Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Appl Environ Microbiol ; 90(8): e0029224, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39012100

RESUMO

Various environmental factors, including H2 availability, metabolic tradeoffs, optimal growth temperature, stochasticity, and hydrology, were examined to determine if they affect microbial competition between three autotrophic thermophiles. The thiosulfate reducer Desulfurobacterium thermolithotrophum (Topt72°C) was grown in mono- and coculture separately with the methanogens Methanocaldococcus jannaschii (Topt82°C) at 72°C and Methanothermococcus thermolithotrophicus (Topt65°C) at 65°C at high and low H2 concentrations. Both methanogens showed a metabolic tradeoff shifting from high growth rate-low cell yield at high H2 concentrations to low growth rate-high cell yield at low H2 concentrations and when grown in coculture with the thiosulfate reducer. In 1:1 initial ratios, D. thermolithotrophum outcompeted both methanogens at high and low H2, no H2S was detected on low H2, and it grew with only CO2 as the electron acceptor indicating a similar metabolic tradeoff with low H2. When the initial methanogen-to-thiosulfate reducer ratio varied from 1:1 to 104:1 with high H2, D. thermolithotrophum always outcompeted M. jannaschii at 72°C. However, M. thermolithotrophicus outcompeted D. thermolithotrophum at 65°C when the ratio was 103:1. A reactive transport model that mixed pure hydrothermal fluid with cold seawater showed that hyperthermophilic methanogens dominated in systems where the residence time of the mixed fluid above 72°C was sufficiently high. With shorter residence times, thermophilic thiosulfate reducers dominated. If residence times increased with decreasing fluid temperature along the flow path, then thermophilic methanogens could dominate. Thermophilic methanogen dominance spread to previously thiosulfate-reducer-dominated conditions if the initial ratio of thermophilic methanogen-to-thiosulfate reducer increased. IMPORTANCE: The deep subsurface is the largest reservoir of microbial biomass on Earth and serves as an analog for life on the early Earth and extraterrestrial environments. Methanogenesis and sulfur reduction are among the more common chemolithoautotrophic metabolisms found in hot anoxic hydrothermal vent environments. Competition between H2-oxidizing sulfur reducers and methanogens is primarily driven by the thermodynamic favorability of redox reactions with the former outcompeting methanogens. This study demonstrated that competition between the hydrothermal vent chemolithoautotrophs Methanocaldococcus jannaschii, Methanothermococcus thermolithotrophicus, and Desulfurobacterium thermolithotrophum is also influenced by other overlapping factors such as staggered optimal growth temperatures, stochasticity, and hydrology. By modeling all aspects of microbial competition coupled with field data, a better understanding is gained on how methanogens can outcompete thiosulfate reducers in hot anoxic environments and how the deep subsurface contributes to biogeochemical cycling.


Assuntos
Crescimento Quimioautotrófico , Hidrogênio , Fontes Hidrotermais , Fontes Hidrotermais/microbiologia , Hidrogênio/metabolismo , Água do Mar/microbiologia , Deltaproteobacteria/metabolismo , Deltaproteobacteria/crescimento & desenvolvimento , Methanocaldococcus/metabolismo , Methanocaldococcus/crescimento & desenvolvimento , Methanobacteriaceae/metabolismo , Methanobacteriaceae/crescimento & desenvolvimento , Temperatura Alta
2.
Bioresour Technol ; 406: 131021, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909868

RESUMO

The ongoing discussion regarding the use of mixed or pure cultures of hydrogenotrophic methanogenic archaea in Power-to-Methane (P2M) bioprocess applications persists, with each option presenting its own advantages and disadvantages. To address this issue, a comparison of methane (CH4) yield between a novel methanogenic archaeon belonging to the species Methanothermobacter marburgensis (strain Clermont) isolated from a biological methanation column, and the community from which it originated, was conducted. This comparison included the type strain M. marburgensis str. Marburg. The evaluation also examined how exposure to oxygen (O2) for up to 240 min impacted the CH4 yield across these cultures. While both Methanothermobacter strains exhibit comparable CH4 yield, slightly higher than that of the mixed adapted culture under non-O2-exposed conditions, strain Clermont does not display the lag time observed for strain Marburg.


Assuntos
Reatores Biológicos , Metano , Methanobacteriaceae , Metano/metabolismo , Reatores Biológicos/microbiologia , Methanobacteriaceae/metabolismo , Oxigênio/metabolismo , Oxigênio/farmacologia
3.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38658197

RESUMO

The dihydrogen (H2) sector is undergoing development and will require massive storage solutions. To minimize costs, the conversion of underground geological storage sites, such as deep aquifers, used for natural gas storage into future underground hydrogen storage sites is the favored scenario. However, these sites contain microorganisms capable of consuming H2, mainly sulfate reducers and methanogens. Methanogenesis is, therefore expected but its intensity must be evaluated. Here, in a deep aquifer used for underground geological storage, 17 sites were sampled, with low sulfate concentrations ranging from 21.9 to 197.8 µM and a slow renewal of formation water. H2-selected communities mainly were composed of the families Methanobacteriaceae and Methanothermobacteriaceae and the genera Desulfovibrio, Thermodesulfovibrio, and Desulforamulus. Experiments were done under different conditions, and sulfate reduction, as well as methanogenesis, were demonstrated in the presence of a H2 or H2/CO2 (80/20) gas phase, with or without calcite/site rock. These metabolisms led to an increase in pH up to 10.2 under certain conditions (without CO2). The results suggest competition for CO2 between lithoautotrophs and carbonate mineral precipitation, which could limit microbial H2 consumption.


Assuntos
Água Subterrânea , Hidrogênio , Metano , Gás Natural , Metano/metabolismo , Água Subterrânea/microbiologia , Hidrogênio/metabolismo , Sulfatos/metabolismo , Methanobacteriaceae/metabolismo , Methanobacteriaceae/genética , Methanobacteriaceae/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Concentração de Íons de Hidrogênio , Microbiologia da Água
4.
Appl Environ Microbiol ; 90(5): e0026824, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38619268

RESUMO

A new variant of Methanothermobacter wolfeii was isolated from an anaerobic digester using enrichment cultivation in anaerobic conditions. The new isolate was taxonomically identified via 16S rRNA gene sequencing and tagged as M. wolfeii BSEL. The whole genome of the new variant was sequenced and de novo assembled. Genomic variations between the BSEL strain and the type strain were discovered, suggesting evolutionary adaptations of the BSEL strain that conferred advantages while growing under a low concentration of nutrients. M. wolfeii BSEL displayed the highest specific growth rate ever reported for the wolfeii species (0.27 ± 0.03 h-1) using carbon dioxide (CO2) as unique carbon source and hydrogen (H2) as electron donor. M. wolfeii BSEL grew at this rate in an environment with ammonium (NH4+) as sole nitrogen source. The minerals content required to cultivate the BSEL strain was relatively low and resembled the ionic background of tap water without mineral supplements. Optimum growth rate for the new isolate was observed at 64°C and pH 8.3. In this work, it was shown that wastewater from a wastewater treatment facility can be used as a low-cost alternative medium to cultivate M. wolfeii BSEL. Continuous gas fermentation fed with a synthetic biogas mimic along with H2 in a bubble column bioreactor using M. wolfeii BSEL as biocatalyst resulted in a CO2 conversion efficiency of 97% and a final methane (CH4) titer of 98.5%v, demonstrating the ability of the new strain for upgrading biogas to renewable natural gas.IMPORTANCEAs a methanogenic archaeon, Methanothermobacter wolfeii uses CO2 as electron acceptor, producing CH4 as final product. The metabolism of M. wolfeii can be harnessed to capture CO2 from industrial emissions, besides producing a drop-in renewable biofuel to substitute fossil natural gas. If used as biocatalyst in new-generation CO2 sequestration processes, M. wolfeii has the potential to accelerate the decarbonization of the energy generation sector, which is the biggest contributor of CO2 emissions worldwide. Nonetheless, the development of CO2 sequestration archaeal-based biotechnology is still limited by an uncertainty in the requirements to cultivate methanogenic archaea and the unknown longevity of archaeal cultures. In this study, we report the adaptation, isolation, and phenotypic characterization of a novel variant of M. wolfeii, which is capable of maximum growth with minimal nutrients input. Our findings demonstrate the potential of this variant for the production of renewable natural gas, paving the way for the development of more efficient and sustainable CO2 sequestration processes.


Assuntos
Dióxido de Carbono , Methanobacteriaceae , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo , Methanobacteriaceae/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , RNA Ribossômico 16S/genética , Genoma Arqueal , Filogenia , Fenótipo , Águas Residuárias/microbiologia , Metano/metabolismo , Nutrientes/metabolismo
5.
FEBS J ; 291(11): 2449-2460, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38468562

RESUMO

In the hydrogenotrophic methanogenic pathway, formylmethanofuran dehydrogenase (Fmd) catalyzes the formation of formylmethanofuran through reducing CO2. Heterodisulfide reductase (Hdr) provides two low potential electrons for the Fmd reaction using a flavin-based electron-bifurcating mechanism. [NiFe]-hydrogenase (Mvh) or formate dehydrogenase (Fdh) complexes with Hdr and provides electrons to Hdr from H2 and formate, or the reduced form of F420, respectively. Recently, an Fdh-Hdr complex was purified as a 3-MDa megacomplex that contained Fmd, and its three-dimensional structure was elucidated by cryo-electron microscopy. In contrast, the Mvh-Hdr complex has been characterized only as a complex without Fmd. Here, we report the isolation and characterization of a 1-MDa Mvh-Hdr-Fmd megacomplex from Methanothermobacter marburgensis. After anion-exchange and hydrophobic chromatography was performed, the proteins with Hdr activity eluted in the 1- and 0.5-MDa fractions during size exclusion chromatography. Considering the apparent molecular mass and the protein profile in the fractions, the 1-MDa megacomplex was determined to be a dimeric Mvh-Hdr-Fmd complex. The megacomplex fraction contained a polyferredoxin subunit MvhB, which contains 12 [4Fe-4S]-clusters. MvhB polyferredoxin has never been identified in the previously purified Mvh-Hdr and Fmd preparations, suggesting that MvhB polyferredoxin is stabilized by the binding between Mvh-Hdr and Fmd in the Mvh-Hdr-Fmd complex. The purified Mvh-Hdr-Fmd megacomplex catalyzed electron-bifurcating reduction of [13C]-CO2 to form [13C]-formylmethanofuran in the absence of extrinsic ferredoxin. These results demonstrated that the subunits in the Mvh-Hdr-Fmd megacomplex are electronically connected for the reduction of CO2, which likely involves MvhB polyferredoxin as an electron relay.


Assuntos
Dióxido de Carbono , Hidrogênio , Methanobacteriaceae , Methanobacteriaceae/metabolismo , Methanobacteriaceae/enzimologia , Hidrogênio/metabolismo , Hidrogênio/química , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química , Oxirredutases/metabolismo , Oxirredutases/química , Ferredoxinas/metabolismo , Ferredoxinas/química , Oxirredução , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Elétrons , Hidrogenase/metabolismo , Hidrogenase/química
6.
Appl Environ Microbiol ; 89(7): e0057523, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37310347

RESUMO

This study is a continuation by the Environmental Biotechnology Group of the University of Tübingen in memoriam to Reinhard Wirth, who initiated the work on Mth60 fimbriae at the University of Regensburg. Growth in biofilms or biofilm-like structures is the prevailing lifestyle for most microbes in nature. The first crucial step to initiate biofilms is the adherence of microbes to biotic and abiotic surfaces. Therefore, it is crucial to elucidate the initial step of biofilm formation, which is generally established through cell-surface structures (i.e., cell appendages), such as fimbriae or pili, that adhere to biotic and abiotic surfaces. The Mth60 fimbriae of Methanothermobacter thermautotrophicus ΔH are one of only a few known archaeal cell appendages that do not assemble via the type IV pili assembly mechanism. Here, we report the constitutive expression of Mth60 fimbria-encoding genes from a shuttle-vector construct and the deletion of the Mth60 fimbria-encoding genes from the genomic DNA of M. thermautotrophicus ΔH. For this, we expanded our system for genetic modification of M. thermautotrophicus ΔH using an allelic-exchange method. While overexpression of the respective genes increased the number of Mth60 fimbriae, deletion of the Mth60 fimbria-encoding genes led to a loss of Mth60 fimbriae in planktonic cells of M. thermautotrophicus ΔH compared to the wild-type strain. This, either increased or decreased, number of Mth60 fimbriae correlated with a significant increase or decrease of biotic cell-cell connections in the respective M. thermautotrophicus ΔH strains compared to the wild-type strain. IMPORTANCE Methanothermobacter spp. have been studied for the biochemistry of hydrogenotrophic methanogenesis for many years. However, a detailed investigation of certain aspects, such as regulatory processes, was impossible due to the lack of genetic tools. Here, we amend our genetic toolbox for M. thermautotrophicus ΔH with an allelic exchange method. We report the deletion of genes that encode the Mth60 fimbriae. Our findings provide the first genetic evidence of whether the expression of these genes underlies regulation and reveal a role of the Mth60 fimbriae in the formation of cell-cell connections of M. thermautotrophicus ΔH.


Assuntos
Biofilmes , Fímbrias Bacterianas , Fímbrias Bacterianas/genética , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo
7.
Bioresour Technol ; 384: 129248, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37247793

RESUMO

A novel horizontal rotary bioreactor was developed for upgrading biogas from coke oven gas at extreme-thermophilic condition. The introduction of CO decreased the outlet methane content from 80% to 50% due to insufficient H2. This hindrance was overcome by increasing the proportion of incoming hydrogen, coupled with a prolonged gas retention time from 24 to 72 h, leading to a restoration of methane content to 91.6%. Notably, CO and CO2 exhibited a competitive relationship to hydrogen, which was determined by their contents. The substitution of Methanothermobacter for Methanobacterium as the dominant genus was observed at 70 °C, with relative abundance exceeding 98%. Incorporation of CO increased bacteria diversity and fostered a syntrophic relationship between the bacterial community and M. thermautotrophicus. This study provides both theoretical basis and practical support for biogas upgrading from coke oven gas using a biofilm reactor, thus aiding its future industrialization prospects.


Assuntos
Coque , Microbiota , Monóxido de Carbono/metabolismo , Biocombustíveis/microbiologia , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Methanobacteriaceae/metabolismo , Metano/metabolismo , Hidrogênio/metabolismo , Dióxido de Carbono/metabolismo
8.
Microbiome ; 10(1): 146, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100950

RESUMO

BACKGROUND: Enteric methane emissions from dairy cows are an environmental problem as well as a gross feed energy loss to the animal. Methane is generated in the rumen by methanogenic archaea from hydrogen (H2) + carbon dioxide and from H2 + methanol or methylamines. The methanogenic substrates are provided by non-methanogens during feed fermentation. Methane mitigation approaches have yielded variable results, partially due to an incomplete understanding of the contribution of hydrogenotrophic and methylotrophic archaea to methanogenesis. Research indicates that 3-nitrooxypropanol (3-NOP) reduces enteric methane formation in dairy cows by inhibiting methyl-coenzyme M reductase (MCR), the enzyme responsible for methane formation. The purpose of this study was to utilize metagenomic and metatranscriptomic approaches to investigate the effect of 3-NOP on the rumen microbiome and to determine the fate of H2 that accumulates less than expected under inhibited methanogenesis. RESULTS: The inhibitor 3-NOP was more inhibitory on Methanobrevibacter species than methanol-utilizing Methanosphaera and tended to reduce the gene expression of MCR. Under inhibited methanogenesis by 3-NOP, fluctuations in H2 concentrations were accompanied by changes in the expression of [FeFe] hydrogenases in H2-producing bacteria to regulate the amount of H2 production. No previously reported alternative H2 sinks increased under inhibited methanogenesis except for a significant increase in gene expression of enzymes involved in the butyrate pathway. CONCLUSION: By taking a metatranscriptomic approach, this study provides novel insights on the contribution of methylotrophic methanogens to total methanogenesis and regulation of H2 metabolism under normal and inhibited methanogenesis by 3-NOP in the rumen. Video Abstract.


Assuntos
Euryarchaeota , Metano , Animais , Bovinos , Euryarchaeota/metabolismo , Feminino , Metano/metabolismo , Methanobacteriaceae/metabolismo , Metanol/metabolismo , Propanóis , Rúmen/microbiologia , Transcriptoma
9.
Microbiome ; 10(1): 117, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35918706

RESUMO

BACKGROUND: Carbon fixation through biological methanation has emerged as a promising technology to produce renewable energy in the context of the circular economy. The anaerobic digestion microbiome is the fundamental biological system operating biogas upgrading and is paramount in power-to-gas conversion. Carbon dioxide (CO2) methanation is frequently performed by microbiota attached to solid supports generating biofilms. Despite the apparent simplicity of the microbial community involved in biogas upgrading, the dynamics behind most of the interspecies interaction remain obscure. To understand the role of the microbial species in CO2 fixation, the biofilm generated during the biogas upgrading process has been selected as a case study. The present work investigates via genome-centric metagenomics, based on a hybrid Nanopore-Illumina approach the biofilm developed on the diffusion devices of four ex situ biogas upgrading reactors. Moreover, genome-guided metabolic reconstruction and flux balance analysis were used to propose a biological role for the dominant microbes. RESULTS: The combined microbiome was composed of 59 species, with five being dominant (> 70% of total abundance); the metagenome-assembled genomes representing these species were refined to reach a high level of completeness. Genome-guided metabolic analysis appointed Firmicutes sp. GSMM966 as the main responsible for biofilm formation. Additionally, species interactions were investigated considering their co-occurrence in 134 samples, and in terms of metabolic exchanges through flux balance simulation in a simplified medium. Some of the most abundant species (e.g., Limnochordia sp. GSMM975) were widespread (~ 67% of tested experiments), while others (e.g., Methanothermobacter wolfeii GSMM957) had a scattered distribution. Genome-scale metabolic models of the microbial community were built with boundary conditions taken from the biochemical data and showed the presence of a flexible interaction network mainly based on hydrogen and carbon dioxide uptake and formate exchange. CONCLUSIONS: Our work investigated the interplay between five dominant species within the biofilm and showed their importance in a large spectrum of anaerobic biogas reactor samples. Flux balance analysis provided a deeper insight into the potential syntrophic interaction between species, especially Limnochordia sp. GSMM975 and Methanothermobacter wolfeii GSMM957. Finally, it suggested species interactions to be based on formate and amino acids exchanges. Video Abstract.


Assuntos
Biocombustíveis , Metagenoma , Anaerobiose , Reatores Biológicos , Dióxido de Carbono/análise , Firmicutes/metabolismo , Formiatos , Metano/metabolismo , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo
10.
mBio ; 12(6): e0276621, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34809461

RESUMO

Thermophilic Methanothermobacter spp. are used as model microbes to study the physiology and biochemistry of the conversion of molecular hydrogen and carbon dioxide into methane (i.e., hydrogenotrophic methanogenesis). Yet, a genetic system for these model microbes was missing despite intensive work for four decades. Here, we report the successful implementation of genetic tools for Methanothermobacter thermautotrophicus ΔH. We developed shuttle vectors that replicated in Escherichia coli and M. thermautotrophicus ΔH. For M. thermautotrophicus ΔH, a thermostable neomycin resistance cassette served as the selectable marker for positive selection with neomycin, and the cryptic plasmid pME2001 from Methanothermobacter marburgensis served as the replicon. The shuttle-vector DNA was transferred from E. coli into M. thermautotrophicus ΔH via interdomain conjugation. After the successful validation of DNA transfer and positive selection in M. thermautotrophicus ΔH, we demonstrated heterologous gene expression of a thermostable ß-galactosidase-encoding gene (bgaB) from Geobacillus stearothermophilus under the expression control of four distinct synthetic and native promoters. In quantitative in-vitro enzyme activity assay, we found significantly different ß-galactosidase activity with these distinct promoters. With a formate dehydrogenase operon-encoding shuttle vector, we allowed growth of M. thermautotrophicus ΔH on formate as the sole growth substrate, while this was not possible for the empty-vector control. IMPORTANCE The world economies are facing permanently increasing energy demands. At the same time, carbon emissions from fossil sources need to be circumvented to minimize harmful effects from climate change. The power-to-gas platform is utilized to store renewable electric power and decarbonize the natural gas grid. The microbe Methanothermobacter thermautotrophicus is already applied as the industrial biocatalyst for the biological methanation step in large-scale power-to-gas processes. To improve the biocatalyst in a targeted fashion, genetic engineering is required. With our shuttle-vector system for heterologous gene expression in M. thermautotrophicus, we set the cornerstone to engineer the microbe for optimized methane production but also for production of high-value platform chemicals in power-to-x processes.


Assuntos
Expressão Gênica , Vetores Genéticos/genética , Geobacillus/enzimologia , Methanobacteriaceae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Conjugação Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosidases/genética , Galactosidases/metabolismo , Vetores Genéticos/metabolismo , Geobacillus/genética , Metano/metabolismo , Methanobacteriaceae/crescimento & desenvolvimento , Methanobacteriaceae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA