Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.613
Filtrar
1.
Nutr Diabetes ; 14(1): 71, 2024 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223127

RESUMO

Type 2 diabetes mellitus (T2DM) is globally recognized as a significant health concern, with diabetic foot (DF) identified as a severe long-term complication that can lead to tissue death or amputation. The discovery of the impact of mycobiota, a diverse group of multicellular eukaryotes in the gut microbiome, on the onset of endocrine disorders holds great significance. Therefore, this research aimed to examine variations in fungal mycobiome and identify potential biomarkers for T2DM and T2DM-DF. Fecal and blood samples were collected from 33 individuals with T2DM, 32 individuals with T2DM-DF, and 32 healthy individuals without any health conditions (HC). Blood samples were used for laboratory parameters analysis, while total DNA was extracted from fecal samples and sequenced using Illumina 18s rRNA. Bioinformatics tools were employed to analyze fungal abundance and diversity, revealing differentially expressed fungal species and signature fungi that distinguished between T2DM, T2DM-DF, and HC groups. Firstly, significant alterations in some laboratory parameters were observed among the three groups, which also differed between T2DM and T2DM-DF. The diversity of gut fungi in T2DM and T2DM-DF significantly differed from that of the HC group; however, more pronounced changes were observed in T2DM-DF. Additionally, two significantly altered phyla, Ascomycota and Basidiomycota, were identified with higher Ascomycota abundance but lower Basidiomycota abundance in both the T2DM and T2DM-DF compared to the HC group. Furthermore, the top 15 fungi showing significant changes at the species level included a notable decrease in Rhodotorula_mucilaginosa abundance in patients with T2DM compared to HC and a substantial increase in unclassified_g_Candida abundance specifically seen only among patients with T2DM-DF, but not among those diagnosed with T2DM or HC. Thirdly, KEGG was employed to analyze enzyme expression across the three groups, revealing a more pronounced alteration in gut fungal function within T2DM-DF compared to T2DM. Subsequently, to accurately identify signature fungi in each group, a random forest was utilized to rank the top 15 significant fungi. Notably, 11 fungi were identified as potential biomarkers for distinguishing T2DM or T2DM-DF from HC, while eight fungi could discriminate between T2DM and T2DM-DF. Furthermore, receiver operating characteristic curve (ROC) analysis demonstrated enhanced accuracy of predicted outcomes. These findings suggest that changes in fungal mycobiome are closely associated with the progression and complications of T2DM and DF, offering promising prospects for diagnosis and treatment.


Assuntos
Biomarcadores , Diabetes Mellitus Tipo 2 , Pé Diabético , Disbiose , Fezes , Microbioma Gastrointestinal , Micobioma , Humanos , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/complicações , Pessoa de Meia-Idade , Feminino , Masculino , Disbiose/microbiologia , Disbiose/diagnóstico , Pé Diabético/microbiologia , Biomarcadores/sangue , Fezes/microbiologia , Idoso , Adulto , Ascomicetos , Basidiomycota , Estudos de Casos e Controles , Fungos/isolamento & purificação
2.
Nutrients ; 16(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39275319

RESUMO

Autism Spectrum Disorder (ASD) is a multifactorial disorder involving genetic and environmental factors leading to pathophysiologic symptoms and comorbidities including neurodevelopmental disorders, anxiety, immune dysregulation, and gastrointestinal (GI) abnormalities. Abnormal intestinal permeability has been reported among ASD patients and it is well established that disturbances in eating patterns may cause gut microbiome imbalance (i.e., dysbiosis). Therefore, studies focusing on the potential relationship between gut microbiota and ASD are emerging. We compared the intestinal bacteriome and mycobiome of a cohort of ASD subjects with their non-ASD siblings. Differences between ASD and non-ASD subjects include a significant decrease at the phylum level in Cyanobacteria (0.015% vs. 0.074%, p < 0.0003), and a significant decrease at the genus level in Bacteroides (28.3% vs. 36.8%, p < 0.03). Species-level analysis showed a significant decrease in Faecalibacterium prausnitzii, Prevotella copri, Bacteroides fragilis, and Akkermansia municiphila. Mycobiome analysis showed an increase in the fungal Ascomycota phylum (98.3% vs. 94%, p < 0.047) and an increase in Candida albicans (27.1% vs. 13.2%, p < 0.055). Multivariate analysis showed that organisms from the genus Delftia were predictive of an increased odds ratio of ASD, whereas decreases at the phylum level in Cyanobacteria and at the genus level in Azospirillum were associated with an increased odds ratio of ASD. We screened 24 probiotic organisms to identify strains that could alter the growth patterns of organisms identified as elevated within ASD subject samples. In a preliminary in vivo preclinical test, we challenged wild-type Balb/c mice with Delftia acidovorans (increased in ASD subjects) by oral gavage and compared changes in behavioral patterns to sham-treated controls. An in vitro biofilm assay was used to determine the ability of potentially beneficial microorganisms to alter the biofilm-forming patterns of Delftia acidovorans, as well as their ability to break down fiber. Downregulation of cyanobacteria (generally beneficial for inflammation and wound healing) combined with an increase in biofilm-forming species such as D. acidovorans suggests that ASD-related GI symptoms may result from decreases in beneficial organisms with a concomitant increase in potential pathogens, and that beneficial probiotics can be identified that counteract these changes.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Micobioma , Irmãos , Transtorno do Espectro Autista/microbiologia , Humanos , Feminino , Masculino , Criança , Animais , Camundongos , Pré-Escolar , Disbiose/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Candida albicans/isolamento & purificação , Fezes/microbiologia
3.
Sci Rep ; 14(1): 21291, 2024 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266574

RESUMO

Fritillaria cirrhosa, an endangered medicinal plant in the Qinghai-Tibet Plateau, is facing resource scarcity. Artificial cultivation has been employed to address this issue, but problems related to continuous cultivation hinder successful transplantation. Imbalanced microbial communities are considered a potential cause, yet the overall changes in the microbial community under continuous cropping systems remain poorly understood. Here, we investigated the effects of varying durations of continuous cropping on the bacterial and fungal communities, as well as enzymatic activities, in the rhizospheric soil of F. cirrhosa. Our findings revealed that continuous cropping of F. cirrhosa resulted in soil acidification, nutrient imbalances, and increased enzyme activity. Specifically, after 10 years of continuous cropping, there was a notable shift in the abundance and diversity (e.g., Chao1 index) of soil bacteria and fungi. Moreover, microbial composition analyses revealed a significant accumulation of harmful microorganisms associated with soil-borne diseases (e.g., Luteimonas, Parastagonospora, Pseudogymnoascus) in successively cropped soils, in contrast to the significant reduction of beneficial microorganisms (e.g., Sphingomonas, Lysobacter, Cladosporium) that promote plant growth and development and protect against diseases such as Fusarium sp.These changes led to decreased connectivity and stability within the soil microbial community. Structural equation modeling and redundancy analysis revealed that alkaline hydrolytic nitrogen and available phosphorus directly influenced soil pH, which was identified as the primary driver of soil microbial community changes and subsequently contributed to soil health deterioration. Overall, our results highlight that soil acidification and imbalanced rhizosphere microbial communities are the primary challenges associated with continuous cropping of F. cirrhosa. These findings establish a theoretical foundation for standardized cultivation practices of F. cirrhosa and the bioremediation of continuously cultivated soils.


Assuntos
Bactérias , Fritillaria , Fungos , Microbiologia do Solo , Fritillaria/crescimento & desenvolvimento , Fritillaria/microbiologia , Tibet , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Solo/química , Rizosfera , Microbiota , Micobioma
4.
Gut Microbes ; 16(1): 2399360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287010

RESUMO

The gut microbiome is a complex, unique entity implicated in the prevention, pathogenesis, and progression of common gastrointestinal diseases. While largely dominated by bacterial populations, advanced sequencing techniques have identified co-inhabiting fungal communities, collectively referred to as the mycobiome. Early studies identified that gut inflammation is associated with altered microbial composition, known as gut dysbiosis. Altered microbial profiles are implicated in various pathological diseases, such as inflammatory bowel disease (IBD), though their role as a cause or consequence of systemic inflammation remains the subject of ongoing research. Diet plays a crucial role in the prevention and management of various diseases and is considered to be an essential regulator of systemic inflammation. This review compiles current literature on the impact of dietary modulation on the mycobiome, showing that dietary changes can alter the fungal architecture of the gut. Further research is required to understand the impact of diet on gut fungi, including the metabolic pathways and enzymes involved in fungal fermentation. Additionally, investigating whether dietary modulation of the gut mycobiome could be utilized as a therapy in IBD is essential.


Assuntos
Dieta , Disbiose , Fungos , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Micobioma , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/dietoterapia , Humanos , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Disbiose/microbiologia , Animais , Trato Gastrointestinal/microbiologia
5.
Mycopathologia ; 189(5): 82, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264513

RESUMO

Cystic fibrosis (CF) is a genetic disorder characterized by chronic microbial colonization and inflammation of the respiratory tract (RT), leading to pulmonary exacerbation (PEx) and lung damage. Although the lung bacterial microbiota has been extensively studied, the mycobiome remains understudied. However, its importance as a contributor to CF pathophysiology has been highlighted. The objective of this review is to provide an overview of the current state of knowledge regarding the mycobiome, as described through NGS-based studies, in patients with CF (pwCF).Several studies have demonstrated that the mycobiome in CF lungs is a dynamic entity, exhibiting a lower diversity and abundance than the bacterial microbiome. Nevertheless, the progression of lung damage is associated with a decrease in fungal and bacterial diversity. The core mycobiome of the RT in pwCFs is mainly composed of yeasts (Candida spp., Malassezia spp.) and molds with lower abundance. Some fungi (Aspergillus, Scedosporium/Pseudallescheria) have been demonstrated to play a role in PEx, while the involvement of others (Candida, Pneumocystis) remains uncertain. The "climax attack" ecological model has been proposed to explain the complexity and interplay of microbial populations in the RT, leading to PEx and lung damage. NGS-based studies also enable the detection of intra- and interkingdom correlations between fungi and bacteria. Further studies are required to ascertain the biological and pathophysiological relevance of these correlations. Finally, with the recent advent of CFTR modulators, our understanding of the pulmonary microbiome and mycobiome in pwCFs is about to change.


Assuntos
Fibrose Cística , Metagenômica , Micobioma , Fibrose Cística/microbiologia , Fibrose Cística/complicações , Humanos , Metagenômica/métodos , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Sistema Respiratório/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Pulmão/microbiologia , Microbiota
6.
Water Sci Technol ; 89(2): 319-332, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39219132

RESUMO

Marine fungi communities play a crucial role in the recycling of nutrients, restoration of biological systems, and the overall functioning of ecosystems. While aquatic fungal communities do react to pollution, there is a significant lack of information regarding the changes in the fungal community's structure, caused by marine pollution. In this study, we aim to address this gap in knowledge by investigating the range and makeup of fungal species present in marine environments in a polluted bay in Tunisia, spanning a biodiversity hotspot (Monastir Bay). Sequence analysis of the internal transcribed spacer region from culturable mycobiome and physicochemical parameters were investigated at seven sites in the bay. A total of 32 fungal taxa were identified at the genus and/or species levels and were assigned to four major groups (Aspergillacae 37.5%, Dothiomyceta 21.87%, Sordariamyceta 28.12%, and Yeasts 12.5%) with a remarkable predominance of Aspergillus genus. Assessment of the Shannon-Wiener diversity index and the Simpson dominance index revealed that the highest species diversity index (0.84) was recorded at the Kheniss site. Our results suggest the existence of diverse fungal communities, can be considered a useful community model for further ecological and evolutionary study of fungi in the bay.


Assuntos
Baías , Biodiversidade , Fungos , Tunísia , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Baías/microbiologia , Micobioma , Mar Mediterrâneo , Água do Mar/microbiologia , Monitoramento Ambiental
7.
Animal ; 18(9): 101288, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39226779

RESUMO

Brewery by-products are recognised as suitable rearing substrates for Hermetia illucens, better known as black soldier fly (BSF) but information about the impact of different ratios of brewer's spent grains (BSG) and brewer's spent yeast (BSY) are still scarce. This study evaluated the effects of BSG-BSY-based diets on BSF larval growth, survival, bioconversion efficiency, nutritional profile, and microbiota and mycobiota. A total of 3 000 6-day-old BSF larvae were allotted to five dietary treatments (six replicate boxes/diet, 100 larvae/box): (i) BSY2.5 (25 g/kg of BSY+975 g/kg of BSG), (ii) BSY5 (50 g/kg of BSY+950 g/kg of BSG), (iii) BSY7.5 (75 g/kg of BSY+925 g/kg of BSG), (iv) BSY10 (100 g/kg of BSY+900 g/kg of BSG), and (v) control (Gainesville diet). Larval weight and substrate pH were recorded every 4 days. At the end of the trial (5% of prepupae), bioconversion efficiency corrected for residue (BER), reduction rate (RR), and waste reduction index (WRI) were calculated, and the larval proximate composition, microbiota and mycobiota characterised. At 10 and 14 days of age, BSY7.5 and BSY10 larvae displayed higher weight than BSY2.5 and BSY5 (P < 0.05), with BSY10 larvae showing the highest weight among the BSG-BSY-based diets at the end of the trial (P < 0.05). The BSY7.5 and BSY10 larvae also displayed a better BER than BSY2.5 and BSY5 (P < 0.01), whereas similar RR, WRI, survival and development time, as well as pH, were, however, observed among the BSG-BSY-based diets (P > 0.05). The BSY10 larvae displayed lower ether extract content than the other BSG-BSY-based diets (P > 0.001). The use of BSG-BSY-based diets did not influence the alpha diversity of larval microbiota and mycobiota (P > 0.05), but a specific microbial signature was identified per each dietary treatment (Porphyromonadaceae [BSY5], Sphingomonas [BSY7.5], Bacillus [BSY10] and Ruminococcus and Myroides [BSG-BSY-based diets]; P < 0.05). Co-occurrence and co-exclusion analysis also showed that Saccharomyces cerevisiae and Pichia excluded and favoured, respectively, the presence of Streptomyces and Fluviicola, while Clavispora lusitaniae was associated with Myroides (P < 0.05). In conclusion, BSG-BSY-based diets are suitable for rearing HI in terms of larval performance, nutritional profile, and microbiota and mycobiota, with 7.5 and 10% of BSY inclusion levels being able to improve larval growth and bioconversion efficiency.


Assuntos
Ração Animal , Dieta , Larva , Microbiota , Animais , Larva/crescimento & desenvolvimento , Larva/microbiologia , Ração Animal/análise , Dieta/veterinária , Microbiota/efeitos dos fármacos , Simuliidae/crescimento & desenvolvimento , Dípteros/crescimento & desenvolvimento , Dípteros/microbiologia , Micobioma , Grão Comestível/química , Fenômenos Fisiológicos da Nutrição Animal
8.
Microb Ecol ; 87(1): 115, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39266780

RESUMO

A significant number of microorganisms inhabit the intestinal tract or the body surface of insects. While the majority of research on insect microbiome interaction has mainly focused on bacteria, of late multiple studies have been acknowledging the importance of fungi and have started reporting the fungal communities as well. In this study, high-throughput sequencing was used to compare the diversity of intestinal fungi in Delia antiqua (Diptera: Anthomyiidae) at different growth stages, and effect of differential fungi between adjacent life stages on the growth and development of D. antiqua was investigated. The results showed that there were significant differences in the α and ß diversity of gut fungal communities between two adjacent growth stages. Among the dominant fungi, genera Penicillium and Meyerozyma and family Cordycipitaceae had higher abundances. Cordycipitaceae was mainly enriched in the pupal and adult (male and female) stages, Penicillium was mainly enriched in the pupal, 2nd instar and 3rd instar larval stages, and Meyerozyma was enriched in the pupal stage. Only three fungal species were found to differ between two adjacent growth stages. These three fungal species including Fusarium oxysporum, Meyerozyma guilliermondii and Penicillium roqueforti generally inhibited the growth and development of D. antiqua, with only P. roqueforti promoting the growth and development of female insects. This study will provide theoretical support for the search for new pathogenic microorganisms for other fly pests control and the development of new biological control strategies for fly pests.


Assuntos
Dípteros , Fungos , Microbioma Gastrointestinal , Larva , Animais , Dípteros/microbiologia , Dípteros/crescimento & desenvolvimento , Fungos/classificação , Fungos/isolamento & purificação , Fungos/genética , Larva/microbiologia , Larva/crescimento & desenvolvimento , Masculino , Feminino , Pupa/microbiologia , Pupa/crescimento & desenvolvimento , Biodiversidade , Estágios do Ciclo de Vida , Micobioma
9.
Sci Total Environ ; 950: 175175, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39111434

RESUMO

In many ecosystems, a large fraction of gross primary production is invested in mycorrhiza. Ectomycorrhizal (ECM) mycelium is involved in regulating soil carbon and nutrient cycling. However, little is known about how mycelial biomass, production and turnover differ depending on ECM fungal community composition and associated tree species. We quantified fine root biomass and length using soil cores, and mycelial traits (biomass, production, and turnover) using mesh-bags and ergosterol analysis, and identified ECM exploration types by Illumina MiSeq sequencing of four ECM-dominated tree species (Picea asperata, Larix gmelinii, Quercus aquifolioides and Betula albosinensis) in subalpine forest. The ECM fungal community composition separated between needle-leaved and broadleaved species, and between evergreen and deciduous species. The ratio of mycelial to fine root biomass was similar across the species regardless of genus-scale community composition and the relative abundance of exploration types. Compared to the other species, Q. aquifolioides displayed higher fine root biomass and mycelial biomass and production, dominated by contact-short exploration type. Mycelial turnover rate tended to be lowest in P. asperata, dominated by medium-long exploration type. Much higher production of mycelium and only slightly higher turnover rate in Q. aquifolioides suggests that its steady-state mycelial biomass would be higher than of the other species. Moreover, compared to the two deciduous species, with similar production but somewhat lower turnover rate, the standing crop of mycelium in P. asperata may stabilize at a higher value. Our findings, that exploration type may affect production and turnover, highlight the importance of characterizing ECM fungal communities by exploration types when estimating the contribution of mycelium biomass to forest carbon sink and storage.


Assuntos
Biomassa , Micélio , Micorrizas , Raízes de Plantas , Árvores , Micorrizas/fisiologia , Árvores/microbiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Florestas , Micobioma , Quercus/microbiologia
10.
Int J Food Microbiol ; 425: 110876, 2024 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-39173288

RESUMO

The diversity of fungi in wheat with different deoxynivalenol (DON) content at various periods post-harvest and in the environment of storage were investigated. The changes in DON content were measured with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), and an amplicon sequence analysis of fungi was performed in traditional storage structures using high-throughput sequencing. The changes in temperature, humidity, and CO2 concentration were collected by sensors. In addition, we analyzed principal component analysis, species composition, species differences, and community differences of fungi. There was an obvious separation of the fungal communities under different storage conditions and times. Many fungal genera were gradually decreasing during storage and were eventually undetectable, and many fungal genera that were undetectable at first gradually increased during storage and even became dominant fungal genera. The competition between fungi was fierce. The competition between fungi were affected by the presence of DON. As the initial DON content increased, the contribution of inter-group differences became more obvious. The temperature, humidity, and CO2 concentration of wheat in the silo's environment changed with extended storage time. The content of DON decreased with extended storage time. We had investigated the changes in DON content and their correlation with the changes in fungal communities and environmental factors, which showed a high degree of correlation. This study offers theoretical justification for optimizing safe wheat grain in traditional storage conditions.


Assuntos
Armazenamento de Alimentos , Fungos , Triticum , Triticum/microbiologia , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Tricotecenos/análise , Micobioma , Contaminação de Alimentos/análise , Temperatura , Espectrometria de Massas em Tandem , Microbiologia de Alimentos , Cromatografia Líquida de Alta Pressão
11.
mSphere ; 9(8): e0038624, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39105581

RESUMO

Arthropods harbor complex microbiota that play a pivotal role in host fitness. While multiple factors, like host species and diet, shape microbiota in arthropods, their impact on community assembly in wild insects remains largely unknown. In this study, we surveyed bacterial and fungal community assembly in nine sympatric wild insect species that share a common citrus fruit diet. Source tracking analysis suggested that these insects acquire some bacteria and fungi from the citrus fruit with varying degrees. Although sharing a common diet led to microbiota convergence, the diversity, composition, and network of both bacterial and fungal communities varied significantly among surveyed insect groups. Null model analysis indicated that stochastic processes, particularly dispersal limitation and drift, are primary drivers of structuring insect bacterial and fungal communities. Importantly, the influence of each community assembly process varied strongly depending on the host species. Thus, we proposed a speculative view that the host specificity of the microbiome and mycobiome assembly is widespread in wild insects despite sharing the same regional species pool. Overall, this research solidifies the importance of host species in shaping microbiomes and mycobiomes, providing novel insights into their assembly mechanisms in wild insects. IMPORTANCE: Since the microbiome has been shown to impact insect fitness, a mechanistic understanding of community assembly has potentially significant applications but remains largely unexplored. In this paper, we investigate bacterial and fungal community assembly in nine sympatric wild insect species that share a common diet. The main findings indicate that stochastic processes drive the divergence of microbiomes and mycobiomes in nine sympatric wild insect species. These findings offer novel insights into the assembly mechanisms of microbiomes and mycobiomes in wild insects.


Assuntos
Bactérias , Dieta , Fungos , Insetos , Microbiota , Processos Estocásticos , Simpatria , Animais , Insetos/microbiologia , Fungos/classificação , Fungos/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Micobioma , Citrus/microbiologia
12.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39126044

RESUMO

Biological invasions are now seen as one of the main threats to the Antarctic ecosystem. An example of such an invasion is the recent colonization of the H. Arctowski Polish Antarctic Station area by the non-native grass Poa annua. This site was previously occupied only by native plants like the Antarctic hair grass Deschampsia antarctica. To adapt successfully to new conditions, plants interact with soil microorganisms, including fungi. The aim of this study was to determine how the newly introduced grass P. annua established an interaction with fungi compared to resident grass D. antarctica. We found that fungal diversity in D. antarctica roots was significantly higher compared with P. annua roots. D. antarctica managed a biodiverse microbiome because of its ability to recruit fungal biocontrol agents from the soil, thus maintaining a beneficial nature of the endophyte community. P. annua relied on a set of specific fungal taxa, which likely modulated its cold response, increasing its competitiveness in Antarctic conditions. Cultivated endophytic fungi displayed strong chitinolysis, pointing towards their role as phytopathogenic fungi, nematode, and insect antagonists. This is the first study to compare the root mycobiomes of both grass species by direct culture-independent techniques as well as culture-based methods.


Assuntos
Ecossistema , Endófitos , Fungos , Espécies Introduzidas , Poaceae , Regiões Antárticas , Poaceae/microbiologia , Fungos/classificação , Fungos/fisiologia , Endófitos/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Micobioma , Poa/microbiologia , Biodiversidade
13.
Commun Biol ; 7(1): 1010, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154098

RESUMO

Fungus-growing termites, like Odontotermes obesus, cultivate Termitomyces as their sole food source on fungus combs which are continuously maintained with foraged plant materials. This necessary augmentation also increases the threat of introducing non-specific fungi capable of displacing Termitomyces. The magnitude of this threat and how termites prevent the invasion of such fungi remain largely unknown. This study identifies these non-specific fungi by establishing the pan-mycobiota of O. obesus from the fungus comb and termite castes. Furthermore, to maximize the identification of such fungi, the mycobiota of the decaying stages of the unattended fungus comb were also assessed. The simultaneous assessment of the microbiota and the mycobiota of these stages identified possible interactions between the fungal and bacterial members of this community. Based on these findings, we propose possible interactions among the crop fungus Termitomyces, the weedy fungus Pseudoxylaria and some bacterial symbiotes. These possibilities were then tested with in vitro interaction assays which suggest that Termitomyces, Pseudoxylaria and certain potential bacterial symbiotes possess anti-fungal capabilities. We propose a multifactorial interaction model of these microbes, under the care of the termites, to explain how their interactions can maintain a predominantly Termitomyces monoculture.


Assuntos
Isópteros , Simbiose , Termitomyces , Isópteros/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Micobioma , Fungos/fisiologia , Fungos/classificação
14.
Nat Commun ; 15(1): 6951, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138171

RESUMO

As the Earth warms, alternatives to traditional farming are crucial. Exploring fungi, especially poly extremophilic and extremotolerant species, to be used as plant probiotics, represents a promising option. Extremophilic fungi offer avenues for developing and producing innovative biofertilizers, effective biocontrol agents against plant pathogens, and resilient enzymes active under extreme conditions, all of which are crucial to enhance agricultural efficiency and sustainability through improved soil fertility and decreased reliance on agrochemicals. Yet, extremophilic fungi's potential remains underexplored and, therefore, comprehensive research is needed to understand their roles as tools to foster sustainable agriculture practices amid climate change. Efforts should concentrate on unraveling the complex dynamics of plant-fungi interactions and harnessing extremophilic fungi's ecological functions to influence plant growth and development. Aspects such as plant's epigenome remodeling, fungal extracellular vesicle production, secondary metabolism regulation, and impact on native soil microbiota are among many deserving to be explored in depth. Caution is advised, however, as extremophilic and extremotolerant fungi can act as both mitigators of crop diseases and as opportunistic pathogens, underscoring the necessity for balanced research to optimize benefits while mitigating risks in agricultural settings.


Assuntos
Agricultura , Mudança Climática , Fungos , Micobioma , Microbiologia do Solo , Agricultura/métodos , Fungos/genética , Fungos/metabolismo , Extremófilos/metabolismo , Produtos Agrícolas/microbiologia , Solo/química
15.
Sci Total Environ ; 951: 175494, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153623

RESUMO

Soil microbial communities are major drivers of cycling of soil nutrients that sustain plant growth and productivity. Yet, a holistic understanding of the impact of abandoned agricultural land reclamation on the soil microbe is still poorly understood, especially for the microbial community assembly mechanisms. Here, we investigated the influence of reclamation on the relative importance of stochastic and deterministic processes in shaping microbial community assembly. After reclaiming abandoned cropland for corn and soybean cultivation, the fungal community assembly was shifted to stochastic processes, while bacterial communities remained predominantly influenced by stochastic processes. Our study revealed that reclamation did not significantly affect bacterial diversity, community niche breadth, and community similarity. In contrast, fungal communities exhibited lower alpha diversity, narrower niche breadths, greater niche overlap and higher community similarity in corn and soybean cultivation treatment in response to reclamation. Moreover, soil pH and soil available phosphorus were the most important environmental factors influencing fungal richness, niche breadths, community assembly processes, and community similarity. Together, the reclamation of abandoned cropland promoted the transformation of the fungal community assembly from deterministic process to a stochastic process, leading to decreased fungal diversity and broader ecological niche width, ultimately resulting in greater similarity among fungal communities. This finding provides insight into the varied responses of microbial diversity and ecological process to abandoned cropland reclamation, offering valuable guidance for the conservation and sustainable management of abandoned cropland in future land-use practices.


Assuntos
Agricultura , Fungos , Microbiologia do Solo , Processos Estocásticos , Agricultura/métodos , Micobioma , Solo/química , Microbiota
16.
Extremophiles ; 28(3): 40, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179679

RESUMO

Lichens are dual organisms, with one major mycobiont and one major photobiont in each lichen symbiosis, which can survive extreme environmental conditions in the Arctic. However, the diversity and distribution of lichen photobionts in the Arctic remain poorly understood compared to their mycobiont partners. This study explored the diversity of lichen mycobionts and photobionts in 197 lichen samples collected from the Ny-Ålesund region (Svalbard, High Arctic). The nuclear ribosomal internal transcribed spacer (ITS) regions were sequenced and phylogenetic analyses were performed. The relationships between mycobionts and photobionts, as well as the association patterns, were also investigated. A total of 48 species of lichen mycobionts (16 families, nine orders) and 31 species/lineages of photobionts were identified. These 31 photobiont species belonged to one class (Trebouxiophyceae) and five genera, including 22 species of Trebouxia, five species of Asterochloris, two species of Chloroidium, one species of Symbiochloris, and one species of Coccomyxa. The results indicated that most analyzed lichen mycobionts could associate with multiple photobiont species, and the photobionts also exhibited a similar pattern. The results provided an important reference dataset for characterizing the diversity of lichen mycobionts and photobionts in the High Arctic region.


Assuntos
Líquens , Simbiose , Líquens/classificação , Líquens/microbiologia , Filogenia , Svalbard , Regiões Árticas , Biodiversidade , Micobioma
17.
Environ Microbiol Rep ; 16(4): e13318, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39171931

RESUMO

Understanding the effects of grapevine rootstock and scion genotypes on arbuscular mycorrhizal fungi (AMF), as well as the roles of these fungi in plant development, could provide new avenues for adapting viticulture to climate change and reducing agrochemical inputs. The root colonization of 10 rootstock/scion combinations was studied using microscopy and metabarcoding approaches and linked to plant development phenotypes. The AMF communities were analysed using 18S rRNA gene sequencing. The 28S rRNA gene was also sequenced for some combinations to evaluate whether the method changed the results. Root colonization indexes measured by microscopy were not significantly different between genotypes. Metabarcoding analyses showed an effect of the rootstock genotype on the ß-diversity and the enrichment of several taxa with both target genes, as well as an effect on the Chao1 index with the 18S rRNA gene. We confirm that rootstocks recruit different AMF communities when subjected to the same pedoclimatic conditions, while the scion has little or no effect. Significant correlations were observed between AMF community composition and grapevine development, suggesting that AMF have a positive effect on plant growth. Given these results, it will be important to define consensus methods for studying the role of these beneficial micro-organisms in vineyards.


Assuntos
Micorrizas , Raízes de Plantas , Vitis , Micorrizas/genética , Micorrizas/classificação , Micorrizas/fisiologia , Micorrizas/crescimento & desenvolvimento , Vitis/microbiologia , Vitis/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Microbiologia do Solo , RNA Ribossômico 18S/genética , Genótipo , Micobioma/genética , Filogenia
18.
Med Mycol ; 62(9)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39215497

RESUMO

The skin of patients with atopic dermatitis (AD) has a greater diversity of mycobiota. An observational, prospective, cross-sectional, analytical, and comparative study was conducted involving 80 patients with AD Group (ADG) and 50 individuals without AD (wADG) in a tertiary hospital in Brazil. Skin scale samples were collected from the frontal, cervical, fossae cubital, and popliteal regions and identified using molecular biology techniques. The results showed that 47.5% of ADG had identified yeasts compared to 0% of wADG (P < .001). The yeasts Rhodotorula mucilaginosa and Candida parapsilosis were the most abundant. The probability of colonization increased with age, showing values of 40% at 60 months and 80% at 220 months (P = .09). The cervical region (12.5%) was colonized to the greatest extent. Our findings revealed that positive mycology was not more probable when the scoring of atopic dermatitis or eczema area and severity index value increased (P = .23 and .53, respectively). The results showed that the sex, age, and different population types directly affected the composition of the mycobiota in the population analyzed. A higher frequency of colonization and greater diversity of yeast species were detected in the cutaneous mycobiota of children with AD.


Atopic dermatitis (AD) is a skin disease that can be colonized by microorganisms. We evaluated patients with and without the disease and found a higher frequency of colonization by Rhodotorula mucilaginosa and Candida parapsilosis on the skin of children with AD.


Assuntos
Dermatite Atópica , Pele , Leveduras , Humanos , Dermatite Atópica/microbiologia , Masculino , Feminino , Pré-Escolar , Criança , Estudos Prospectivos , Estudos Transversais , Brasil , Leveduras/isolamento & purificação , Leveduras/classificação , Leveduras/genética , Adolescente , Lactente , Pele/microbiologia , Micobioma , Centros de Atenção Terciária
19.
PLoS Pathog ; 20(8): e1012377, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39116092

RESUMO

Chronic liver disease and its complications are a significant global health burden. Changes in fungal communities (mycobiome), an integral component of the gut microbiome, are associated with and contribute to the development of liver disease. Fungal dysbiosis can induce intestinal barrier dysfunction and allow fungal products to translocate to the liver causing progression of disease. This review explores recent progress in understanding the compositional and functional diversity of gut mycobiome signatures across different liver diseases. It delves into causative connections between gut fungi and liver diseases. We emphasize the significance of fungal translocation, with a particular focus on fungal-derived metabolites and immune cells induced by fungi, as key contributors to liver disease. Furthermore, we review the potential impact of the intrahepatic mycobiome on the progression of liver diseases.


Assuntos
Disbiose , Microbioma Gastrointestinal , Hepatopatias , Micobioma , Humanos , Microbioma Gastrointestinal/fisiologia , Hepatopatias/microbiologia , Disbiose/microbiologia , Animais , Fungos/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA