Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
1.
Swiss Med Wkly ; 154: 3584, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39137358

RESUMO

INTRODUCTION: There is limited understanding of the pathomechanistic relationship between leptomeningeal collateral formation and ischaemic stroke aetiology. We aimed to assess the association of leptomeningeal collateral status and ischaemic stroke aetiology, using the widely recognised "Trial of Org 10172 in Acute Stroke Treatment" (TOAST) classification categorising strokes into five distinct aetiologies. METHODS: Retrospective study of consecutively admitted adult ischaemic stroke patients at a Swiss stroke centre. Leptomeningeal collateral status was assessed on admission with single-phase CT-angiographies using a validated 4-point score. Patients were categorised into large-artery atherosclerosis (LAA), cardioembolic (CE), small-vessel disease (SVD) and cryptogenic (CG) according to the TOAST classification. We performed ordinal and binary (poor [collaterals filling ≤50% of the occluded territory] vs good [collaterals filling >50% of the occluded territory] collateralisation) logistic regression to evaluate the impact of TOAST aetiology on collateral status. RESULTS: Among 191 patients, LAA patients had better collateral status compared to non-LAA aetiology (LAA: 2 vs CE: 2 vs SVD: 3 vs CG: 2, pLAA vs non-LAA = 0.04). In weighted multivariate logistic regression, LAA and SVD independently predicted better collateral status (binary models [adjusted odds ratio; aOR]: LAA: 3.72 [1.21-11.44] and SVD: 4.19 [1.21-14.52]; ordinal models [adjusted common odds ratio; acOR]: LAA: 2.26 [95% CI: 1.23-4.15] and SVD: 1.94 [1.03-3.66]), while CE predicted worse collateral status (binary models [aOR]: CE: 0.17 [0.07-0.41]; ordinal models [acOR]: CE: 0.24 [0.11-0.51]). CONCLUSION: The aetiology of ischaemic stroke is associated with leptomeningeal collateral status on single-phase CT-angiography, with LAA and SVD predicting better and CE predicting worse collateral status.


Assuntos
Circulação Colateral , AVC Isquêmico , Meninges , Humanos , Estudos Retrospectivos , Masculino , Feminino , Idoso , AVC Isquêmico/complicações , AVC Isquêmico/etiologia , AVC Isquêmico/fisiopatologia , AVC Isquêmico/diagnóstico por imagem , Suíça/epidemiologia , Meninges/irrigação sanguínea , Meninges/diagnóstico por imagem , Meninges/fisiopatologia , Pessoa de Meia-Idade , Angiografia por Tomografia Computadorizada/métodos , Angiografia Cerebral
2.
Theranostics ; 14(11): 4331-4351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113801

RESUMO

Background: The impediment to ß-amyloid (Aß) clearance caused by the invalid intracranial lymphatic drainage in Alzheimer's disease is pivotal to its pathogenesis, and finding reliable clinical available solutions to address this challenge remains elusive. Methods: The potential role and underlying mechanisms of intranasal oxytocin administration, an approved clinical intervention, in improving intracranial lymphatic drainage in middle-old-aged APP/PS1 mice were investigated by live mouse imaging, ASL/CEST-MRI scanning, in vivo two-photon imaging, immunofluorescence staining, ELISA, RT-qPCR, Western blotting, RNA-seq analysis, and cognitive behavioral tests. Results: Benefiting from multifaceted modulation of cerebral hemodynamics, aquaporin-4 polarization, meningeal lymphangiogenesis and transcriptional profiles, oxytocin administration normalized the structure and function of both the glymphatic and meningeal lymphatic systems severely impaired in middle-old-aged APP/PS1 mice. Consequently, this intervention facilitated the efficient drainage of Aß from the brain parenchyma to the cerebrospinal fluid and then to the deep cervical lymph nodes for efficient clearance, as well as improvements in cognitive deficits. Conclusion: This work broadens the underlying neuroprotective mechanisms and clinical applications of oxytocin medication, showcasing its promising therapeutic prospects in central nervous system diseases with intracranial lymphatic dysfunction.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Sistema Glinfático , Camundongos Transgênicos , Ocitocina , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Camundongos , Ocitocina/farmacologia , Ocitocina/administração & dosagem , Ocitocina/metabolismo , Sistema Glinfático/metabolismo , Sistema Glinfático/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Administração Intranasal , Linfangiogênese/efeitos dos fármacos , Masculino , Aquaporina 4/metabolismo , Aquaporina 4/genética , Humanos , Imageamento por Ressonância Magnética , Meninges/metabolismo , Meninges/efeitos dos fármacos , Meninges/diagnóstico por imagem
4.
PLoS One ; 19(5): e0300298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38809920

RESUMO

BACKGROUND/PURPOSE: Leptomeningeal enhancement (LME) on post-contrast FLAIR is described as a potential biomarker of meningeal inflammation in multiple sclerosis (MS). Here we report an assessment of the impact of MRI field strength and acquisition timing on meningeal contrast enhancement (MCE). METHODS: This was a cross-sectional, observational study of 95 participants with MS and 17 healthy controls (HC) subjects. Each participant underwent an MRI of the brain on both a 7 Tesla (7T) and 3 Tesla (3T) MRI scanner. 7T protocols included a FLAIR image before, soon after (Gd+ Early 7T FLAIR), and 23 minutes after gadolinium (Gd+ Delayed 7T FLAIR). 3T protocol included FLAIR before and 21 minutes after gadolinium (Gd+ Delayed 3T FLAIR). RESULTS: LME was seen in 23.3% of participants with MS on Gd+ Delayed 3T FLAIR, 47.4% on Gd+ Early 7T FLAIR (p = 0.002) and 57.9% on Gd+ Delayed 7T FLAIR (p < 0.001 and p = 0.008, respectively). The count and volume of LME, leptomeningeal and paravascular enhancement (LMPE), and paravascular and dural enhancement (PDE) were all highest for Gd+ Delayed 7T FLAIR and lowest for Gd+ Delayed 3T FLAIR. Non-significant trends were seen for higher proportion, counts, and volumes for LME and PDE in MS compared to HCs. The rate of LMPE was different between MS and HCs on Gd+ Delayed 7T FLAIR (98.9% vs 82.4%, p = 0.003). MS participants with LME on Gd+ Delayed 7T FLAIR were older (47.6 (10.6) years) than those without (42.0 (9.7), p = 0.008). CONCLUSION: 7T MRI and a delay after contrast injection increased sensitivity for all forms of MCE. However, the lack of difference between groups for LME and its association with age calls into question its relevance as a biomarker of meningeal inflammation in MS.


Assuntos
Meios de Contraste , Gadolínio , Imageamento por Ressonância Magnética , Meninges , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Feminino , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto , Meninges/diagnóstico por imagem , Meninges/patologia , Estudos Transversais , Pessoa de Meia-Idade , Gadolínio/administração & dosagem , Estudos de Casos e Controles , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Relevância Clínica
5.
Neuroradiology ; 66(8): 1335-1344, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38658472

RESUMO

PURPOSE: To avoid contrast administration in spontaneous intracranial hypotension (SIH), some studies suggest accepting diffuse pachymeningeal hyperintensity (DPMH) on non-contrast fluid-attenuated inversion recovery (FLAIR) as an equivalent sign to diffuse pachymeningeal enhancement (DPME) on contrast-enhanced T1WI (T1ce), despite lacking thorough performance metrics. This study aimed to comprehensively explore its feasibility. METHODS: In this single-center retrospective study, between April 2021 and November 2023, brain MRI examinations of 43 patients clinically diagnosed with SIH were assessed using 1.5 and 3.0 Tesla MRI scanners. Two radiologists independently assessed the presence or absence of DPMH on FLAIR and DPME on T1ce, with T1ce serving as a gold-standard for pachymeningeal thickening. The contribution of the subdural fluid collections to DPMH was investigated with quantitative measurements. Using Cohen's kappa statistics, interobserver agreement was assessed. RESULTS: In 39 out of 43 patients (90.7%), pachymeningeal thickening was observed on T1ce. FLAIR sequence produced an accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 72.1%, 71.8%, 75.0%, 96.6%, and 21.4% respectively, for determining pachymeningeal thickening. FLAIR identified pachymeningeal thickening in 28 cases; however, among these, 21 cases (75%) revealed that the pachymeningeal hyperintense signal was influenced by subdural fluid collections. False-negative rate for FLAIR was 28.2% (11/39). CONCLUSION: The lack of complete correlation between FLAIR and T1ce in identifying pachymeningeal thickening highlights the need for caution in removing contrast agent administration from the MRI protocol of SIH patients, as it reveals a major criterion (i.e., pachymeningeal enhancement) of Bern score.


Assuntos
Meios de Contraste , Hipotensão Intracraniana , Imageamento por Ressonância Magnética , Meninges , Humanos , Feminino , Masculino , Hipotensão Intracraniana/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Pessoa de Meia-Idade , Adulto , Meninges/diagnóstico por imagem , Meninges/patologia , Idoso , Sensibilidade e Especificidade , Estudos de Viabilidade , Aumento da Imagem/métodos
6.
Neuroreport ; 35(3): 160-169, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38305109

RESUMO

To investigate the distribution and characteristics of lymphatic vessels within the central nervous system, we focus on the meninges of the spinal cord and brain parenchyma in mice. Additionally, we aim to provide experimental methods for obtaining optimal imaging and clear structures of lymphatic vessels, while optimizing the perfusion parameters to improve histomorphological quality. Male C57BL/6J mice were randomly divided into four groups, with each group assigned a specific perfusion parameter based on perfusion volumes and temperatures. Immunofluorescence staining of lymphatics and blood vessels was performed on both meningeal and the brain tissue samples. Statistical analysis was performed using one-way analysis of variance to compare the groups, and a significant level of P < 0.05 was considered statistically significant. Our study reports the presence of lymphatic vessels in the meninges of the spinal cord and brain parenchyma in mice. We highlight the crucial role of high perfusion volume of paraformaldehyde with low temperature in fixation for achieving optimal results. We provide experimental methods for obtaining optimal imaging and clear structures of lymphatic vessels in the meninges of the spinal cord and brain parenchyma in mice, which contribute to our understanding of the distribution and characteristics of lymphatic vessels within the central nervous system. Further research is warranted to explore the functional implications of these lymphatic vessels and their potential therapeutic significance in neurodegenerative and neuroinflammatory diseases.


Assuntos
Sistema Nervoso Central , Vasos Linfáticos , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/fisiologia , Meninges/diagnóstico por imagem , Encéfalo , Perfusão
7.
Brain ; 147(7): 2566-2578, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38289855

RESUMO

Compartmentalized meningeal inflammation is thought to represent one of the key players in the pathogenesis of cortical demyelination in multiple sclerosis. PET targeting the 18 kDa mitochondrial translocator protein (TSPO) is a molecular-specific approach to quantifying immune cell-mediated density in the cortico-meningeal tissue compartment in vivo. This study aimed to characterize cortical and meningeal TSPO expression in a heterogeneous cohort of multiple sclerosis cases using in vivo simultaneous MR-PET with 11C-PBR28, a second-generation TSPO radioligand, and ex vivo immunohistochemistry. Forty-nine multiple sclerosis patients (21 with secondary progressive and 28 with relapsing-remitting multiple sclerosis) with mixed or high affinity binding for 11C-PBR28 underwent 90-min 11C-PBR28 simultaneous MR-PET. Tracer binding was measured using 60-90 min normalized standardized uptake value ratios sampled at mid-cortical depth and ∼3 mm above the pial surface. Data in multiple sclerosis patients were compared to 21 age-matched healthy controls. To characterize the nature of 11C-PBR28 PET uptake, the meningeal and cortical lesion cellular expression of TSPO was further described in post-mortem brain tissue from 20 cases with secondary progressive multiple sclerosis and five age-matched healthy donors. Relative to healthy controls, patients with multiple sclerosis exhibited abnormally increased TSPO signal in the cortex and meningeal tissue, diffusively in progressive disease and more localized in relapsing-remitting multiple sclerosis. In multiple sclerosis, increased meningeal TSPO levels were associated with increased Expanded Disability Status Scale scores (P = 0.007, by linear regression). Immunohistochemistry, validated using in situ sequencing analysis, revealed increased TSPO expression in the meninges and adjacent subpial cortical lesions of post-mortem secondary progressive multiple sclerosis cases relative to control tissue. In these cases, increased TSPO expression was related to meningeal inflammation. Translocator protein immunostaining was detected on meningeal MHC-class II+ macrophages and cortical-activated MHC-class II+ TMEM119+ microglia. In vivo arterial blood data and neuropathology showed that endothelial binding did not significantly account for increased TSPO cortico-meningeal expression in multiple sclerosis. Our findings support the use of TSPO-PET in multiple sclerosis for imaging in vivo inflammation in the cortico-meningeal brain tissue compartment and provide in vivo evidence implicating meningeal inflammation in the pathogenesis of the disease.


Assuntos
Meninges , Esclerose Múltipla , Tomografia por Emissão de Pósitrons , Receptores de GABA , Humanos , Receptores de GABA/metabolismo , Receptores de GABA/genética , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Tomografia por Emissão de Pósitrons/métodos , Meninges/metabolismo , Meninges/diagnóstico por imagem , Meninges/patologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Idoso , Córtex Cerebral/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Esclerose Múltipla Recidivante-Remitente/metabolismo , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Imageamento por Ressonância Magnética , Esclerose Múltipla Crônica Progressiva/metabolismo , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/patologia , Acetamidas , Piridinas
8.
Invest Radiol ; 59(3): 243-251, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493285

RESUMO

BACKGROUND: Leptomeningeal contrast enhancement (LME) on T2-weighted Fluid-Attenuated Inversion Recovery (T2-FLAIR) MRI is a reported marker of leptomeningeal inflammation, which is known to be associated with progression of multiple sclerosis (MS). However, this MRI approach, as typically implemented on clinical 3-tesla (T) systems, detects only a few enhancing foci in ~25% of patients and has thus been criticized as poorly sensitive. PURPOSE: To compare an optimized 3D real-reconstruction inversion recovery (Real-IR) MRI sequence on a clinical 3 T scanner to T2-FLAIR for prevalence, characteristics, and clinical/radiological correlations of LME. MATERIALS AND METHODS: We obtained 3D T2-FLAIR and Real-IR scans before and after administration of standard-dose gadobutrol in 177 scans of 154 participants (98 women, 64%; mean ± SD age: 49 ± 12 years), including 124 with an MS-spectrum diagnosis, 21 with other neurological and/or inflammatory disorders, and 9 without neurological history. We calculated contrast-to-noise ratios (CNR) in 20 representative LME foci and determined association of LME with cortical lesions identified at 7 T (n = 19), paramagnetic rim lesions (PRL) at 3 T (n = 105), and clinical/demographic data. RESULTS: We observed focal LME in 73% of participants on Real-IR (70% in established MS, 33% in healthy volunteers, P < 0.0001), compared to 33% on T2-FLAIR (34% vs. 11%, P = 0.0002). Real-IR showed 3.7-fold more LME foci than T2-FLAIR ( P = 0.001), including all T2-FLAIR foci. LME CNR was 2.5-fold higher by Real-IR ( P < 0.0001). The major determinant of LME status was age. Although LME was not associated with cortical lesions, the number of PRL was associated with the number of LME foci on both T2-FLAIR ( P = 0.003) and Real-IR ( P = 0.0003) after adjusting for age, sex, and white matter lesion volume. CONCLUSIONS: Real-IR a promising tool to detect, characterize, and understand the significance of LME in MS. The association between PRL and LME highlights a possible role of the leptomeninges in sustaining chronic inflammation.


Assuntos
Esclerose Múltipla , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Imageamento por Ressonância Magnética , Meninges/diagnóstico por imagem , Meninges/patologia , Inflamação/patologia
11.
Fluids Barriers CNS ; 20(1): 37, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237402

RESUMO

The clearance pathways of brain waste products in humans are still under debate in part due to the lack of noninvasive imaging techniques for meningeal lymphatic vessels (mLVs). In this study, we propose a new noninvasive mLVs imaging technique based on an inter-slice blood perfusion MRI called alternate ascending/descending directional navigation (ALADDIN). ALADDIN with inversion recovery (IR) at single inversion time of 2300 ms (single-TI IR-ALADDIN) clearly demonstrated parasagittal mLVs around the human superior sagittal sinus (SSS) with better detectability and specificity than the previously suggested noninvasive imaging techniques. While in many studies it has been difficult to detect mLVs and confirm their signal source noninvasively, the detection of mLVs in this study was confirmed by their posterior to anterior flow direction and their velocities and morphological features, which were consistent with those from the literature. In addition, IR-ALADDIN was compared with contrast-enhanced black blood imaging to confirm the detection of mLVs and its similarity. For the quantification of flow velocity of mLVs, IR-ALADDIN was performed at three inversion times of 2000, 2300, and 2600 ms (three-TI IR-ALADDIN) for both a flow phantom and humans. For this preliminary result, the flow velocity of the dorsal mLVs in humans ranged between 2.2 and 2.7 mm/s. Overall, (i) the single-TI IR-ALADDIN can be used as a novel non-invasive method to visualize mLVs in the whole brain with scan time of ~ 17 min and (ii) the multi-TI IR-ALADDIN can be used as a way to quantify the flow velocity of mLVs with a scan time of ~ 10 min (or shorter) in a limited coverage. Accordingly, the suggested approach can be applied to noninvasively studying meningeal lymphatic flows in general and also understanding the clearance pathways of waste production through mLVs in humans, which warrants further investigation.


Assuntos
Sistema Glinfático , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo , Meninges/diagnóstico por imagem , Circulação Cerebrovascular
12.
J Neuroradiol ; 50(4): 369-376, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36918053

RESUMO

BACKGROUND AND PURPOSE: Meningeal lymphatic vessels (MLVs) along the dural venous sinuses are suspected to be important in connecting the glymphatic and peripheral lymphatic system. Understanding the topography of MLVs may clarify the role of the glymphatic system in neurological diseases. The aim of this analysis was to use high resolution pre- and post-contrast FLAIR 7T MRI to identify and characterize the morphology of MLV in a cohort of healthy volunteers. MATERIALS AND METHODS: MRI examinations of seventeen healthy volunteers enrolled as controls in a larger 7T MRI study were reviewed. Pre- and post-contrast 3-D FLAIR subtractions and MP2RAGE sequences were spatially normalized and reviewed for signal intensity and enhancement patterns within putative MLVs along pre-determined dural and venous structures. Frequency of occurrence of MLVs at the above-described locations and patterns of their enhancement were analyzed. RESULTS: Putative MLVs are commonly located along the superior sagittal sinus (SSS) and cortical veins. A "fixed enhancement" signal pattern was more frequent at these locations (p<.05). The morphology of MLVs along the SSS qualitatively changes in an antero-posterior direction. Lack of signal was more frequent along the straight and transverse sinuses (p<.05). CONCLUSION: Putative MLVs in healthy individuals are concentrated along the SSS and cortical veins. FLAIR signal and enhancement characteristics suggest these structures may transport proteinaceous fluid. Pathways connecting MLVs to cervical lymph nodes however remain unclear.


Assuntos
Sistema Glinfático , Meninges , Humanos , Adulto , Meninges/diagnóstico por imagem , Meninges/patologia , Imageamento por Ressonância Magnética/métodos , Cavidades Cranianas
13.
STAR Protoc ; 4(1): 102119, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853673

RESUMO

The highly vascularized meninges protect the surface of the central nervous system and contain a dense network of immune cells controlling neuroinfection and neuroinflammation. Here, we present techniques for the immunological and virological assessment of mouse dural meninges. We describe steps for immunophenotyping including meninges extraction and digestion, immunostaining, and flow cytometry. We then describe viral assessment upon lymphocytic choriomeningitis virus infection including steps for fixation of the meninges in the skull, whole-mount immunohistochemistry, and confocal imaging. For complete details on the use and execution of this protocol, please refer to Rebejac et al. (2022).1.


Assuntos
Sistema Nervoso Central , Meninges , Animais , Camundongos , Citometria de Fluxo , Imuno-Histoquímica , Meninges/diagnóstico por imagem , Cabeça
14.
Mult Scler ; 29(1): 63-73, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113094

RESUMO

BACKGROUND: Leptomeningeal inflammation in patients with multiple sclerosis (MS) mainly affects meningeal B-cell follicle-like structures linked to cortical and subpial lesions and can be visualized as leptomeningeal enhancement (LME). OBJECTIVE: To evaluate the evolution of LME under different MS immunotherapies. METHODS: A total of 214 MS patients treated with anti-CD20 therapies or fingolimod at the university hospital Bern were screened for LME. Magnetic resonance imaging (MRI) and medical records were retrospectively evaluated, and comparative statistics were applied. RESULTS: We compared MS patients treated with anti-CD20 therapies (128 patients (59.8%)) or fingolimod (86 patients (40.2%)). Of 128 anti-CD20-treated patients, 108 (84.4%) had no LME, 11 (8.6%) had persistent LME, and 9 (7.0%) showed resolution of LME. Of 86 fingolimod-treated MS patients, 81 (94.2%) had no LME and 5 (5.8%) persistent LME. Patients with LME persistence were older than those without or resolution of LME (p = 0.039). Resolution of LME was more frequent during anti-CD20 compared with fingolimod treatment (p = 0.019). CONCLUSION: We observed LME resolution under treatment with anti-CD20 therapies. As LME might play an important role in cerebral gray matter pathology in MS, further investigations including extensions to higher field strengths, correlation with clinical phenotypes, and comparison with other immunotherapies are needed.


Assuntos
Cloridrato de Fingolimode , Esclerose Múltipla , Humanos , Estudos Retrospectivos , Cloridrato de Fingolimode/uso terapêutico , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Meninges/diagnóstico por imagem , Meninges/patologia , Imageamento por Ressonância Magnética/métodos , Imunoterapia
15.
Neuroimaging Clin N Am ; 32(3): 577-601, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35843664

RESUMO

The ventricular system, subarachnoid spaces, and meninges are structures that lend structure, support, and protection to the brain and spinal cord. This article provides a detailed look at the anatomy of the intracranial portions of these structures with a particular focus on neuroimaging methods.


Assuntos
Meninges , Espaço Subaracnóideo , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Humanos , Meninges/anatomia & histologia , Meninges/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem , Espaço Subaracnóideo/diagnóstico por imagem
16.
J Exp Med ; 219(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776089

RESUMO

Meningeal lymphatic vessels (MLVs) were identified in the dorsal and caudobasal regions of the dura mater, where they ensure waste product elimination and immune surveillance of brain tissues. Whether MLVs exist in the anterior part of the murine and human skull and how they connect with the glymphatic system and extracranial lymphatics remained unclear. Here, we used light-sheet fluorescence microscopy (LSFM) imaging of mouse whole-head preparations after OVA-A555 tracer injection into the cerebrospinal fluid (CSF) and performed real-time vessel-wall (VW) magnetic resonance imaging (VW-MRI) after systemic injection of gadobutrol in patients with neurological pathologies. We observed a conserved three-dimensional anatomy of MLVs in mice and humans that aligned with dural venous sinuses but not with nasal CSF outflow, and we discovered an extended anterior MLV network around the cavernous sinus, with exit routes through the foramina of emissary veins. VW-MRI may provide a diagnostic tool for patients with CSF drainage defects and neurological diseases.


Assuntos
Sistema Glinfático , Vasos Linfáticos , Animais , Sistema Glinfático/diagnóstico por imagem , Sistema Glinfático/patologia , Humanos , Sistema Linfático , Vasos Linfáticos/diagnóstico por imagem , Imageamento por Ressonância Magnética , Meninges/diagnóstico por imagem , Camundongos
18.
J Neurotrauma ; 39(11-12): 784-799, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35243900

RESUMO

The consequences of forceful rotational acceleration on the central nervous system are not fully understood. While traumatic brain injury (TBI) research primarily has focused on effects related to the brain parenchyma, reports of traumatic meningeal enhancement in TBI patients may possess clinical significance. The objective of this study was to evaluate the meninges and brain for changes in dynamic contrast enhancement (DCE) magnetic resonance imaging (MRI) following closed-head impact model of engineered rotational acceleration (CHIMERA)-induced cerebral insult. Adult male and female mice received one (1 × ; n = 19 CHIMERA, n = 19 Sham) or four (4 × one/day; n = 18 CHIMERA, n = 12 Sham) injuries. Each animal underwent three MRI scans: 1 week before injury, immediately after the final injury, and 1 week post-injury. Compared with baseline readings and measures in sham animals, meningeal DCE in males was increased after single impact and repetitive injury. In female mice, DCE was elevated relative to their baseline level after a single impact. One week after CHIMERA, the meningeal enhancement returned to below baseline for single injured male mice, but compared with uninjured mice remained elevated in both sexes in the multiple impact groups. Pre-DCE meningeal T2-weighted relaxation time was increased only after 1 × CHIMERA in injured mice. Since vision is impaired after CHIMERA, visual pathway regions were analyzed through imaging and glial fibrillary acidic protein (GFAP) histology. Initial DCE in the lateral geniculate nucleus (LGN) and superior colliculus (SC) and T2 increases in the optic tract (OPT) and LGN were observed after injury with decreases in DCE and T2 1 week later. Astrogliosis was apparent in the OPT and SC with increased GFAP staining 7 days post-injury. To our knowledge, this is the first study to examine meningeal integrity after CHIMERA in both male and female rodents. DCE-MRI may serve as a useful approach for pre-clinical models of meningeal injury that will enable further evaluation of the underlying mechanisms.


Assuntos
Lesões Encefálicas Traumáticas , Vias Visuais , Animais , Feminino , Humanos , Masculino , Camundongos , Aceleração , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Meninges/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Vias Visuais/patologia
19.
Nat Commun ; 13(1): 203, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017525

RESUMO

Meningeal lymphatic vessels have been described in animal studies, but limited comparable data is available in human studies. Here we show dural lymphatic structures along the dural venous sinuses in dorsal regions and along cranial nerves in the ventral regions in the human brain. 3D T2-Fluid Attenuated Inversion Recovery magnetic resonance imaging relies on internal signals of protein rich lymphatic fluid rather than contrast media and is used in the present study to visualize the major human dural lymphatic structures. Moreover we detect direct connections between lymphatic fluid channels along the cranial nerves and vascular structures and the cervical lymph nodes. We also identify age-related cervical lymph node atrophy and thickening of lymphatics channels in both dorsal and ventral regions, findings which reflect the reduced lymphatic output of the aged brain.


Assuntos
Cavidades Cranianas/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Sistema Glinfático/diagnóstico por imagem , Linfonodos/diagnóstico por imagem , Meninges/diagnóstico por imagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Estudos de Casos e Controles , Cavidades Cranianas/fisiopatologia , Epilepsia/fisiopatologia , Feminino , Sistema Glinfático/fisiopatologia , Humanos , Linfonodos/irrigação sanguínea , Linfonodos/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Meninges/fisiopatologia , Pessoa de Meia-Idade , Imagens de Fantasmas , Estudos Retrospectivos , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA