Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Glycobiology ; 32(7): 629-644, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481895

RESUMO

The glycosylation of structural proteins is a widespread posttranslational modification in Archaea. Although only a handful of archaeal N-glycan structures have been determined to date, it is evident that the diversity of structures expressed is greater than in the other domains of life. Here, we report on our investigation of the N- and O-glycan modifications expressed by Methanoculleus marisnigri, a mesophilic methanogen from the Order Methanomicrobiales. Unusually, mass spectrometry (MS) analysis of purified archaella revealed no evidence for N- or O-glycosylation of the constituent archaellins, In contrast, the S-layer protein, identified as a PGF-CTERM sorting domain-containing protein encoded by MEMAR_RS02690, is both N- and O-glycosylated. Two N-glycans were identified by NMR and MS analysis: a trisaccharide α-GlcNAc-4-ß-GlcNAc3NGaAN-4-ß-Glc-Asn where the second residue is 2-N-acetyl, 3-N-glyceryl-glucosamide and a disaccharide ß-GlcNAc3NAcAN-4-ß-Glc-Asn, where the terminal residue is 2,3 di-N-acetyl-glucosamide. The same trisaccharide was also found N-linked to a type IV pilin. The S-layer protein is also extensively modified in the threonine-rich region near the C-terminus with O-glycans composed exclusively of hexoses. While the S-layer protein has a predicted PGF-CTERM processing site, no evidence of a truncated and lipidated C-terminus, the expected product of processing by an archaeosortase, was found. Finally, NMR also identified a polysaccharide expressed by M. marisnigri and composed of a repeating tetrasaccharide unit of [-2-ß-Ribf-3-α-Rha2OMe-3-α-Rha - 2-α-Rha-]. This is the first report of N- and O-glycosylation in an archaeon from the Order Methanomicrobiales.


Assuntos
Glicoproteínas de Membrana , Methanomicrobiaceae , Glicoproteínas de Membrana/metabolismo , Methanomicrobiaceae/metabolismo , Polissacarídeos/química , Trissacarídeos
2.
Microbiol Spectr ; 9(2): e0080521, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34612672

RESUMO

During anaerobic digestion (AD) of protein-rich wastewater, ammonium (NH4+) is released by amino acid degradation. High NH4+ concentrations disturb the AD microbiome balance, leading to process impairments. The sensitivity of the AD microbiome to NH4+ and the inhibition threshold depend on multiple parameters, especially the previous microbial acclimation to ammonium stress. However, little is known about the effect of different NH4+ acclimation strategies on the differential expression of key active microbial taxa. Here, we applied NH4+ inputs of increasing intensity (from 1.7 to 15.2 g N-NH4+ liters-1) in batch assays fed with synthetic wastewater, according to two different strategies: (i) direct independent inputs at a unique target concentration and (ii) successive inputs in a stepwise manner. In both strategies, along the NH4+ gradient, the active methanogens shifted from acetoclastic Methanosaeta to Methanosarcina and eventually hydrogenotrophic Methanoculleus. Despite shorter latency times, the successive input modality led to lower methane production rate, lower soluble chemical oxygen demand (sCOD) removal efficiency, and lower half maximal inhibitory concentration, together with higher volatile fatty acid (VFA) accumulation, compared to the independent input modality. These differential performances were associated with a drastically distinct succession pattern of the active bacterial partners in both experiments. In particular, the direct exposure modality was characterized by a progressive enrichment of VFA producers (mainly Tepidimicrobium) and syntrophic VFA oxidizers (mainly Syntrophaceticus) with increasing NH4+ concentration, while the successive exposure modality was characterized by a more dynamic succession of VFA producers (mainly Clostridium, Sporanaerobacter, Terrisporobacter) and syntrophic VFA oxidizers (mainly Tepidanaerobacter, Syntrophomonas). These results bring relevant insights for improved process management through inoculum adaptation, bioaugmentation, or community-driven optimization. IMPORTANCE Anaerobic digestion (AD) is an attractive biotechnological process for wastewater bioremediation and bioenergy production in the form of methane-rich biogas. However, AD can be inhibited by ammonium generated by protein-rich effluent, commonly found in agro-industrial activities. Insights in the microbial community composition and identification of AD key players are crucial for anticipating process impairments in response to ammonium stress. They can also help in defining an optimal microbiome adapted to high ammonium levels. Here, we compared two strategies for acclimation of AD microbiome to increasing ammonium concentration to better understand the effect of this stress on the methanogens and their bacterial partners. Our results suggest that long-term cumulative exposure to ammonia disrupted the AD microbiome more strongly than direct (independent) ammonium additions. We identified bioindicators with different NH4+ tolerance capacity among VFA producers and syntrophic VFA oxidizers.


Assuntos
Aclimatação/fisiologia , Compostos de Amônio/metabolismo , Bactérias Anaeróbias/metabolismo , Biodegradação Ambiental , Methanomicrobiaceae/metabolismo , Águas Residuárias/química , Aminoácidos/metabolismo , Amônia/toxicidade , Compostos de Amônio/análise , Reatores Biológicos/microbiologia , Microbiota/fisiologia , Águas Residuárias/microbiologia
3.
Viruses ; 13(10)2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34696364

RESUMO

Today, the number of known viruses infecting methanogenic archaea is limited. Here, we report on a novel lytic virus, designated Blf4, and its host strain Methanoculleus bourgensis E02.3, a methanogenic archaeon belonging to the Methanomicrobiales, both isolated from a commercial biogas plant in Germany. The virus consists of an icosahedral head 60 nm in diameter and a long non-contractile tail of 125 nm in length, which is consistent with the new isolate belonging to the Siphoviridae family. Electron microscopy revealed that Blf4 attaches to the vegetative cells of M. bourgensis E02.3 as well as to cellular appendages. Apart from M. bourgensis E02.3, none of the tested Methanoculleus strains were lysed by Blf4, indicating a narrow host range. The complete 37 kb dsDNA genome of Blf4 contains 63 open reading frames (ORFs), all organized in the same transcriptional direction. For most of the ORFs, potential functions were predicted. In addition, the genome of the host M. bourgensis E02.3 was sequenced and assembled, resulting in a 2.6 Mbp draft genome consisting of nine contigs. All genes required for a hydrogenotrophic lifestyle were predicted. A CRISPR/Cas system (type I-U) was identified with six spacers directed against Blf4, indicating that this defense system might not be very efficient in fending off invading Blf4 virus.


Assuntos
Vírus de Archaea/genética , Vírus de Archaea/metabolismo , Methanomicrobiaceae/virologia , Archaea/virologia , Vírus de Archaea/classificação , Sequência de Bases/genética , Genoma Viral/genética , Especificidade de Hospedeiro/genética , Methanomicrobiaceae/genética , Methanomicrobiaceae/metabolismo , Methanomicrobiales/genética , Methanomicrobiales/virologia , Filogenia , Análise de Sequência de DNA/métodos , Vírus/genética
4.
Microb Cell Fact ; 20(1): 127, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217274

RESUMO

BACKGROUND: The molecular machinery of the complex microbiological cell factory of biomethane production is not fully understood. One of the process control elements is the regulatory role of hydrogen (H2). Reduction of carbon dioxide (CO2) by H2 is rate limiting factor in methanogenesis, but the community intends to keep H2 concentration low in order to maintain the redox balance of the overall system. H2 metabolism in methanogens becomes increasingly important in the Power-to-Gas renewable energy conversion and storage technologies. RESULTS: The early response of the mixed mesophilic microbial community to H2 gas injection was investigated with the goal of uncovering the first responses of the microbial community in the CH4 formation and CO2 mitigation Power-to-Gas process. The overall microbial composition changes, following a 10 min excessive bubbling of H2 through the reactor, was investigated via metagenome and metatranscriptome sequencing. The overall composition and taxonomic abundance of the biogas producing anaerobic community did not change appreciably 2 hours after the H2 treatment, indicating that this time period was too short to display differences in the proliferation of the members of the microbial community. There was, however, a substantial increase in the expression of genes related to hydrogenotrophic methanogenesis of certain groups of Archaea. As an early response to H2 exposure the activity of the hydrogenotrophic methanogenesis in the genus Methanoculleus was upregulated but the hydrogenotrophic pathway in genus Methanosarcina was downregulated. The RT-qPCR data corroborated the metatranscriptomic RESULTS: H2 injection also altered the metabolism of a number of microbes belonging in the kingdom Bacteria. Many Bacteria possess the enzyme sets for the Wood-Ljungdahl pathway. These and the homoacetogens are partners for syntrophic community interactions between the distinct kingdoms of Archaea and Bacteria. CONCLUSIONS: External H2 regulates the functional activity of certain Bacteria and Archaea. The syntrophic cross-kingdom interactions in H2 metabolism are important for the efficient operation of the Power-to-Gas process. Therefore, mixed communities are recommended for the large scale Power-to-Gas process rather than single hydrogenotrophic methanogen strains. Fast and reproducible response from the microbial community can be exploited in turn-off and turn-on of the Power-to-Gas microbial cell factories.


Assuntos
Hidrogênio/metabolismo , Metano/biossíntese , Methanomicrobiaceae/metabolismo , Methanosarcina/metabolismo , Transcriptoma , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Fermentação , Regulação da Expressão Gênica em Archaea , Genoma Arqueal , Metagenoma , Metagenômica , Methanomicrobiaceae/genética , Methanosarcina/genética , Microbiota
5.
Nat Commun ; 12(1): 4028, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188059

RESUMO

CNNM/CorB proteins are a broadly conserved family of integral membrane proteins with close to 90,000 protein sequences known. They are associated with Mg2+ transport but it is not known if they mediate transport themselves or regulate other transporters. Here, we determine the crystal structure of an archaeal CorB protein in two conformations (apo and Mg2+-ATP bound). The transmembrane DUF21 domain exists in an inward-facing conformation with a Mg2+ ion coordinated by a conserved π-helix. In the absence of Mg2+-ATP, the CBS-pair domain adopts an elongated dimeric configuration with previously unobserved domain-domain contacts. Hydrogen-deuterium exchange mass spectrometry, analytical ultracentrifugation, and molecular dynamics experiments support a role of the structural rearrangements in mediating Mg2+-ATP sensing. Lastly, we use an in vitro, liposome-based assay to demonstrate direct Mg2+ transport by CorB proteins. These structural and functional insights provide a framework for understanding function of CNNMs in Mg2+ transport and associated diseases.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Hydrogenophilaceae/metabolismo , Magnésio/metabolismo , Methanomicrobiaceae/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/genética , Cristalografia por Raios X , Medição da Troca de Deutério , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios Proteicos
6.
Anim Sci J ; 92(1): e13503, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33398898

RESUMO

The effect of cashew nut shell liquid (CNSL) feeding on bacterial and archaeal community of the bovine rumen was investigated by analyzing clone libraries targeting 16S rRNA genes, methyl-coenzyme reductase A-encoding genes (mcrA), and their respective transcripts. Rumen samples were collected from three non-lactating cows fed on a hay and concentrate diet with or without CNSL supplementation. DNA and complementary DNA (cDNA) libraries were generated for investigating rumen microbial communities. MiSeq analysis also was performed to understand more comprehensively the changes in the microbial community structures. Following CNSL supplementation, the number of operational taxonomical unit (OTU) and diversity indices of bacterial and archaeal community were decreased. Bacterial OTUs belonging to Proteobacteria, including Succinivibrio, occurred at a higher frequency with CNSL feeding, especially in cDNA libraries. The methanogenic archaeal community became dominated by Methanomicrobium. A bacterial community shift also was observed in the MiSeq data, indicating that CNSL increased the proportion of Succinivibrio and other genera known to be involved in propionate production. Methanogenic archaeal community shifts to increase Methanoplanus and to decrease Methanobrevibacter also were observed. Together, these results imply the occurrence of significant changes in rumen communities, not only for bacteria but also for methanogens, following CNSL feeding.


Assuntos
Anacardium , Ração Animal , Bovinos/metabolismo , Bovinos/microbiologia , Dieta/veterinária , Suplementos Nutricionais , Microbioma Gastrointestinal/fisiologia , Metano/metabolismo , Microbiota , Propionatos/metabolismo , Rúmen/microbiologia , Animais , Methanobrevibacter/metabolismo , Methanomicrobiaceae/metabolismo
7.
Appl Microbiol Biotechnol ; 104(10): 4563-4575, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32219463

RESUMO

Buildup of volatile fatty acids (VFAs) in anaerobic digesters (ADs) often results in acidification and process failure. Understanding the dynamics of microbial communities involved in VFA degradation under stable and overload conditions may help optimize anaerobic digestion processes. In this study, five triplicate mesophilic completely mixed AD sets were operated at different organic loading rates (OLRs; 1-6 g chemical oxygen demand [COD] LR-1day-1), and changes in the composition and abundance of VFA-degrading microbial communities were monitored using amplicon sequencing and taxon-specific quantitative PCRs, respectively. AD sets operated at OLRs of 1-4 g COD LR-1day-1 were functionally stable throughout the operational period (120 days) whereas process instability (characterized by VFA buildup, pH decline, and decreased methane production rate) occurred in digesters operated at ≥ 5 g COD LR-1day-1. Though microbial taxa involved in propionate (Syntrophobacter and Pelotomaculum) and butyrate (Syntrophomonas) degradation were detected across all ADs, their abundance decreased with increasing OLR. The overload conditions also inhibited the proliferation of the acetoclastic methanogen, Methanosaeta, and caused a microbial community shift to acetate oxidizers (Tepidanaerobacter acetatoxydans) and hydrogenotrophic methanogens (Methanoculleus). This study's results highlight the importance of operating ADs with conditions that promote the maintenance of microbial communities involved in VFA degradation.


Assuntos
Bactérias Anaeróbias/metabolismo , Reatores Biológicos/microbiologia , Ácidos Graxos Voláteis/metabolismo , Microbiota , Anaerobiose , Firmicutes/metabolismo , Metano/metabolismo , Methanomicrobiaceae/metabolismo , Esgotos
8.
Angew Chem Int Ed Engl ; 59(9): 3523-3528, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31886601

RESUMO

Membrane proteins engage in a variety of contacts with their surrounding lipids, but distinguishing between specifically bound lipids, and non-specific, annular interactions is a challenging problem. Applying native mass spectrometry to three membrane protein complexes with different lipid-binding properties, we explore the ability of detergents to compete with lipids bound in different environments. We show that lipids in annular positions on the presenilin homologue protease are subject to constant exchange with detergent. By contrast, detergent-resistant lipids bound at the dimer interface in the leucine transporter show decreased koff rates in molecular dynamics simulations. Turning to the lipid flippase MurJ, we find that addition of the natural substrate lipid-II results in the formation of a 1:1 protein-lipid complex, where the lipid cannot be displaced by detergent from the highly protected active site. In summary, we distinguish annular from non-annular lipids based on their exchange rates in solution.


Assuntos
Lipídeos/química , Espectrometria de Massas , Proteínas de Membrana/química , Cardiolipinas/química , Cardiolipinas/metabolismo , Detergentes/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Methanomicrobiaceae/metabolismo , Simulação de Dinâmica Molecular , Presenilinas/química , Presenilinas/metabolismo , Ligação Proteica
9.
Bioresour Technol ; 289: 121706, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31279320

RESUMO

Microbial electrosynthesis (MES) is a promising technology to convert CO2 and electricity into the biofuel methane using methanogens. Until now, most investigations on electro-methanogenesis are "proof-of-principle" studies. In this paper, different strains were quantitatively compared in regard to final methane concentration, yields based on CO2-conversion, productivities as well as Coulombic efficiencies in order to identify suitable organisms for MES. Methanococcus vannielii, Methanococcus maripaludis, Methanolacinia petrolearia, Methanobacterium congolense, and Methanoculleus submarinus were able to produce methane via MES at -700 mV vs. standard hydrogen electrode (SHE). Beside methane also biological H2 production was detected during MES, which might be due to the involvement of hydrogenases. A direct electron transfer pathway is most likely. Obviously, M. maripaludis is the most resource efficient methane producer in microbial electrosynthesis regarding the methane productivity (8.81 ±â€¯0.51 mmol m-2 d-1) and the Coulombic efficiency (58.9 ±â€¯0.8%).


Assuntos
Dióxido de Carbono/metabolismo , Metano/biossíntese , Mathanococcus/metabolismo , Methanomicrobiaceae/metabolismo , Eletrodos , Hidrogenase/metabolismo , Methanobacterium/metabolismo
10.
Appl Environ Microbiol ; 85(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30366998

RESUMO

Degradation of long-chain fatty acids (LCFAs) in methanogenic environments is a syntrophic process involving the activity of LCFA-degrading bacteria and hydrogen-utilizing methanogens. If methanogens are inhibited, other hydrogen scavengers are needed to achieve complete LCFA degradation. In this work, we developed two different oleate (C18:1 LCFA)-degrading anaerobic enrichment cultures, one methanogenic (ME) and another in which methanogenesis was inhibited (IE). Inhibition of methanogens was attained by adding a solution of 2-bromoethanesulfonate (BrES), which turned out to consist of a mixture of BrES and isethionate. Approximately 5 times faster oleate degradation was accomplished by the IE culture compared with the ME culture. A bacterium closely related to Syntrophomonas zehnderi (99% 16S rRNA gene identity) was the main oleate degrader in both enrichments, in syntrophic relationship with hydrogenotrophic methanogens from the genera Methanobacterium and Methanoculleus (in ME culture) or with a bacterium closely related to Desulfovibrio aminophilus (in IE culture). A Desulfovibrio species was isolated, and its ability to utilize hydrogen was confirmed. This bacterium converted isethionate to acetate and sulfide, with or without hydrogen as electron donor. This bacterium also utilized BrES but only after 3 months of incubation. Our study shows that syntrophic oleate degradation can be coupled to desulfonation.IMPORTANCE In anaerobic treatment of complex wastewater containing fat, oils, and grease, high long-chain fatty acid (LCFA) concentrations may inhibit microbial communities, particularly those of methanogens. Here, we investigated if anaerobic degradation of LCFAs can proceed when methanogens are inhibited and in the absence of typical external electron acceptors, such as nitrate, iron, or sulfate. Inhibition studies were performed with the methanogenic inhibitor 2-bromoethanesulfonate (BrES). We noticed that, after autoclaving, BrES underwent partial hydrolysis and turned out to be a mixture of two sulfonates (BrES and isethionate). We found out that LCFA conversion proceeded faster in the assays where methanogenesis was inhibited, and that it was dependent on the utilization of isethionate. In this study, we report LCFA degradation coupled to desulfonation. Our results also showed that BrES can be utilized by anaerobic bacteria.


Assuntos
Ácidos Alcanossulfônicos/metabolismo , Clostridiales/metabolismo , Desulfovibrio/metabolismo , Methanobacterium/metabolismo , Methanomicrobiaceae/metabolismo , Ácido Oleico/metabolismo , Anaerobiose/efeitos dos fármacos
11.
Appl Microbiol Biotechnol ; 102(23): 10285-10297, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30276715

RESUMO

Knowledge of connections between operational conditions, process stability, and microbial community dynamics is essential to enhance anaerobic digestion (AD) process efficiency and management. In this study, the detailed temporal effects of a sudden glycerol-based organic overloading on the AD microbial community and process imbalance were investigated in two replicate anaerobic digesters by a time-intensive sampling scheme. The microbial community time response to the overloading event was shorter than the shifts of reactor performance parameters. An increase in bacterial community dynamics and in the abundances of several microbial taxa, mainly within the Firmicutes, Tenericutes, and Chloroflexi phyla and Methanoculleus genera, could be detected prior to any shift on the reactor operational parameters. Reactor acidification already started within the first 24 h of the shock and headed the AD process to total inhibition in 72 h alongside with the largest shifts on microbiome, mostly the increase of Anaerosinus sp. and hydrogenotrophic methanogenic Archaea. In sum, this work proved that AD microbial community reacts very quickly to an organic overloading and some shifts occur prior to alterations on the performance parameters. The latter is very interesting as it can be used to improve AD process management protocols.


Assuntos
Biomassa , Reatores Biológicos/microbiologia , Microbiota , Anaerobiose , Archaea/classificação , Archaea/isolamento & purificação , Chloroflexi/classificação , Chloroflexi/metabolismo , Biologia Computacional , DNA Bacteriano/genética , Firmicutes/classificação , Firmicutes/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Microbiologia Industrial , Methanomicrobiaceae/classificação , Methanomicrobiaceae/metabolismo , Tenericutes/classificação , Tenericutes/metabolismo
12.
BMC Microbiol ; 18(1): 21, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29554875

RESUMO

BACKGROUND: This study was conducted to examine effects of nitrate on ruminal methane production, methanogen abundance, and composition. Six rumen-fistulated Limousin×Jinnan steers were fed diets supplemented with either 0% (0NR), 1% (1NR), or 2% (2NR) nitrate (dry matter basis) regimens in succession. Rumen fluid was taken after two-week adaptation for evaluation of in vitro methane production, methanogen abundance, and composition measurements. RESULTS: Results showed that nitrate significantly decreased in vitro ruminal methane production at 6 h, 12 h, and 24 h (P < 0.01; P < 0.01; P = 0.01). The 1NR and 2NR regimens numerically reduced the methanogen population by 4.47% and 25.82% respectively. However, there was no significant difference observed between treatments. The alpha and beta diversity of the methanogen community was not significantly changed by nitrate either. However, the relative abundance of the methanogen genera was greatly changed. Methanosphaera (PL = 0.0033) and Methanimicrococcus (PL = 0.0113) abundance increased linearly commensurate with increasing nitration levels, while Methanoplanus abundance was significantly decreased (PL = 0.0013). The population of Methanoculleus, the least frequently identified genus in this study, exhibited quadratic growth from 0% to 2% when nitrate was added (PQ = 0.0140). CONCLUSIONS: Correlation analysis found that methane reduction was significantly related to Methanobrevibacter and Methanoplanus abundance, and negatively correlated with Methanosphaera and Methanimicrococcus abundance.


Assuntos
Suplementos Nutricionais , Euryarchaeota/metabolismo , Metano/metabolismo , Nitratos/metabolismo , Rúmen/microbiologia , Animais , Biodiversidade , Bovinos , DNA Arqueal , Euryarchaeota/efeitos dos fármacos , Euryarchaeota/genética , Euryarchaeota/crescimento & desenvolvimento , Fermentação , Methanobacteriaceae/efeitos dos fármacos , Methanobacteriaceae/crescimento & desenvolvimento , Methanobacteriaceae/metabolismo , Methanobrevibacter/efeitos dos fármacos , Methanobrevibacter/crescimento & desenvolvimento , Methanobrevibacter/metabolismo , Methanomicrobiaceae/efeitos dos fármacos , Methanomicrobiaceae/crescimento & desenvolvimento , Methanomicrobiaceae/metabolismo , Methanosarcinales/efeitos dos fármacos , Methanosarcinales/crescimento & desenvolvimento , Methanosarcinales/metabolismo , Microbiota/efeitos dos fármacos , Microbiota/genética , Microbiota/fisiologia , Nitratos/farmacologia , RNA Ribossômico 16S/genética
13.
J Biol Chem ; 293(13): 4653-4663, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382721

RESUMO

Mechanistic details of intramembrane aspartyl protease (IAP) chemistry, which is central to many biological and pathogenic processes, remain largely obscure. Here, we investigated the in vitro kinetics of a microbial intramembrane aspartyl protease (mIAP) fortuitously acting on the renin substrate angiotensinogen and the C-terminal transmembrane segment of amyloid precursor protein (C100), which is cleaved by the presenilin subunit of γ-secretase, an Alzheimer disease (AD)-associated IAP. mIAP variants with substitutions in active-site and putative substrate-gating residues generally exhibit impaired, but not abolished, activity toward angiotensinogen and retain the predominant cleavage site (His-Thr). The aromatic ring, but not the hydroxyl substituent, within Tyr of the catalytic Tyr-Asp (YD) motif plays a catalytic role, and the hydrolysis reaction incorporates bulk water as in soluble aspartyl proteases. mIAP hydrolyzes the transmembrane region of C100 at two major presenilin cleavage sites, one corresponding to the AD-associated Aß42 peptide (Ala-Thr) and the other to the non-pathogenic Aß48 (Thr-Leu). For the former site, we observed more favorable kinetics in lipid bilayer-mimicking bicelles than in detergent solution, indicating that substrate-lipid and substrate-enzyme interactions both contribute to catalytic rates. High-resolution MS analyses across four substrates support a preference for threonine at the scissile bond. However, results from threonine-scanning mutagenesis of angiotensinogen demonstrate a competing positional preference for cleavage. Our results indicate that IAP cleavage is controlled by both positional and chemical factors, opening up new avenues for selective IAP inhibition for therapeutic interventions.


Assuntos
Proteínas Arqueais , Ácido Aspártico Proteases , Methanomicrobiaceae , Presenilinas , Proteólise , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Ácido Aspártico Proteases/química , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Methanomicrobiaceae/química , Methanomicrobiaceae/genética , Methanomicrobiaceae/metabolismo , Presenilinas/química , Presenilinas/genética , Presenilinas/metabolismo
14.
Mol Microbiol ; 106(3): 351-366, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28795788

RESUMO

RNase J, a prokaryotic 5'-3' exo/endoribonuclease, contributes to mRNA decay, rRNA maturation and post-transcriptional regulation. Yet the processive-exoribonucleolysis mechanism remains obscure. Here, we solved the first RNA-free and RNA-bound structures of an archaeal RNase J, and through intensive biochemical studies provided detailed mechanistic insights into the catalysis and processivity. Distinct dimerization/tetramerization patterns were observed for archaeal and bacterial RNase Js, and unique archaeal Loops I and II were found involved in RNA interaction. A hydrogen-bond-network was identified for the first time that assists catalysis by facilitating efficient proton transfer in the catalytic center. A conserved 5'-monophosphate-binding pocket that coordinates the RNA 5'-end ensures the 5'-monophosphate preferential exoribonucleolysis. To achieve exoribonucleolytic processivity, the 5'-monophosphate-binding pocket and nucleotide +4 binding site anchor RNA within the catalytic track; the 5'-capping residue Leu37 of the sandwich pocket coupled with the 5'-monophosphate-binding pocket are dedicated to translocating and controlling the RNA orientation for each exoribonucleolytic cycle. The processive-exoribonucleolysis mechanism was verified as conserved in bacterial RNase J and also exposes striking parallels with the non-homologous eukaryotic 5'-3' exoribonuclease, Xrn1. The findings in this work shed light on not only the molecular mechanism of the RNase J family, but also the evolutionary convergence of divergent exoribonucleases.


Assuntos
Methanomicrobiaceae/metabolismo , Ribonucleases/química , Ribonucleases/metabolismo , Archaea/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Endorribonucleases/metabolismo , Exorribonucleases/metabolismo , Methanomicrobiaceae/genética , Modelos Moleculares , Nucleotídeos/metabolismo , Ligação Proteica , Elementos Estruturais de Proteínas/genética , RNA/metabolismo , Estabilidade de RNA , Ribonucleases/genética
15.
Anaerobe ; 48: 59-65, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28668707

RESUMO

The effect of increasing the concentration of commercial pequi (Caryocar brasiliense) oil on fermentation characteristics and abundance of methanogens and fibrolityc bacteria was evaluated using the rumen simulation technique (Rusitec). In vitro incubation was performed over 15 days using a basal diet consisting of ryegrass, maize silage and concentrate in equal proportions. Treatments consisted of control diet (no pequi oil inclusion, 0 g/kg DM), pequi dose 1 (45 g/kg DM), and pequi dose 2 (91 g/kg DM). After a 7 day adaptation period, samples for fermentation parameters (total gas, methane, and VFA production) were taken on a daily basis. Quantitative real time PCR (q-PCR) was used to evaluate the abundance of the main rumen cellulolytic bacteria, as well as abundance of methanogens. Supplementation with pequi oil did not reduce overall methane production (P = 0.97), however a tendency (P = 0.06) to decrease proportion of methane in overall microbial gas was observed. Increasing addition of pequi oil was associated with a linear decrease (P < 0.01) in dry matter disappearance of maize silage. The abundance of total methanogens was unchanged by the addition of pequi oil, but numbers of those belonging to Methanomassiliicoccaceae decreased in liquid-associated microbes (LAM) samples (P < 0.01) and solid-associated microbes (SAM) samples (P = 0.09) respectively, while Methanobrevibacter spp. increased (P < 0.01) only in SAM samples. Fibrobacter succinogenes decreased (P < 0.01) in both LAM and SAM samples when substrates were supplemented with pequi oil. In conclusion, pequi oil was ineffective in mitigating methane emissions and had some adverse effects on digestibility and selected fibrolytic bacteria.


Assuntos
Gorduras Insaturadas na Dieta/farmacologia , Ericales/química , Fermentação/efeitos dos fármacos , Óleos de Plantas/farmacologia , Rúmen/microbiologia , Animais , Bovinos , Digestão/fisiologia , Relação Dose-Resposta a Droga , Fibrobacter/metabolismo , Metano/biossíntese , Methanobrevibacter/metabolismo , Methanomicrobiaceae/metabolismo , Rúmen/metabolismo , Silagem/microbiologia
16.
J Appl Microbiol ; 123(4): 933-943, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28736977

RESUMO

AIMS: Pit mud is essential for the quality and yield of Chinese Luzhou-flavoured liquor. A reliable and fast method based on the use of microbial indicators combined with environmental factors coupled with metrology tools is needed to discriminate and classify different maturity levels of Luzhou-flavoured pit muds. METHODS AND RESULTS: Firmicutes, Bacteroidetes, Actinobacteria, Lactobacillus, Bacillus, Methanosarcina, Methanocorpusculum, Methanoculleus and Clostridium kluyveri were microbial indicators in Luzhou-flavoured pit muds. They were detected by real-time quantitative PCR. Environmental factors investigated included moisture content, pH, total acid and ammonia nitrogen. Principal component analysis (PCA) and partial least square-discriminant analysis were employed to explore the structure of the data and construct discrimination and classification models by reduction in the data dimensionality. Pit muds were distinguished and classified as new, trend to-be aged and aged. Moisture content and pH were significantly negatively correlated with new pit mud, while pH, total acid, amino nitrogen, Firmicutes, Bacteroidetes, Actinobacteria, Methanosarcina, Methanoculleus and C. kluyveri were significantly positively correlated with aged pit mud. CONCLUSIONS: Microbial indicators combined with environmental factors coupled to metrology tools can reliably and quickly discriminate and classify different maturity levels of Luzhou-flavoured pit muds. SIGNIFICANCE AND IMPACT OF THE STUDY: Modern techniques and metrology tools verified the correctness of the traditional sensory evaluation used in controlling the quality of pit mud, and will contribute to distinguishing different maturity levels of Chinese Luzhou-flavoured pit muds.


Assuntos
Bebidas Alcoólicas/microbiologia , Fermentação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Bacillus/genética , Bacillus/isolamento & purificação , Bacillus/metabolismo , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Firmicutes/genética , Firmicutes/isolamento & purificação , Firmicutes/metabolismo , Aromatizantes , Humanos , Concentração de Íons de Hidrogênio , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Lactobacillus/metabolismo , Methanomicrobiaceae/genética , Methanomicrobiaceae/isolamento & purificação , Methanomicrobiaceae/metabolismo , Methanomicrobiales/genética , Methanomicrobiales/isolamento & purificação , Methanomicrobiales/metabolismo , Methanosarcina/genética , Methanosarcina/isolamento & purificação , Methanosarcina/metabolismo , Paladar
17.
Sci Total Environ ; 595: 337-343, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28390312

RESUMO

Atmospheric nitrogen deposition caused by human activities has been receiving much attention. Here, after long-term simulated ammonium and nitrate nitrogen deposition (NH4Cl, KNO3, and NH4NO3) in the Yellow River Delta (YRD), a sensitive coastal wetland ecosystem typified by a distinct wet and dry season, methane fluxes were measured, by adopting a closed static chamber technique. The results showed that deposition of ammonium nitrogen accelerated methane emissions all year round. Ammonium nitrogen deposition transformed the YRD from a methane sink into a source during the dry season. Methanocellaceae is the only methanogen with increased abundance after the application of NH4Cl and NH4NO3, which promoted methane emissions, during the wet season. The findings suggested that Methanocellaceae may facilitate methane emissions in response to increased ammonium nitrogen deposition. Other methanogens might have profited from ammonium supplementation, such as Methanosarcinaceae. Deposition of nitrate nitrogen did not affect methane flux significantly. To the best of our knowledge, this study is the first to show that Methanocellaceae may be responsible for methane production in coastal wetland system. This study highlights the significant effect of ammonium nitrogen and slight effect of nitrate nitrogen on methane emission in the YRD and it will be helpful to understand the microbial mechanism responding to increased nitrogen deposition in the sensitive coastal wetland ecosystem.


Assuntos
Compostos de Amônio/metabolismo , Metano/biossíntese , Methanomicrobiaceae/metabolismo , Nitrogênio/metabolismo , Áreas Alagadas , China , Rios
18.
Anaerobe ; 46: 23-32, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28219787

RESUMO

Recently, a first comprehensive catalogue of microbial genomes populating biogas reactors treating manure and agro-industrial residues was determined by sequencing samples collected from 22 biogas reactors including laboratory and full scale. Among the archaeal community, one of the most abundant methanogens belongs to Methanoculleus genus and for this reason it was provisionally named Methanoculleus sp. DTU006. Its full length 16S rRNA sequence is 97% similar to Methanoculleus marisnigri JR1 and to Methanoculleus palmolei DSM 4273. Despite the high similarity of the 16S gene sequence, Average Nucleotide Identity calculation (ANI) calculated on all protein encoding genes indicated that the two most similar species, Methanoculleus bourgensis MS2T and Methanoculleus sp. MAB1, are divergent enough to define Methanoculleus sp. DTU006 as new archaeal species. Its genome (2.15 Mbp) has an estimated completeness around 93%. Analysis of the metabolic pathways using KEGG confirmed that it is a hydrogenotrophic methanogen and therefore it is proposed the Candidatus status by naming it as "Candidatus Methanoculleus thermohydrogenotrophicum".


Assuntos
Biocombustíveis , Reatores Biológicos , Metagenômica , Methanomicrobiaceae/genética , Methanomicrobiaceae/metabolismo , Anaerobiose , Análise por Conglomerados , Código de Barras de DNA Taxonômico , Perfilação da Expressão Gênica , Genoma Arqueal , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Metagenômica/métodos , Metano/biossíntese , Methanomicrobiaceae/classificação , Filogenia , Plantas/metabolismo , RNA Ribossômico 16S/genética
19.
J Biosci Bioeng ; 123(5): 597-605, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28057469

RESUMO

The inhibitory effects of sulfide on microbial processes during anaerobic digestion have been widely addressed. However, other effects of sulfide are less explored, given that sulfide is a potential sulfur source for microorganisms and its high reactivity triggers a suit of abiotic reactions. We demonstrated that sulfide interaction with Fe regulates the dynamics and activities of microbial community during anaerobic digestion. This was manifested by the S:Fe molar ratio, whose increase adversely influenced the acetoclastic methanogens, Methanosaeta, and turnover of acetate. Dynamics of hydrogenotrophic methanogens, Methanoculleus and Methanobrevibacter, were presumably influenced by sulfide-induced changes in the partial pressure of hydrogen. Interestingly, conversion of the long-chain fatty acid (LCFA), oleate, to methane was enhanced together with the abundance of LCFA-degrading, ß-oxidizing Syntrophomonas at an elevated S:Fe molar ratio. The results suggested that sulfur chemical speciation is a controlling factor for microbial community functions in anaerobic digestion processes.


Assuntos
Biocombustíveis , Reatores Biológicos/microbiologia , Ácidos Graxos Voláteis/metabolismo , Ferro/metabolismo , Metano/biossíntese , Sulfetos/metabolismo , Acetatos/metabolismo , Anaerobiose , Bactérias Anaeróbias/metabolismo , Clostridiales/metabolismo , Hidrogênio/metabolismo , Methanobrevibacter/metabolismo , Methanomicrobiaceae/metabolismo , Methanosarcinales/metabolismo , Ácido Oleico/química , Ácido Oleico/metabolismo , Oxirredução , Sulfetos/química
20.
Genome Biol Evol ; 8(6): 1706-11, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27189979

RESUMO

Methanogenesis coupled to the Wood-Ljungdahl pathway is one of the most ancient metabolisms for energy generation and carbon fixation in the Archaea. Recent results are sensibly changing our view on the diversity of methane-cycling capabilities in this Domain of Life. The availability of genomic sequences from uncharted branches of the archaeal tree has highlighted the existence of novel methanogenic lineages phylogenetically distant to previously known ones, such as the Methanomassiliicoccales. At the same time, phylogenomic analyses have suggested a methanogenic ancestor for all Archaea, implying multiple independent losses of this metabolism during archaeal diversification. This prediction has been strengthened by the report of genes involved in methane cycling in members of the Bathyarchaeota (a lineage belonging to the TACK clade), representing the first indication of the presence of methanogenesis outside of the Euryarchaeota. In light of these new data, we discuss how the association between methanogenesis and the Wood-Ljungdahl pathway appears to be much more flexible than previously thought, and might provide information on the processes that led to loss of this metabolism in many archaeal lineages. The combination of environmental microbiology, experimental characterization and phylogenomics opens up exciting avenues of research to unravel the diversity and evolutionary history of fundamental metabolic pathways.


Assuntos
Archaea/genética , Evolução Molecular , Metano/metabolismo , Methanomicrobiaceae/genética , Archaea/metabolismo , Carbono/metabolismo , Genoma Arqueal , Redes e Vias Metabólicas/genética , Methanomicrobiaceae/metabolismo , Filogenia , Madeira/química , Madeira/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA