Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Fungal Biol ; 128(4): 1859-1867, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876538

RESUMO

Volatile organic compounds (VOCs) produced by yeasts can positively affect crops, acting as antifungals or biostimulants. In this study, Aureobasidium pullulans and Metschnikowia pulcherrima were evaluated as potential antagonists of Trichoderma spp., common fungal pathogen in mushroom cultivation. To assess the biocontrol ability and biostimulant properties of the selected yeast species, in vitro co-culture and VOCs exposure assays were conducted. In both assays, VOCs produced by Aureobasidium spp. showed the stronger antifungal activity with a growth inhibition up to 30 %. This result was further confirmed by the higher volatilome alcohol content revealed by solid phase microextraction-gas chromatography mass spectrometry (SPME/GC-MS). Overall, Aureobasidium strains can be potentially used as biocontrol agent in Pleorotus ostreatus and Cyclocybe cylindracea mycelial growth, without affecting their development as demonstrated by VOCs exposure assay and Fourier-transform infrared spectroscopy (FT-IR). Conversely, M. pulcherrima was characterized by a lower or absent antifungal properties and by a volatilome composition rich in isobutyl acetate, an ester often recognized as plant growth promoter. As confirmed by FT-IR, Lentinula mycelia exposed to M. pulcherrima VOCs showed a higher content of proteins and lipids, suggesting an improvement of some biochemical properties. Our study emphasizes that VOCs produced by specific yeast strains are potentially powerful alternative to synthetic fungicide in the vegetative growth of mushroom-forming fungi and also able to modify their biochemical composition.


Assuntos
Agaricales , Cromatografia Gasosa-Espectrometria de Massas , Micélio , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Micélio/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/química , Agaricales/química , Agaricales/crescimento & desenvolvimento , Agaricales/efeitos dos fármacos , Agaricales/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Agentes de Controle Biológico/farmacologia , Agentes de Controle Biológico/química , Metschnikowia/crescimento & desenvolvimento , Metschnikowia/efeitos dos fármacos , Metschnikowia/metabolismo , Antibiose , Aureobasidium , Trichoderma/crescimento & desenvolvimento , Trichoderma/química , Trichoderma/metabolismo , Microextração em Fase Sólida
2.
Sci Rep ; 11(1): 10593, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011985

RESUMO

Biological control against microbial infections has a great potential as an alternative approach instead of fungicidal chemicals, which can cause environmental pollution. The pigment producer Metschnikowia andauensis belongs to the antagonistic yeasts, but details of the mechanism by which it inhibits growth of other microbes are less known. Our results confirmed its antagonistic capacity on other yeast species isolated from fruits or flowers and demonstrated that the antagonistic capacity was well correlated with the size of the red pigmented zone. We have isolated and characterized its red pigment, which proved to be the iron chelating pulcherrimin. Its production was possible even in the presence of 0.05 mg/ml copper sulphate, which is widely used in organic vineyards because of its antimicrobial properties. Production and localisation of the pulcherrimin strongly depended on composition of the media and other culture factors. Glucose, galactose, disaccharides and the presence of pectin or certain amino acids clearly promoted pigment production. Higher temperatures and iron concentration decreased the diameter of red pigmented zones. The effect of pH on pigment production varied depending of whether it was tested in liquid or solid media. In addition, our results suggest that other mechanisms besides the iron depletion of the culture media may contribute to the antagonistic capacity of M. andauensis.


Assuntos
Aminoácidos Sulfúricos/biossíntese , Espaço Extracelular/enzimologia , Metschnikowia/metabolismo , Carbono/farmacologia , Contagem de Células , Cobre/metabolismo , Concentração de Íons de Hidrogênio , Íons , Ferro/metabolismo , Metschnikowia/efeitos dos fármacos , Metschnikowia/crescimento & desenvolvimento , Piperidinas , Polissacarídeos/farmacologia , Temperatura , Leveduras/efeitos dos fármacos , Leveduras/crescimento & desenvolvimento
3.
Microbiol Res ; 242: 126641, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33191103

RESUMO

The pathogenic yeast strain LIAO causing the milky disease in the Chinese mitten crab belonged to one member of Metschnikowia bicuspidate which could grow well at different temperatures from 28 to 4 °C. It was also found that the pathogenic yeast strain LIAO could grow in the extracts of the muscle, gill, heart tissues, intestinal tracts of the healthy Chinese mitten crabs by using the reducing sugars, amino acids and other nutrients in them. Massoia lactone released from liamocins produced by Aureobasidium melanogenum had high anti-fungal activity against the pathogenic yeast strain LIAO and M. bicuspidate WCY isolated from the diseased marine crabs. The minimal inhibitory concentrations (MIC) and the minimal fungicidal concentration (MFC) in the liquid culture against the pathogenic yeast strain LIAO were 0.15 mg/mL and 0.34 mg/mL, respectively. Massoia lactone as a bio-surfactant could damage the cell membrane, even break the whole cells of the pathogenic yeast strain LIAO and cause cellular necrosis of the pathogenic yeast LIAO. Therefore, Massoia lactone could be used to effectively kill the pathogenic yeast strains and as an effectitve treatment for milky disease in the Chinese mitten crab.


Assuntos
Doenças dos Animais/tratamento farmacológico , Antifúngicos/farmacologia , Braquiúros/microbiologia , Lactonas/farmacologia , Metschnikowia/efeitos dos fármacos , Animais , Antifúngicos/uso terapêutico , Aureobasidium , Sequência de Bases , Lactonas/uso terapêutico , Metschnikowia/genética , Metschnikowia/patogenicidade , Testes de Sensibilidade Microbiana , Necrose , Filogenia , Leveduras
4.
Aquat Toxicol ; 226: 105584, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32795838

RESUMO

There is increasing evidence about negative effects of fungicides on non-target organisms, including parasitic species, which are key elements in food webs. Previous experiments showed that environmentally relevant concentrations of fungicide tebuconazole are toxic to the microparasite Metschnikowia bicuspidata, a yeast species that infects the planktonic crustacean Daphnia spp. However, due to their short-term nature, this and other experimental studies were not able to test if parasites could potentially adapt to these contaminants. Here, we tested if M. bicuspidata parasite can adapt to tebuconazole selective pressure. Infected D. magna lineages were reared under control conditions (no tebuconazole) and environmentally realistic tebuconazole concentrations, for four generations, and their performance was compared in a follow-up reciprocal assay. Additionally, we assessed whether the observed effects were transient (phenotypic) or permanent (genetic), by reassessing parasite fitness after the removal of selective pressure. Parasite fitness was negatively affected throughout the multigenerational exposure to the fungicide: prevalence of infection and spore load decreased, whereas host longevity increased, in comparison to control (naive) parasite lineages. In a follow-up reciprocal assay, tebuconazole-conditioned (TEB) lineages performed worse than naive parasite lineages, both in treatments without and with tebuconazole, confirming the cumulative negative effect of tebuconazole. The underperformance of TEB lineages was rapidly reversed after removing the influence of the selective pressure (tebuconazole), demonstrating that the costs of prolonged exposure to tebuconazole were phenotypic and transient. The microparasitic yeast M. bicuspidata did not reveal potential for rapid evolution to an anthropogenic selective pressure; instead, the long-term exposure to tebuconazole was hazardous to this non-target species. These findings highlight the potential environmental risks of azole fungicides on non-target parasitic fungi. The underperformance of these microbes and their inability to adapt to such stressors can interfere with the key processes where they intervene. Further research is needed to rank fungicides based on the hazard to non-target fungi (parasites, but also symbionts and decomposers), towards more effective management and protective legislation.


Assuntos
Daphnia/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Metschnikowia/efeitos dos fármacos , Modelos Biológicos , Triazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Adaptação Fisiológica/efeitos dos fármacos , Animais , Daphnia/microbiologia , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Metschnikowia/crescimento & desenvolvimento
5.
Food Microbiol ; 78: 143-154, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30497596

RESUMO

Oxidative stress is a common stress in yeasts during the stages of the winemaking process in which aerobic growth occurs, and it can modify the cellular lipid composition. The aim of this study was to evaluate the oxidative stress tolerance of two non-conventional yeasts (Torulaspora delbrueckii and Metschnikowia pulcherrima) compared to Saccharomyces cerevisiae. Therefore, their resistance against H2O2, the ROS production and the cellular lipid composition were assessed. The results showed that the non-Saccharomyces yeasts used in this study exhibited higher resistance to H2O2 stress and lower ROS accumulation than Saccharomyces. Regarding the cellular lipid composition, the two non-Saccharomyces species studied here displayed a high percentage of polyunsaturated fatty acids, which resulted in more fluid membranes. This result could indicate that these yeasts have been evolutionarily adapted to have better resistance against the oxidative stress. Furthermore, under external oxidative stress, non-Saccharomyces yeasts were better able to adapt their lipid composition as a defense mechanism by decreasing their percentage of polyunsaturated fatty acids and squalene and increasing their monounsaturated fatty acids.


Assuntos
Lipídeos de Membrana/química , Estresse Oxidativo , Vinho/microbiologia , Leveduras/fisiologia , Ácidos Graxos Insaturados/análise , Fermentação , Peróxido de Hidrogênio/farmacologia , Lipídeos de Membrana/metabolismo , Metschnikowia/efeitos dos fármacos , Metschnikowia/fisiologia , Fosfolipídeos/análise , Fosfolipídeos/metabolismo , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Esteróis/análise , Esteróis/metabolismo , Torulaspora/efeitos dos fármacos , Torulaspora/fisiologia , Vinho/análise , Leveduras/efeitos dos fármacos
6.
Aquat Toxicol ; 193: 144-151, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29096087

RESUMO

Given the importance of pollutant effects on host-parasite relationships and disease spread, the main goal of this study was to assess the influence of different exposure scenarios for the fungicide tebuconazole (concentration×timing of application) on a Daphnia-microparasitic yeast experimental system. Previous results had demonstrated that tebuconazole is able to suppress Metschnikowia bicuspidata infection at ecologically-relevant concentrations; here, we aimed to obtain an understanding of the mechanism underlying the anti-parasitic (fungicidal or fungistatic) action of tebuconazole. We exposed the Daphnia-yeast system to four nominal tebuconazole concentrations at four timings of application (according to the predicted stage of parasite development), replicated on two Daphnia genotypes, in a fully crossed experiment. An "all-or-nothing" effect was observed, with tebuconazole completely suppressing infection from 13.5µgl-1 upwards, independent of the timing of tebuconazole application. A follow-up experiment confirmed that the suppression of infection occurred within a narrow range of tebuconazole concentrations (3.65-13.5µgl-1), although a later application of the fungicide had to be compensated for by a slight increase in concentration to elicit the same anti-parasitic effect. The mechanism behind this anti-parasitic effect seems to be the inhibition of M. bicuspidata sporulation, since tebuconazole was effective in preventing ascospore production even when applied at a later time. However, this fungicide also seemed to affect the vegetative growth of the yeast, as demonstrated by the enhanced negative effect of the parasite (increasing mortality in one of the host genotypes) at a later time of application of tebuconazole, when no signs of infection were observed. Fungicide contamination can thus affect the severity and spread of disease in natural populations, as well as the inherent co-evolutionary dynamics in host-parasite systems.


Assuntos
Daphnia/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Metschnikowia/efeitos dos fármacos , Triazóis/farmacologia , Animais , Daphnia/genética , Daphnia/parasitologia , Genótipo , Interações Hospedeiro-Parasita , Metschnikowia/fisiologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia
7.
PLoS One ; 12(2): e0172589, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28231278

RESUMO

Natural populations are commonly exposed to complex stress scenarios, including anthropogenic contamination and their biological enemies (e.g., parasites). The study of the pollutant-parasite interplay is especially important, given the need for adequate regulations to promote improved ecosystem protection. In this study, a host-parasite model system (Daphnia spp. and the microparasitic yeast Metschnikowia bicuspidata) was used to explore the reciprocal effects of contamination by common agrochemical fungicides (copper sulphate and tebuconazole) and parasite challenge. We conducted 21-day life history experiments with two host clones exposed to copper (0.00, 25.0, 28.8 and 33.1 µg L-1) or tebuconazole (0.00, 154, 192 and 240 µg L-1), in the absence or presence of the parasite. For each contaminant, the experimental design consisted of 2 Daphnia clones × 4 contaminant concentrations × 2 parasite treatments × 20 replicates = 320 experimental units. Copper and tebuconazole decreased Daphnia survival or reproduction, respectively, whilst the parasite strongly reduced host survival. Most importantly, while copper and parasite effects were mostly independent, tebuconazole suppressed infection. In a follow-up experiment, we tested the effect of a lower range of tebuconazole concentrations (0.00, 6.25, 12.5, 25.0, 50.0 and 100 µg L-1) crossed with increasing parasite challenge (2 Daphnia clones × 6 contaminant concentrations × 2 parasite levels × 20 replicates = 480 experimental units). Suppression of infection was confirmed at environmentally relevant concentrations (> 6.25 µg L-1), irrespective of the numbers of parasite challenge. The ecological consequences of such a suppression of infection include interferences in host population dynamics and diversity, as well as community structure and energy flow across the food web, which could upscale to ecosystem level given the important role of parasites.


Assuntos
Cobre/toxicidade , Daphnia/efeitos dos fármacos , Daphnia/microbiologia , Fungicidas Industriais/toxicidade , Metschnikowia/efeitos dos fármacos , Triazóis/toxicidade , Animais , Daphnia/fisiologia , Feminino , Interações Hospedeiro-Patógeno , Metschnikowia/fisiologia , Reprodução/efeitos dos fármacos
8.
Appl Microbiol Biotechnol ; 101(6): 2479-2491, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27913851

RESUMO

The sequential or co-inoculation of grape must with non-Saccharomyces yeast species and Saccharomyces cerevisiae wine yeast strains has recently become a common practice in winemaking. The procedure intends to enhance unique aroma and flavor profiles of wine. The extent of the impact of non-Saccharomyces strains depends on their ability to produce biomass and to remain metabolically active for a sufficiently long period. However, mixed-culture wine fermentations tend to become rapidly dominated by S. cerevisiae, reducing or eliminating the non-Saccharomyces yeast contribution. For an efficient application of these yeasts, it is therefore essential to understand the environmental factors that modulate the population dynamics of such ecosystems. Several environmental parameters have been shown to influence population dynamics, but their specific effect remains largely uncharacterized. In this study, the population dynamics in co-fermentations of S. cerevisiae and three non-Saccharomyces yeast species: Torulaspora delbrueckii, Lachancea thermotolerans, and Metschnikowia pulcherrima, was investigated as a function of oxygen availability. In all cases, oxygen availability strongly influenced population dynamics, but clear species-dependent differences were observed. Our data show that L. thermotolerans required the least oxygen, followed by T. delbrueckii and M. pulcherrima. Distinct species-specific chemical volatile profiles correlated in all cases with increased persistence of non-Saccharomyces yeasts, in particular increases in some higher alcohols and medium chain fatty acids. The results highlight the role of oxygen in regulating the succession of yeasts during wine fermentations and suggests that more stringent aeration strategies would be necessary to support the persistence of non-Saccharomyces yeasts in real must fermentations.


Assuntos
Metschnikowia/efeitos dos fármacos , Oxigênio/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomycetales/efeitos dos fármacos , Torulaspora/efeitos dos fármacos , Acetaldeído/metabolismo , Ácido Acético/metabolismo , Técnicas de Cocultura , Etanol/metabolismo , Fermentação/efeitos dos fármacos , Glicerol/metabolismo , Metschnikowia/crescimento & desenvolvimento , Metschnikowia/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Especificidade da Espécie , Torulaspora/crescimento & desenvolvimento , Torulaspora/metabolismo , Vitis/metabolismo , Vitis/microbiologia , Vinho/análise
9.
Environ Sci Pollut Res Int ; 23(19): 19776-86, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27411538

RESUMO

Pesticides have become an inseparable element of agricultural intensification. While the direct impact of pesticides on non-target organisms, such as pollinators, has recently received much attention, less consideration has been given to the microorganisms that are associated with them. Specialist yeasts and bacteria are known to commonly inhabit floral nectar and change its chemical characteristics in numerous ways, possibly influencing pollinator attraction. In this study, we investigated the in vitro susceptibility of nectar yeasts Metschnikowia gruessi, Metschnikowia reukaufii, and Candida bombi to six widely used agricultural fungicides (prothioconazole, tebuconazole, azoxystrobin, fenamidone, boscalid, and fluopyram). Next, a commercial antifungal mixture containing tebuconazole and trifloxystrobin was applied to natural populations of the plant Linaria vulgaris and the occurrence, abundance, and diversity of nectar-inhabiting yeasts and bacteria was compared between treated and untreated plants. The results showed that prothioconazole and tebuconazole were highly toxic to nectar yeasts, inhibiting their growth at concentrations varying between 0.06 and 0.5 mg/L. Azoxystrobin, fenamidone, boscalid, and fluopyram on the other hand exhibited considerably lower toxicity, inhibiting yeast growth at concentrations between 1 and 32 mg/L or in many cases not inhibiting microbial growth at all. The application of the antifungal mixture in natural plant populations resulted in a significant decrease in the occurrence and abundance of yeasts in individual flowers, but this did not translate into noticeable changes in bacterial incidence and abundance. Yeast and bacterial species richness and distribution did not also differ between treated and untreated plants. We conclude that the application of fungicides may have negative effects on the abundance of nectar yeasts in floral nectar. The consequences of these effects on plant pollination processes in agricultural systems warrant further investigation.


Assuntos
Candida/efeitos dos fármacos , Flores/microbiologia , Fungicidas Industriais/toxicidade , Linaria/microbiologia , Metschnikowia/efeitos dos fármacos , Néctar de Plantas , Bactérias/isolamento & purificação , Candida/crescimento & desenvolvimento , Metschnikowia/crescimento & desenvolvimento , Polinização
10.
PLoS One ; 11(6): e0156119, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27280438

RESUMO

A yeast-like organism was isolated from the skin scraping sample of a stasis dermatitis patient in the Mycology Unit Department of Medical Microbiology, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia. The isolate produced no pigment and was not identifiable using chromogenic agar and API 20C AUX. The fungus was identified as Metschnikowia sp. strain UM 1034, which is close to that of Metschnikowia drosophilae based on ITS- and D1/D2 domain-based phylogenetic analysis. However, the physiology of the strain was not associated to M. drosophilae. This pathogen exhibited low sensitivity to all tested azoles, echinocandins, 5-flucytosine and amphotericin B. This study provided insight into Metschnikowia sp. strain UM 1034 phenotype profiles using a Biolog phenotypic microarray (PM). The isolate utilized 373 nutrients of 760 nutrient sources and could adapt to a broad range of osmotic and pH environments. To our knowledge, this is the first report of the isolation of Metschnikowia non-pulcherrima sp. from skin scraping, revealing this rare yeast species as a potential human pathogen that may be misidentified as Candida sp. using conventional methods. Metschnikowia sp. strain UM 1034 can survive in flexible and diverse environments with a generalist lifestyle.


Assuntos
Dermatite/microbiologia , Metschnikowia/isolamento & purificação , Metschnikowia/patogenicidade , Micoses/microbiologia , Pele/microbiologia , Idoso , Antifúngicos/farmacologia , DNA Fúngico/genética , DNA Ribossômico/genética , Humanos , Masculino , Metschnikowia/classificação , Metschnikowia/efeitos dos fármacos , Técnicas de Tipagem Micológica , Micoses/complicações , Micoses/genética , Filogenia , Pigmentação , Análise de Sequência de DNA , Pele/efeitos dos fármacos , Pele/metabolismo
11.
FEMS Yeast Res ; 16(1): fov115, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26703195

RESUMO

The widespread use of azole antifungals in medicine and agriculture and the resulting long-persistent residues could potentially affect beneficial fungi. However, there is very little information on the tolerance of non-target environmental fungi to azoles. In this study, we assessed the susceptibility of diverse plant- and insect-associated yeasts from the Metschnikowia clade, including several ecologically important species, to widely used medical and agricultural azoles (epoxiconazole, imazalil, ketoconazole and voriconazole). A total of 120 strains from six species were tested. Minimum inhibitory concentrations (MICs) were determined by the EUCAST broth microdilution procedure after some necessary modifications were made. The majority of species tested were highly susceptible to epoxiconazole, ketoconazole and voriconazole (>95% of strains showed MICs ≤ 0.125 mg l(-1)). Most strains were also very susceptible to imazalil, although MIC values were generally higher than for the other azoles. Furthermore, certain Metschnikowia reukaufii strains displayed a 'trailing' phenotype (i.e. showed reduced but persistent growth at antifungal concentrations above the MIC), but this characteristic was dependent on test conditions. It was concluded that exposure to azoles may pose a risk for ecologically relevant yeasts from the Metschnikowia clade, and thus could potentially impinge on the tripartite interaction linking these fungi with plants and their insect pollinators.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Metschnikowia/efeitos dos fármacos , Agricultura/métodos , Animais , Insetos/microbiologia , Medicina/métodos , Metschnikowia/isolamento & purificação , Testes de Sensibilidade Microbiana , Plantas/microbiologia
12.
Int J Food Microbiol ; 189: 189-94, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25171112

RESUMO

This research deals with how two fungicide treatments against powdery mildew, penconazole as a systematic fungicide and sulfur as an inorganic broad-spectrum fungicide, affect the diversity and density of wine yeasts associated with grape berry surfaces and subsequent spontaneous fermentations. Unlike other studies in this area, this work aims to evaluate this effect on the population dynamics in the environment, the conditions of which are not reproducible in the laboratory. A long term (three year) sampling plan was thus devised. A minimum inhibitory concentration assay was also carried out in the laboratory in order to prove the influence of these antifungals on yeast populations. While both antifungal treatments (penconazole and sulfur) were similarly effective against powdery mildew, each had a very different effect on yeast populations. Penconazole showed the most negative effect on biodiversity in the vineyard and was the fungicide to which the isolated yeasts showed the greatest sensitivity. This study therefore evidences the suitability of treatment with sulfur, in both conventional and organic viticulture, to preserve the yeast population associated with grape berries, in particular the Saccharomyces cerevisiae species.


Assuntos
Fungicidas Industriais/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Enxofre/farmacologia , Triazóis/farmacologia , Vitis/microbiologia , Vinho/microbiologia , Biodiversidade , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Candida/metabolismo , Fermentação/efeitos dos fármacos , Frutas/microbiologia , Hanseniaspora/efeitos dos fármacos , Hanseniaspora/crescimento & desenvolvimento , Hanseniaspora/metabolismo , Metschnikowia/efeitos dos fármacos , Metschnikowia/crescimento & desenvolvimento , Metschnikowia/metabolismo , Rhodotorula/efeitos dos fármacos , Rhodotorula/crescimento & desenvolvimento , Rhodotorula/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
13.
J Food Sci ; 79(3): M369-77, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24506214

RESUMO

UNLABELLED: The aim of this work was to determine the chemical constituents and in vitro antimicrobial activity of the essential oil (EO) of the aerial parts of Mentha sueveolens spp. insularis grown in Sardinia (Italy) against probiotic and starter microorganisms. The gas chromatography-mass spectrometry (GC-MS) analysis allowed to identified 34 compounds, most of oxygenated monoterpene compounds (82.5%) and among them, pulegone was found as major compound (46.5%). The agar diffusion test carried out employing the EO of Mentha suaveolens spp. insularis showed a low antibacterial activity, in particular no action was noticed for probiotic bacteria belonging to lactic acid bacteria groups, whereas almost all yeasts strains tested were inhibited. The automated microtitter dilution assay showed a clear effect at increasing concentration of EO on the specific growth rate (µ) and extension of the lag phase (λ) only for S. xylosus SA23 among bacteria and for Saccharomyces cerevisiae, Tetrapisispora phaffii CBS 4417, Metschnikowia pulcherrima, and Candida zemplinina among yeasts. Results obtained in this work allow us to broaden the knowledge on the effect of EOs on probiotic and food-related microorganisms. PRACTICAL APPLICATION: Mentha suaveolens spp. insularis may be used in combination with probiotic bacteria into the food matrix or encapsulated in coating and edible films for food preservation.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Conservação de Alimentos , Mentha/química , Monoterpenos/farmacologia , Óleos Voláteis/farmacologia , Leveduras/efeitos dos fármacos , Antibacterianos/análise , Antibacterianos/farmacologia , Anti-Infecciosos/análise , Antifúngicos/análise , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Monoterpenos Cicloexânicos , Cromatografia Gasosa-Espectrometria de Massas , Itália , Metschnikowia/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Monoterpenos/análise , Monoterpenos/química , Óleos Voláteis/química , Saccharomyces cerevisiae/efeitos dos fármacos , Staphylococcus/efeitos dos fármacos
14.
Appl Microbiol Biotechnol ; 97(16): 7141-50, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23744287

RESUMO

The bacterium Bacillus amyloliquefaciens anti-CA isolated from mangrove system was found to be able to actively kill Candida albicans isolated from clinic. The bacterial strain anti-CA could produce high level of bioactive substance, amylase and protease in the cheap medium containing 2.0 % soybean meal, 2.0 % wheat flour, pH 6.5 within 26 h. After purification, the main bioactive substance was confirmed to be a cyclic lipopeptide containing a heptapeptide, L-Asp→L-Leu→L-Leu→L-Val→L-Val→L-Glu→L-Leu and a 3-OH fatty acid (15 carbons). In addition to C. albicans, the purified lipopeptide can also kill many yeast strains including Metschnikowia bicuspidata, Candida tropicalis, Yarrowia lipolytica and Saccharomyces cerevisiae. After treated by the purified lipopeptide, both the whole cells and protoplasts of C. albicans were destroyed.


Assuntos
Antifúngicos/farmacologia , Bacillus/química , Candida albicans/efeitos dos fármacos , Lipopeptídeos/farmacologia , Antifúngicos/isolamento & purificação , Candida albicans/isolamento & purificação , Candida tropicalis/efeitos dos fármacos , Candidíase/microbiologia , Análise por Conglomerados , Meios de Cultura/química , Meios de Cultura/economia , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Lipopeptídeos/isolamento & purificação , Metschnikowia/efeitos dos fármacos , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Análise de Sequência de DNA , Yarrowia/efeitos dos fármacos
15.
Med Mycol ; 51(4): 438-43, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23170963

RESUMO

A yeast strain was isolated from the sputum sample of a leukaemia patient in the Spirito Santo Hospital of Pescara, Italy. The fungus produced a pigment that formed a reddish halo around colonies, and was identified and deposited as a Metschnikowia spp. (accession number IHEM 25107-GenBank accession number JQ921016) in the BCCM/IHEM collection of biomedical fungi and yeasts (Bruxelles, Belgium). Although the physiology of the strain was close to that of Metschnikowia sinensis, the D1/D2 sequence did not correspond to any previously described Metschnikowia species. Phylogeny of the genus Metschnikowia is complex and requires far more analysis. We present the first non-M. pulcherrima Metschnikowia spp. isolate recovered from a human, and emphasize the role of man as a transient carrier of environmental yeasts, the pathogenicity of which still needs to be defined.


Assuntos
Antifúngicos/farmacologia , Leucemia/complicações , Metschnikowia/isolamento & purificação , Micoses/microbiologia , Pirazinas/metabolismo , Anfotericina B/farmacologia , Sequência de Bases , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fluconazol/farmacologia , Humanos , Itália , Masculino , Metschnikowia/classificação , Metschnikowia/efeitos dos fármacos , Metschnikowia/fisiologia , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Micoses/complicações , Filogenia , Pigmentos Biológicos/metabolismo , Análise de Sequência de DNA , Escarro/microbiologia , Voriconazol/farmacologia
16.
Mol Ecol ; 21(11): 2602-16, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22171717

RESUMO

In addition to genetic differences between individuals as a result of nucleotide sequence variation, epigenetic changes that occur as a result of DNA methylation may also contribute to population niche width by enhancing phenotypic plasticity, although this intriguing possibility remains essentially untested. Using the nectar-living yeast Metschnikowia reukaufii as study subject, we examine the hypothesis that changes in genome-wide DNA methylation patterns underlie the ability of this fugitive species to exploit a broad resource range in its heterogeneous and patchy environment. Data on floral nectar characteristics and their use by M. reukaufii in the wild were combined with laboratory experiments and methylation-sensitive amplified polymorphism (MSAP) analyses designed to detect epigenetic responses of single genotypes to variations in sugar environment that mimicked those occurring naturally in nectar. M. reukaufii exploited a broad range of resources, occurring in nectar of 48% of species and 52% of families surveyed, and its host plants exhibited broad intra- and interspecific variation in sugar-related nectar features. Under experimental conditions, sugar composition, sugar concentration and their interaction significantly influenced the mean probability of MSAP markers experiencing a transition from unmethylated to methylated state. Alterations in methylation status were not random but predictably associated with certain markers. The methylation inhibitor 5-azacytidine (5-AzaC) had strong inhibitory effects on M. reukaufii proliferation in sugar-containing media, and a direct relationship existed across sugar × concentration experimental levels linking inhibitory effect of 5-AzaC and mean per-marker probability of genome-wide methylation. Environmentally induced DNA methylation polymorphisms allowed genotypes to grow successfully in extreme sugar environments, and the broad population niche width of M. reukaufii was largely made possible by epigenetic changes enabling genotype plasticity in resource use.


Assuntos
Metilação de DNA , Epigênese Genética , Flores/microbiologia , Metschnikowia/genética , Néctar de Plantas , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Azacitidina/farmacologia , Carboidratos/análise , Flores/fisiologia , Interação Gene-Ambiente , Metschnikowia/efeitos dos fármacos , Metschnikowia/fisiologia , Néctar de Plantas/química , Espanha
17.
Bioresour Technol ; 102(22): 10679-85, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21967713

RESUMO

A new strain of the yeast Metschnikowia koreensis was grown in shake flasks and a stirred bioreactor for the production of carbonyl reductase. The optimal conditions in the bioreactor for maximizing the biomass specific activity of the enzyme were found to be: a medium composed of glucose (20 g/L), peptone (5 g/L), yeast extract (5 g/L) and zinc sulfate (0.3g/L); the pH controlled at 7; the temperature controlled at 25 °C; an agitation speed of 500 rpm; and an aeration rate of 0.25 vvm. In the bioreactor, a biomass specific enzyme activity of 115.6 U/gDCW was obtained and the maximum biomass concentration was 15.3 gDCW/L. The biomass specific enzyme activity obtained in the optimized bioreactor culture was 11-fold higher than the best result achieved in shake flasks. The bioreactor culture afforded a 2.7-fold higher biomass concentration than could be attained in shake flasks.


Assuntos
Oxirredutases do Álcool/biossíntese , Biotecnologia/métodos , Metschnikowia/enzimologia , Aerobiose/efeitos dos fármacos , Biomassa , Reatores Biológicos/microbiologia , Carbono/farmacologia , Meio Ambiente , Glucose/farmacologia , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Íons , Metais/farmacologia , Metschnikowia/efeitos dos fármacos , Metschnikowia/crescimento & desenvolvimento , Nitrogênio/farmacologia
18.
Can J Microbiol ; 56(2): 128-37, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20237574

RESUMO

Few strains of Metschnikowia pulcherrima (Pitt) M.W. Miller are under development for control of postharvest pathogens on fruit. A substrate was developed to optimize the biomass production of M. pulcherrima strain BIO126. Different complex nutrient sources, with or without pH control, were tested. Growth in yeast extract provided at concentrations > or =30 g*L-1 yielded the highest biomass. The addition of two carbon sources, D-mannitol and L-sorbose, at 5 g*L-1 each, significantly improved yeast growth. The greatest amount of yeast growth occurred when pH values of the medium ranged from 5.0 to 7.5. A combination of yeast extract, D-mannitol, and L-sorbose (YEMS), probably with diauxic utilization, showed a synergistic effect, widening the exponential phase (maximum specific growth rate of 0.45 h-1) and increasing the final cell number (1.5 x 109 cells*mL-1) and dry biomass (6.0 g*L-1) in well-controlled batch fermentation. In efficacy trials on 'Golden Delicious' apples, M. pulcherrima grown in YEMS effectively reduced incidence and severity of Botrytis cinerea (51.1% and 70.8%, respectively) and Penicillium expansum (41.7% and 14.0%, respectively). Also on 'Gala' apples, the best reduction of grey and blue mould incidence was obtained with cells grown in YEMS (58.1% and 50.5%, respectively).


Assuntos
Biomassa , Botrytis/crescimento & desenvolvimento , Meios de Cultura/química , Metschnikowia/crescimento & desenvolvimento , Penicillium/crescimento & desenvolvimento , Controle Biológico de Vetores/métodos , Concentração de Íons de Hidrogênio , Malus/microbiologia , Manitol/metabolismo , Metschnikowia/efeitos dos fármacos , Peptonas/metabolismo , Sorbose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA