. Furthermore, mainly single entities and not PFAS mixtures have been assessed. In the present study we aimed to investigate the effect of PFAS (short-chain, long-chain and a mixture of both) on the in vitro activation of primary human immune cells. Our results show the ability of PFAS to reduce T cells activation. In particular, exposure to PFAS affected T helper cells, cytotoxic T cells, Natural Killer T cells, and Mucosal associated invariant T (MAIT) cells, as assessed by multi-parameter flow cytometry. Furthermore, the exposure to PFAS reduced the expression of several genes involved in MAIT cells activation, including chemokine receptors, and typical proteins of MAIT cells, such as GZMB, IFNG and TNFSF15 and transcription factors. These changes were mainly induced by the mixture of both short- and long-chain PFAS. In addition, PFAS were able to reduce basophil activation induced by anti-FcεR1α, as assessed by the decreased expression of CD63. Our data clearly show that the exposure of immune cells to a mixture of PFAS at concentrations mimicking real-life human exposure resulted in reduced cell activation and functional changes of primary innate and adaptive human immune cells.


Assuntos
Fluorocarbonos , Células T Invariantes Associadas à Mucosa , Humanos , Basófilos , Células T Invariantes Associadas à Mucosa/metabolismo , Citometria de Fluxo , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
13.
Virology ; 585: 91-99, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321146

RESUMO

For patients with cirrhosis, early diagnosis is the key to delaying the development of liver fibrosis and improving prognosis. This study aimed to investigate the clinical significance of TL1A, which is a susceptibility gene for hepatic fibrosis, and DR3 in the development of cirrhosis and fibrosis. We analyzed the expression of TL1A, DR3, and other inflammatory cytokines associated with liver fibrosis in serum and PBMCs in 200 patients.TL1A methylation level was lower in patients with HBV-associated LC than in the other groups. In addition, the mRNA level and serum of TL1A and DR3 expression levels were found to increase in the LC. Hypomethylation of the TL1A promoter is present in HBV-associated LC, and TL1A and DR3 are highly expressed in HBV-associated cirrhosis. These results indicate that TL1A and DR3 may play an important role in the pathogenesis of LC and TL1A methylation levels may serve as a noninvasive biomarker for early diagnosis and progression of LC.


Assuntos
Vírus da Hepatite B , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Humanos , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Fibrose , Cirrose Hepática/diagnóstico , Cirrose Hepática/genética , Fator de Necrose Tumoral alfa
14.
Cartilage ; 14(2): 235-246, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36799242

RESUMO

OBJECTIVE: Osteoarthritis (OA) is the most prevalent joint disease characterized by the degeneration of articular cartilage and the remodeling of its underlying bones, resulting in pain and loss of function in the knees and hips. As far as we know, no curative treatments are available except for the joint replacement. The precise molecular mechanisms which are involved in the degradation of cartilage matrix and development of osteoarthritis are still unclear. DESIGN: By analyzing RNA-seq data, we found the molecular changes at the transcriptome level such as alternative splicing, gene expression, and molecular pathways in OA knees cartilage. RESULTS: Expression analysis have identified 457 differential expressed genes including 266 up-regulated genes such as TNFSF15, ST6GALNAC5, TGFBI, ASPM, and TYM, and 191 down-regulated genes such as ADM, JUN, IRE2, PIGA, and MAFF. Gene set enrichment analysis (GSEA) analysis identified down-regulated pathways related to translation, transcription, immunity, PI3K/AKT, and circadian as well as disturbed pathways related to extracellular matrix and collagen. Splicing analysis identified 442 differential alternative splicing events within 284 genes in osteoarthritis, including genes involved in extracellular matrix (ECM) and alternative splicing, and TIA1 was identified as a key regulator of these splicing events. CONCLUSIONS: These findings provide insights into disease etiology, and offer favorable information to support the development of more effective interventions in response to the global clinical challenge of osteoarthritis.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Transcriptoma/genética , Processamento Alternativo/genética , Fosfatidilinositol 3-Quinases/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Cartilagem Articular/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
15.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768135

RESUMO

Atopic dermatitis (AD) is a common chronic skin disease with pruritus, affecting 5-20% of the population in developed countries. Though its cause varies from genetic polymorphisms to the environmental factors, the T-helper (Th) 2 inflammation is one of the main characteristic pathoses. TNF superfamily ligand A (TL1A) is a recently discovered cytokine, which is released by various immune cells and reported to have an ability to stimulate Th1, Th2, and Th17 responses. Its association was investigated in chronic inflammatory disease, such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, its role on AD is unclear. To elucidate the association of TL1A in AD, we measured the serum TL1A levels in AD patients and healthy controls and performed the immunohistochemistry of TL1A. The result showed that the serum TL1A levels were higher in AD patients than healthy controls, and they positively correlated with the serum immunoglobulin E levels, serum Lactate dehydrogenase, and the number of eosinophils in peripheral blood. The immunohistochemistry of TL1A also showed TL1A expression in epithelium of AD samples. Because previous studies indicate TL1A has a certain role as an inflammation enhancer in Th2 and/or Th17 polarized disease, TL1A in AD may also has a role as an inflammation generator.


Assuntos
Artrite Reumatoide , Dermatite Atópica , Humanos , Inflamação , Ligantes , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
16.
Front Immunol ; 13: 891328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911746

RESUMO

TL1A, also called TNFSF15, is a member of tumor necrosis factor family. It is expressed in different immune cell, such as monocyte, macrophage, dendritic cell, T cell and non-immune cell, for example, synovial fibroblast, endothelial cell. TL1A competitively binds to death receptor 3 or decoy receptor 3, providing stimulatory signal for downstream signaling pathways, and then regulates proliferation, activation, apoptosis of and cytokine, chemokine production in effector cells. Recent findings showed that TL1A was abnormally expressed in autoimmune diseases, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, primary biliary cirrhosis, systemic lupus erythematosus and ankylosing spondylitis. In vivo and in vitro studies further demonstrated that TL1A was involved in development and pathogenesis of these diseases. In this study, we comprehensively discussed the complex immunological function of TL1A and focused on recent findings of the pleiotropic activity conducted by TL1A in inflammatory autoimmune disease. Finish of the study will provide new ideas for developing therapeutic strategies for these diseases by targeting TL1A.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Doenças Inflamatórias Intestinais , Artrite Reumatoide/complicações , Doenças Autoimunes/complicações , Humanos , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
17.
Front Immunol ; 13: 854995, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359966

RESUMO

Tumor necrosis factor (TNF)-like cytokine 1A (TL1A), a member of the TNF family, exists in the form of membrane-bound (mTL1A) and soluble protein (sTL1A). TL1A binding its only known functional receptor death domain receptor 3 (DR3) affects the transmission of various signals. This study first proposed that the TL1A/DR3 axis was significantly upregulated in patients and mice with both asthma and high TNF-a expression and in TNF-a-stimulated epithelial Beas-2B cells. Two independent approaches were used to demonstrate that the TL1A/DR3 axis of mice was strongly correlated with TNF-a in terms of exacerbating asthmatic epithelial-mesenchymal transformation (EMT). First, high expression levels of EMT proteins (e.g., collagen I, fibronectin, N-cadherin, and vimentin) and TL1A/DR3 axis were observed when mice airways were stimulated by recombinant mouse TNF-a protein. Moreover, EMT protein and TL1A/DR3 axis expression synchronously decreased after mice with OVA-induced asthma were treated with infliximab by neutralizing TNF-a activity. Furthermore, the OVA-induced EMT of asthmatic mice was remarkably improved upon the deletion of the TL1A/DR3 axis by knocking out the TL1A gene. TL1A siRNA remarkably intervened EMT formation induced by TNF-a in the Beas-2B cells. In addition, EMT was induced by the addition of high concentrations of recombinant human sTL1A with the cell medium. The TL1A overexpression via pc-mTL1A in vitro remarkably increased the EMT formation induced by TNF-a. Overall, these findings indicate that the TL1A/DR3 axis may have a therapeutic role for asthmatic with high TNF-a level.


Assuntos
Asma , Membro 25 de Receptores de Fatores de Necrose Tumoral , Animais , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Camundongos , Ovalbumina , Membro 25 de Receptores de Fatores de Necrose Tumoral/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
18.
Oncoimmunology ; 11(1): 2032918, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35127254

RESUMO

Macrophages of the M2 phenotype in malignant tumors significantly aid tumor progression and metastasis, as opposed to the M1 phenotype that exhibits anti-cancer characteristics. Raising the ratio of M1/M2 is thus a promising strategy to ameliorate the tumor immunomicroenvironment toward cancer inhibition. We report here that tumor necrosis factor superfamily-15 (TNFSF15), a cytokine with anti-angiogenic activities, is able to facilitate the differentiation and polarization of macrophages toward M1 phenotype. We found that tumors formed in mice by Lewis lung carcinoma (LLC) cells artificially overexpressing TNFSF15 exhibited retarded growth. The tumors displayed a greater percentage of M1 macrophages than those formed by mock-transfected LLC cells. Treatment of mouse macrophage RAW264.7 cells with recombinant TNFSF15 led to augmentation of the phagocytic and pro-apoptotic capacity of the macrophages against cancer cells. Mechanistically, TNFSF15 activated STAT1/3 in bone marrow cells and MAPK, Akt and STAT1/3 in naive macrophages. Additionally, TNFSF15 activated STAT1/3 but inactivated STAT6 in M2 macrophages. Modulations of these signals gave rise to a reposition of macrophage phenotypes toward M1. The ability of TNFSF15 to promote macrophage differentiation and polarization toward M1 suggests that this unique cytokine may have a utility in the reconstruction of the immunomicroenvironment in favor of tumor suppression.


Assuntos
Carcinoma Pulmonar de Lewis , Macrófagos , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Animais , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Diferenciação Celular , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Fenótipo , Células RAW 264.7 , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa
19.
Am J Pathol ; 192(4): 722-736, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35063404

RESUMO

Similar to the behavior of inflamed tubular epithelial cells, clear cell renal cell carcinoma (ccRCC) cells express death receptor 3 (DR3 or TNFSFR25) in situ, and expression increases with tumor grade. Surprisingly, E-selectin, which can be induced in endothelial cells by DR3 signaling, is also expressed by ccRCC cells and increases with tumor grade. In ccRCC organ cultures, addition of tumor necrosis factor-like 1A (TL1A or TNFSF15), the ligand for DR3, activates NF-κB and mitogen-activated protein kinases, induces both DR3 and E-selectin expression in an NF-κB-dependent manner, and promotes cell cycle entry. DR3 immunoprecipitated from ccRCC tissue contains sialyl Lewis X moieties (the ligand recognized by E-selectin), proximity ligation assays reveal DR3, and E-selectin interacts on ccRCC cells. Similar to that with the addition of TL1A, the addition of soluble E-selectin to ccRCC organ cultures activates NF-κB and mitogen-activated protein kinases in ccRCC cells and increases both DR3 and E-selectin expression and cell-cycle entry. In contrast, normal renal tubular epithelium, which poorly expresses DR3, is minimally responsive to either of these ligands. These data suggest a functional role for autocrine/paracrine DR3/E-selectin interactions in ccRCC and its progression, revealing a potential new target for therapeutic intervention.


Assuntos
Carcinoma de Células Renais , Selectina E , Neoplasias Renais , Membro 25 de Receptores de Fatores de Necrose Tumoral , Antígenos CD , Carcinoma de Células Renais/metabolismo , Selectina E/genética , Selectina E/metabolismo , Células Endoteliais/metabolismo , Feminino , Humanos , Neoplasias Renais/metabolismo , Ligantes , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/genética , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
20.
Toxicol Appl Pharmacol ; 436: 115854, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974051

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most malignant cancers worldwide. Nonylphenol (NP) is an endocrine-disruptor chemical and plays an important role in the development of cancers. However, the effects of NP on CRC remain unclear. In this study, we aimed to investigate the potential mechanisms of NP in the pathogenesis of CRC. METHODS: The levels of AhR, TL1A and HDAC2 in CRC tissues and endothelial cells were assessed by RT-qPCR or western blot. CHIP and dual luciferase reporter assays were used to confirm the interaction between AhR and HDAC2, or HNF4α and TL1A. The CCK8, would healing and tube formation assays were conducted to evaluate the proliferation, migration and angiogenesis of HUVECs. Western blot determined HNF4α protein and HNF4α acetylation levels. The secreted TL1A protein was detected by ELISA. The angiogenesis-related factor CD31 was tested by IHC. RESULTS: The expression level of AhR was significantly up-regulated in CRC tissues and endothelial cells. Moreover, NP activated the AhR pathway mediated colorectal endothelial cell angiogenesis and proliferation, while TL1A overexpression resisted these effects caused by NP. Besides, NP was found to modulate HNF4α deacetylation through AhR/HDAC2 to inhibit TL1A. Furthermore, in vivo experiments proved that NP regulated CRC growth and angiogenesis via AhR/HDAC2/HNF4α/TL1A axis. CONCLUSION: This study revealed that NP promoted CRC growth and angiogenesis through AhR/HDAC2/HNF4α/TL1A pathway and could be a new therapeutic target for CRC treatment.


Assuntos
Neoplasias Colorretais/induzido quimicamente , Fator 4 Nuclear de Hepatócito/metabolismo , Histona Desacetilase 2/metabolismo , Neovascularização Patológica/induzido quimicamente , Fenóis/efeitos adversos , Receptores de Hidrocarboneto Arílico/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA