Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.145
Filtrar
1.
Food Res Int ; 187: 114354, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763639

RESUMO

Carotenoids, versatile natural pigments with numerous health benefits, face environmental concerns associated with conventional petrochemical-based extraction methods and limitations of their synthetic equivalents. In this context, this study aims to introduce eco-friendly approaches using ultrasound-based strategies (probe and bath) for the extraction of carotenoids from microalgae, initially focusing on Microchloropsis gaditana and subsequently evaluating the versatility of the method by applying it to other microalgae species of interest (Tisochrysis lutea, Porphyridium cruentum, and Phaeodactylum tricornutum) and defatted microalgal residues. Among the approaches evaluated, the 5-min ultrasonic probe system with ethanol showed comparable carotenoid recovery efficiency to the reference method (agitation, 24 h, acetone) (9.4 ± 2.5 and 9.6 ± 3.2 mg g-1 carotenoids per dry biomass, for the green and the reference method, respectively). Moreover, the method's sustainability was demonstrated using the AGREEprep™ software (scored 0.62 out of 1), compared to the traditional method (0.22 out of 1). The developed method yielded high carotenoid contents across species with diverse cell wall compositions (3.1 ± 0.2, 2.1 ± 0.3, and 4.1 ± 0.1 mg g-1 carotenoid per dry biomass for T. lutea, P. cruentum, and P. tricornutum, respectively). Moreover, the application of the method to defatted biomass showed potential for microalgal valorization with carotenoid recovery rates of 41 %, 60 %, 61 %, and 100 % for M.gaditana, P. tricornutum, T. lutea, and P. cruentum, compared to the original biomass, respectively. Furthermore, by using high-performance liquid chromatography with a diode array detector (HPLC-DAD) and high-resolution mass spectrometry (HRMS), we reported the carotenoid and chlorophyll profiles of the different microalgae and evaluated the impact of the eco-friendly methods. The carotenoid and chlorophyll profiles varied depending on the species, biomass, and method used. In summary, this study advances a green extraction method with improved environmental sustainability and shorter extraction time, underscoring the potential of this approach as a valuable alternative for the extraction of microalgal pigments.


Assuntos
Carotenoides , Microalgas , Carotenoides/análise , Carotenoides/isolamento & purificação , Microalgas/química , Espectrometria de Massas , Ultrassom/métodos , Biomassa , Química Verde
2.
Food Funct ; 15(10): 5554-5565, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38712867

RESUMO

Obesity is one of the most important threats to human health. Besides existing pharmacological or clinical interventions, novel effective and largely available solutions are still necessary. Among diverse natural resources, microalgae are well known for their complexity in the production of novel secondary metabolites. At the same time, lactic acid bacteria (LAB) are known for their capacity to metabolize, through fermentation, different matrices, and consequently to modify or produce new compounds with potential bioactivity. This work aimed to study the production of fermented microalgae and cyanobacteria, and to analyse their extracts in the zebrafish Nile red fat metabolism assay. Three microalgal species (Chlorella vulgaris, Chlorococcum sp. and Arthrospira platensis) were fermented with seven strains of LAB from 4 species (Lacticaseibacillus rhamnosus, Lacticaseibacillus casei, Lactobacillus delbrueckii bulgaricus and Lacticaseibacillus paracasei), derived from the UPCCO - University of Parma Culture Collection, Parma, Italy). All the selected strains were able to ferment the selected species of microalgae, and the most suitable substrate for LAB growth was Arthrospira platensis. Extracts from fermented Chlorella vulgaris and Chlorococcum sp. reduced significantly the neutral lipid reservoirs, which was not observed without fermentations. The strongest lipid reducing effect was obtained with Arthrospira platensis fermented with Lactobacillus delbrueckii bulgaricus 1932. Untargeted metabolomics identified some compound families, which could be related to the observed bioactivity, namely fatty acids, fatty amides, triterpene saponins, chlorophyll derivatives and purine nucleotides. This work opens up the possibility of developing novel functional foods or food supplements based on microalgae, since lactic acid fermentation enhanced the production of bioactive compounds with lipid reducing activities.


Assuntos
Fermentação , Metabolismo dos Lipídeos , Metabolômica , Microalgas , Peixe-Zebra , Animais , Microalgas/metabolismo , Microalgas/química , Ácido Láctico/metabolismo , Cianobactérias/metabolismo , Lactobacillales/metabolismo , Oxazinas , Spirulina
3.
Molecules ; 29(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675719

RESUMO

Non-communicable diseases (NCDs) represent a global health challenge, constituting a major cause of mortality and disease burden in the 21st century. Addressing the prevention and management of NCDs is crucial for improving global public health, emphasizing the need for comprehensive strategies, early interventions, and innovative therapeutic approaches to mitigate their far-reaching consequences. Marine organisms, mainly algae, produce diverse marine natural products with significant therapeutic potential. Harnessing the largely untapped potential of algae could revolutionize drug development and contribute to combating NCDs, marking a crucial step toward natural and targeted therapeutic approaches. This review examines bioactive extracts, compounds, and commercial products derived from macro- and microalgae, exploring their protective properties against oxidative stress, inflammation, cardiovascular, gastrointestinal, metabolic diseases, and cancer across in vitro, cell-based, in vivo, and clinical studies. Most research focuses on macroalgae, demonstrating antioxidant, anti-inflammatory, cardioprotective, gut health modulation, metabolic health promotion, and anti-cancer effects. Microalgae products also exhibit anti-inflammatory, cardioprotective, and anti-cancer properties. Although studies mainly investigated extracts and fractions, isolated compounds from algae have also been explored. Notably, polysaccharides, phlorotannins, carotenoids, and terpenes emerge as prominent compounds, collectively representing 42.4% of the investigated compounds.


Assuntos
Microalgas , Humanos , Microalgas/química , Organismos Aquáticos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Animais , Alga Marinha/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/química , Oceanos e Mares , Estresse Oxidativo/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química
4.
Cytokine ; 179: 156621, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38648682

RESUMO

Chagas disease (CD) is caused by the hemoflagellate protozoan Trypanosoma cruzi. The control of the infection depends of the innate and acquired immune response of host. Moreover, CD plays a significant role in the immune response, and, in this context, microalgae can be an interesting alternative due to its immunomodulatory and trypanocidal effects. This study aimed to evaluate, in vitro, immunomodulatory potentials of the aqueous extracts of Chlorella vulgaris and Tetradesmus obliquus. Both microalgae extracts (ME) were obtained by sonication, and the selectivity index (SI) was determined by assays of inhibitory concentration (IC50) in T. cruzi trypomastigotes cells; as well as the cytotoxic concentrations (CC50) in human peripheral mononuclear cells (PBMC). The immune response was evaluated in T. cruzi-infected PBMC using the IC50 value. ME led to inhibition of T. cruzi trypomastigotes after 24 h of treatment, in which the IC50 values were 112.1 µg/ml to C. vulgaris and 15.8 µg ml-1 to T. obliquus. On the other hand, C. vulgaris did not affect the viability of PBMCs in concentrations up to 1000 µg ml-1, while T. obliquus was non-toxic to PBMCs in concentrations up to 253.44 µg ml-1. In addition, T. obliquus displayed a higher SI against T. cruzi (SI = 16.8), when compared with C. vulgaris (SI = 8.9). C. vulgaris decreased the levels of IFN, indicating a reduction of the inflammatory process; while T. obliquus displayed an interesting immunomodulatory effect, since discretely increased the levels of TNF and stimulated the production of the anti-inflammatory cytokine IL-10. This study confirms that ME are effective against T. cruzi trypomastigotes, and may able to control the parasitemia and preventing the progress of CD while regulating the inflammatory process.


Assuntos
Doença de Chagas , Leucócitos Mononucleares , Microalgas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Doença de Chagas/imunologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Microalgas/química , Extratos Vegetais/farmacologia , Citocinas/metabolismo
5.
Sci Rep ; 14(1): 9568, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671168

RESUMO

In recent years, there has been an increasing interest in the green synthesis of metallic nanoparticles, mostly because of the evident limitations associated with chemical and physical methods. Green synthesis, commonly referred to as "biogenic synthesis," is seen as an alternative approach to produce AgNPs (silver nanoparticles). The current work focuses on the use of Asterarcys sp. (microalga) for biological reduction of AgNO3 to produce AgNPs. The optimal parameters for the reduction of AgNPs were determined as molarity of 3 mM for AgNO3 and an incubation duration of 24 h at pH 9, using a 20:80 ratio of algal extract to AgNO3. The biosynthesized Ast-AgNPs were characterised using ultraviolet-visible spectroscopy (UV-Vis), zeta potential, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) patterns. The nanoparticles exhibited their highest absorption in the UV-visible spectra at 425 nm. The X-ray diffraction (XRD) investigation indicated the presence of characteristic peaks at certain angles: 38.30° (1 1 1), 44.40° (2 0 0), 64.64° (2 2 0), and 77.59° (3 1 1) according to the JCPDS file No. 04-0783. Based on SEM and TEM, the Ast-AgNPs had an average size of 35 nm and 52 nm, respectively. The zeta potential was determined to be - 20.8 mV, indicating their stability. The highest antibacterial effectiveness is shown against Staphylococcus aureus, with a zone of inhibition of 25.66 ± 1.52 mm at 250 µL/mL conc. of Ast-AgNPs. Likewise, Ast-AgNPs significantly suppressed the growth of Fusarium sp. and Curvularia sp. by 78.22% and 85.05%, respectively, at 150 µL/mL conc. of Ast-AgNPs. In addition, the Ast-AgNPs exhibited significant photocatalytic activity in degrading methylene blue (MB), achieving an 88.59% degradation in 120 min, revealing multiple downstream applications of Ast-AgNPs.


Assuntos
Química Verde , Nanopartículas Metálicas , Prata , Prata/química , Nanopartículas Metálicas/química , Química Verde/métodos , Antibacterianos/química , Antibacterianos/farmacologia , Microalgas/química , Testes de Sensibilidade Microbiana , Difração de Raios X , Staphylococcus aureus/efeitos dos fármacos
6.
Mar Drugs ; 22(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38667763

RESUMO

Marine microalgae Schizochytrium sp. have a high content of docosahexaenoic acid (DHA), an omega-3 fatty acid that is attracting interest since it prevents certain neurodegenerative diseases. The obtention of a bioactive and purified DHA fatty acid ester using a whole-integrated process in which renewable sources and alternative methodologies are employed is the aim of this study. For this reason, lyophilized Schizochytrium biomass was used as an alternative to fish oil, and advanced extraction techniques as well as enzymatic modification were studied. Microalgal oil extraction was optimized via a surface-response method using pressurized liquid extraction (PLE) obtaining high oil yields (29.06 ± 0.12%) with a high concentration of DHA (51.15 ± 0.72%). Then, the enzymatic modification of Schizochytrium oil was developed by ethanolysis using immobilized Candida antarctica B lipase (Novozym® 435) at two reaction temperatures and different enzymatic loads. The best condition (40 °C and 200 mg of lipase) produced the highest yield of fatty acid ethyl ester (FAEE) (100%) after 8 h of a reaction attaining a cost-effective and alternative process. Finally, an enriched and purified fraction containing DHA-FAEE was obtained using open-column chromatography with a remarkably high concentration of 93.2 ± 1.3% DHA. The purified and bioactive molecules obtained in this study can be used as nutraceutical and active pharmaceutical intermediates of marine origin.


Assuntos
Ácidos Docosa-Hexaenoicos , Ésteres , Lipase , Microalgas , Estramenópilas , Ácidos Docosa-Hexaenoicos/química , Lipase/metabolismo , Lipase/química , Estramenópilas/química , Microalgas/química , Ésteres/química , Enzimas Imobilizadas/química , Proteínas Fúngicas , Biomassa , Óleos de Peixe/química , Lipídeos/química , Óleos/química , Organismos Aquáticos , Ácidos Graxos/química , Ácidos Graxos/análise
7.
Molecules ; 29(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675566

RESUMO

Drying is an inseparable part of industrial microalgae production. In this work, the impacts of eight different drying methods on the metabolome and lipidome of Arthrospira platensis were investigated. The studied drying methods were freeze drying (FD), sun drying (SD), air drying at 40 and 75 °C (AD' and AD″), infrared drying at 40 and 75 °C (IRD' and IRD″), and vacuum drying at 40 and 75 °C (VD' and VD″). Results gathered by reversed-phase liquid chromatography separation coupled with high-resolution tandem mass spectrometry with electrospray ionization (RP-LC-ESI-Orbitrap HRMS/MS) analysis allowed researchers to identify a total of 316 metabolites (including lipids) in aqueous and ethanolic extracts. The compounds identified in ethanolic extracts were mainly lipids, such as neutral and polar lipids, chlorophylls and carotenoids, while the compounds identified in the aqueous extracts were mainly amino acids and dipeptides. Among the identified compounds, products of enzymatic and chemical degradation, such as pyropheophytins, monoacylglycerols and lysophosphatidylcholines were also identified and their amounts depended on the drying method. The results showed that except for FD method, recognized as a control, the most protective method was AD'. Contrary to this, VD' and VD″, under the conditions used, promoted the most intense degradation of valuable metabolites.


Assuntos
Dessecação , Lipidômica , Metabolômica , Spirulina , Spirulina/metabolismo , Spirulina/química , Lipidômica/métodos , Metabolômica/métodos , Metaboloma , Lipídeos/análise , Espectrometria de Massas em Tandem/métodos , Liofilização , Microalgas/metabolismo , Microalgas/química
8.
Food Chem ; 449: 139165, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574520

RESUMO

Microalgae are considered as a potential source of bioactive compounds to be used in different fields including food and pharmaceutical industry. In this context, fatty acid esters of hydroxy-fatty acids (FAHFA) are emerging as a new class of compounds with anti-inflammatory and anti-diabetic properties. An existing gap in the field of algal research is the limited knowledge regarding the production of these compounds. Our research questions aimed to determine whether the microalga H. pluvialis can synthesize FAHFA and whether the production levels of these compounds are increased when cultivated in a CO2-rich environment. To answer these questions, we used a LC-QTOF/MS method for the characterization of FAHFA produced by H. pluvialis while an LC-MS/MS method was used for their quantitation. The cultivation conditions of H. pluvialis, which include the utilization of CO2, can result in a 10-50-fold increase in FAHFA production.


Assuntos
Dióxido de Carbono , Ácidos Graxos , Microalgas , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Microalgas/química , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Espectrometria de Massas em Tandem , Clorófitas/química , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo
9.
Food Chem ; 449: 139196, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581787

RESUMO

Phycoerythrin (PE) is a phycobiliprotein holding great potential as a high-value food colorant and medicine. Deep eutectic solvent (DES)-based ultrasound-assisted extraction (UAE) was applied to extract B-PE by disrupting the resistant polysaccharide cell wall of Porphyridium purpureum. The solubility of cell wall monomers in 31 DESs was predicted using COSMO-RS. Five glycerol-based DESs were tested for extraction, all of which showed significantly higher B-PE yields by up to 13.5 folds than water. The DES-dependent B-PE extraction efficiencies were proposedly associated with different cell disrupting capabilities and protein stabilizing effects of DESs. The DES-based UAE method could be considered green according to a metric assessment tool, AGREEprep. The crude extract containing DES was further subjected to aqueous two-phase system, two-step ammonium sulfate precipitation, and ultrafiltration processes. The final purified B-PE had a PE purity ratio of 3.60 and a PC purity ratio of 0.08, comparable to the purity of commercial products.


Assuntos
Biomassa , Solventes Eutéticos Profundos , Microalgas , Ficobiliproteínas , Microalgas/química , Ficobiliproteínas/química , Ficobiliproteínas/isolamento & purificação , Solventes Eutéticos Profundos/química , Porphyridium/química , Química Verde , Fracionamento Químico/métodos , Ultrassom
10.
J Oleo Sci ; 73(4): 583-591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556291

RESUMO

In this study, it is demonstrated that natural microalgae oils, which contain fatty acid components including docosahexaenoic acid (DHA), could be directly applied to fabricate vesicular structures in aqueous phase through a forced formation process. The microalgae oil vesicles had initial average diameters of 170- 230 nm with negative charges apparently caused by dissociation of the fatty acid components. The vesicles possessed excellent stability with lifetimes for at least 450 days. The formation of the vesicular structures with hydrophilic cores/regions was confirmed by the transmission electron microscopy (TEM) image and successful encapsulation of a hydrophilic material. For encapsulation of a hydrophobic material, lutein, the vesicle size was increased probably due to the insertion of lutein into the hydrophobic vesicular bilayer structures. The analysis of Fourier transform infrared (FTIR) spectroscopy suggested that the vesicular bilayer fluidity was decreased by encapsulating lutein. However, the lutein-encapsulating microalgae oil vesicles still possessed high stability and the vesicular structures could maintain intact even at an environmental temperature up to 60℃. Applicability of the microalgae oil vesicles as drug delivery carriers was also demonstrated by successful encapsulation of curcumin. However, when the loaded curcumin was increased to a certain amount, physical stability of the microalgae oil vesicles was significantly reduced. This is probably because the vesicular structures with only limited spaces for accommodating hydrophobic materials were strongly affected by encapsulating a large amount of curcumin. It is interesting to note that by adding egg L-α-phosphatidylcholine, the curcumin encapsulation-induced instability of the microalgae oil vesicles could be alleviated. The results indicated that vesicular structures could be fabricated from microalgae oils and the microalgae oil vesicles were capable of encapsulating hydrophilic or hydrophobic materials for drug delivery applications. The findings lay a background for further dosage form development of nutritional supplements encapsulated by natural microalgae oils.


Assuntos
Curcumina , Microalgas , Microalgas/química , Luteína , Óleos , Portadores de Fármacos/química , Ácidos Docosa-Hexaenoicos
11.
J Environ Manage ; 356: 120626, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518491

RESUMO

Biomass can be used as an energy source to thermochemical conversion processes to biocrude production. However, the supply and dependence on only one biomass for biocrude production can be an obstacle due to its seasonality, availability, and logistics costs. In this way, biomass waste and agroindustrial residues can be mixture and used as feedstock to the hydrothermal co-liquefaction (co-HTL) process as an alternative to obtaining biocrude. In this sense, the present paper analyzed the biocrude yield influence of the co-HTL from a quaternary unprecedented blend of different biomasses, such as sugarcane bagasse, brewer's spent grain (BSG), sludge from a paper recycling mill (PRM), and microalgae (Chlorella vulgaris). In this way, a simplex lattice design was employed and co-HTL experiments were carried out in a 2000 mL high-pressure stirred autoclave reactor under 275 °C for 60 min, considering 15% of feedstock/water ratio. Significant effects in each feedstock and their blends were analyzed aiming to increase biocrude and biochar yield. It was found that the addition of microalgae is only significant when considered more than 50% into the blend with BSG and PRM sludge to increase biocrude yield.


Assuntos
Carvão Vegetal , Chlorella vulgaris , Microalgas , Saccharum , Esgotos , Celulose , Temperatura , Microalgas/química , Biomassa , Água/química , Biocombustíveis/análise
12.
Poult Sci ; 103(5): 103591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471224

RESUMO

The goals of the current research are to ascertain the impacts of Dunaliella salina (DS) on quail growth, carcass criteria, liver and kidney functions, lipid profile, and immune response. Two hundred and forty 7-day-old quail chicks were divided equally into 4 separate groups with 6 replicates with 10 birds each. The groups were as follows: 1) control diet (the basal feed without DS), 2) control diet enriched with 0.25 g DS/kg, 3) control diet enriched with 0.50 g DS/kg, and 4) control diet enriched with 1.00 g DS/kg. Results elucidated that the birds which consumed 0.5 and 1 g DS/kg diet performed better than other birds in terms of live body weight (LBW), body weight gain (BWG), and feed conversion ratio (FCR). There were no significant changes in feed intake (FI) and carcass characteristics due to different dietary DS levels. Compared to the control group, DS-treated groups had better lipid profile (low total cholesterol and LDL values and high HDL values) and immune response (complement 3 values). The quails consumed feeds with different levels of DS had greater (P < 0.038) C3 compared to control. Adding 0.5 and 1 g DS/kg lowered blood concentrations of triglycerides and total protein (TP) values. The high level of DS (1 g/kg) had higher albumin values and lower AST values than other groups (P < 0.05). The creatinine values were at the lowest levels in the group consumed 0.50 g DS/kg feed. No changes (P > 0.05) were demonstrated among experimental groups in the ALT, urea, and lysozyme values. In conclusion, adding D. salina to growing quail diets enhanced growth, immune system, blood lipid profile, and kidney and liver function.


Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Animais , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Microalgas/química , Coturnix/crescimento & desenvolvimento , Coturnix/fisiologia , Coturnix/imunologia , Lipídeos/sangue , Distribuição Aleatória , Clorófitas/química , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino
13.
J Environ Manage ; 355: 120447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460326

RESUMO

This research explicitly investigates the utilization of Chlorella Vulgaris sp. microalgae as a renewable source for lipid production, focusing on its application in bioplastic manufacturing. This study employed the supercritical fluid extraction technique employing supercritical CO2 (sCO2) as a green technology to selectively extract and produce PHA's precursor utilizing CO2 solvent as a cleaner solvent compared to conventional extraction method. The study assessed the effects of three extraction parameters, namely temperature (40-60 °C), pressure (15-35 MPa), and solvent flow rate (4-8 ml/min). The pressure, flowrate, and temperature were found to be the most significant parameters affecting the sCO2 extraction. Through Taguchi optimization, the optimal parameters were determined as 60 °C, 35 MPa, and 4 ml/min with the highest lipid yield of 46.74 wt%; above-average findings were reported. Furthermore, the pretreatment process involved significant effects such as crumpled and exhaustive structure, facilitating the efficient extraction of total lipids from the microalgae matrix. This study investigated the microstructure of microalgae biomatrix before and after extraction using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Fourier-transform infrared spectroscopy (FTIR) was utilized to assess the potential of the extracted material as a precursor for biodegradable plastic production, with a focus on reduced heavy metal content through inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis. The lipid extracted from Chlorella Vulgaris sp. microalgae was analysed using gas chromatography-mass spectrometry (GC-MS), identifying key constituents, including oleic acid (C18H34O2), n-Hexadecanoic acid (C16H32O2), and octadecanoic acid (C18H36O2), essential for polyhydroxyalkanoate (PHA) formation.


Assuntos
Chlorella vulgaris , Microalgas , Poli-Hidroxialcanoatos , Chlorella vulgaris/química , Microalgas/química , Dióxido de Carbono/química , Solventes/química , Biomassa
14.
J Sci Food Agric ; 104(7): 3823-3833, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37971887

RESUMO

The intensified attention to health, the growth of an elderly population, the changing lifestyles, and the medical discoveries have increased demand for natural and nutrient-rich foods, shaping the popularity of microalgae products. Microalgae thanks to their metabolic versatility represent a promising solution for a 'green' economy, exploiting non-arable land, non-potable water, capturing carbon dioxide (CO2) and solar energy. The interest in microalgae is justified by their high content of bioactive molecules, such as amino acids, peptides, proteins, carbohydrates, polysaccharides, polyunsaturated fatty acids (as ω-3 fatty acids), pigments (as ß-carotene, astaxanthin, fucoxanthin, phycocyanin, zeaxanthin and lutein), or mineral elements. Such molecules are of interest for human and animal nutrition, cosmetic and biofuel production, for which microalgae are potential renewable sources. Microalgae, also, represent effective biological systems for treating a variety of wastewaters and can be used as a CO2 mitigation approach, helping to combat greenhouse gases and global warming emergencies. Recently a growing interest has focused on extremophilic microalgae species, which are easier to cultivate axenically and represent good candidates for open pond cultivation. In some cases, the cultivation and/or harvesting systems are still immature, but novel techniques appear as promising solutions to overcome such barriers. This review provides an overview on the actual microalgae cultivation systems and the current state of their biotechnological applications to obtain high value compounds or ingredients. Moreover, potential and future research opportunities for environment, human and animal benefits are pointed out. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Dióxido de Carbono , Microalgas , Idoso , Humanos , Animais , Dióxido de Carbono/metabolismo , Microalgas/química , Biotecnologia , beta Caroteno/metabolismo , Luteína/metabolismo
15.
Biomed Pharmacother ; 170: 115989, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103309

RESUMO

Cyanobacteria and microalgae contain various phytochemicals, including bioactive components in the form of secondary metabolites, namely flavonoids, phenolic acids, terpenoids, and tannins, with remarkable anticancer effects. This review highlights the recent advances in bioactive compounds, with potential anticancer activity, produced by cyanobacteria and microalgae. Previous in vitro investigations showed that many of these bioactive compounds exhibit potent effects against different human cancer types, such as leukemia and breast cancers. Multiple mechanisms implicated in the antitumor effect of these compounds were elucidated, including their ability to target cellular, subcellular, and molecular checkpoints linked to cancer development and promotion. Recent findings have highlighted various mechanisms of action of bioactive compounds produced by cyanobacteria and microalgae, including induction of autophagy and apoptosis, inhibition of telomerase and protein kinases, as well as modulation of epigenetic modifications. In vivo investigations have demonstrated a potent anti-angiogenesis effect on solid tumors, as well as a reduction in tumor volume. Some of these compounds were examined in clinical investigations for certain types of cancers, making them potent candidates/scaffolds for antitumor drug development.


Assuntos
Antineoplásicos , Cianobactérias , Microalgas , Neoplasias , Humanos , Microalgas/química , Cianobactérias/metabolismo , Fatores Biológicos , Antineoplásicos/química , Neoplasias/tratamento farmacológico
16.
Arch Microbiol ; 206(1): 14, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38070019

RESUMO

The scientific community continue to explore novel bioactive molecules by investigating natural origins; microalgae are photosynthetic organisms considered as a sustainable resource to use in many fields. They present a high diversity in species and richness in terms of attractive bio-compounds. The aim of this review is to (1) provide first an overview of current issues related to oxidative stress, and propose a natural metabolite derived from eukaryotic and prokaryotic microalgae; 'polysaccharides' as a powerful antioxidant agent, then, (2) organize the available data on the antioxidant potential of polysaccharides derived from the main microalgal groups (red microalgae, green microalgae, and cyanobacteria) and especially highlighted the key species of each group (Porphyridium sp., Chlorella sp., and Arthrospira sp., respectively), meanwhile, (3) we described the chemical composition of polysaccharides from each class, and (4) we cite briefly the most factors affecting the antioxidant activity of these molecules. Finally, we explored the major challenges and gaps found to require more investigation.


Assuntos
Chlorella , Microalgas , Porphyridium , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Microalgas/química , Polissacarídeos/metabolismo , Porphyridium/química
17.
Mar Drugs ; 21(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38132940

RESUMO

The Bouguer-Lambert-Beer (BLB) law serves as the fundamental basis for the spectrophotometric determination of pigment content in microalgae. Although it has been observed that the applicability of the BLB law is compromised by the light scattering effect in microalgae suspensions, in-depth research concerning the relationship between the light scattering effect and the accuracy of spectrophotometric pigment determination remains scarce. We hypothesized that (1) the precision of spectrophotometric pigment content determination using the BLB law would diminish with increasing nonlinearity of absorbance, and (2) employing the modified version of the BLB (mBLB) law would yield superior performance. To assess our hypotheses, we cultivated Phaeodactylum tricornutum under varying illumination conditions and nitrogen supplies in controlled indoor experiments, resulting in suspensions with diverse pigment contents. Subsequently, P. tricornutum samples were diluted into subsamples, and spectral measurements were conducted using different combinations of biomass concentrations and path lengths. This was carried out to assess the applicability of the BLB law and the nonlinearity of absorbance. The chlorophyll a and fucoxanthin contents in the samples were analyzed via high-performance liquid chromatography (HPLC) and subsequently used in our modeling. Our findings confirm our hypotheses, showing that the modified BLB law outperforms the original BLB law in terms of the normalized root mean square error (NRMSE): 6.3% for chlorophyll a and 5.8% for fucoxanthin, compared to 8.5% and 7.9%, respectively.


Assuntos
Microalgas , Clorofila A , Microalgas/química , Cerveja , Análise Espectral
18.
Braz J Microbiol ; 54(4): 2961-2977, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37943485

RESUMO

Microalgae have grabbed huge attention as a potential feedstock for biofuel production in response to the rise in energy consumption and the energy crisis. In the present study, indigenous microalgal strains were isolated from four freshwater lakes in the Kumaun region, Uttarakhand, India. Based on growth and lipid profiles, the four best-performing isolates were selected for further experiments. Initial identification of isolates was done by morphological observations, which were further validated by molecular identification using ITS sequencing. The screened cultures were subjected to abiotic stress conditions (varying concentrations of nitrogen and different temperatures) to monitor the biomass, lipid accumulation, and biochemical compositions (chlorophyll and carotenoids). The quantification of fatty acids was checked via gas chromatographic analysis. The strains were identified as KU_MA3 Chlamydopodium starrii, KU_MA4 Tetradesmus nygaardii, KU_MA5 Desmodesmus intermedius, and KU_MA6 Tetradesmus nygaardii. KU_MA3 Chlamydopodium starrii showed the best results in terms of growth and lipid production at 21 °C and 0.37 g/L NaNO2 concentration. The percentage of fatty acid methyl esters (FAMEs) attained >80% and met the standard for biodiesel properties. The strain has the potential to attain higher biomass and accumulate higher lipid content, and after some more studies, it can be used for upscaling processes and large-scale biodiesel production.


Assuntos
Ácidos Graxos , Microalgas , Ácidos Graxos/análise , Microalgas/química , Biocombustíveis , Índia , Biomassa , Água Doce
19.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834414

RESUMO

It is meaningful to understand the conversion pathways of nitrogen during the hydrothermal liquefaction process of microalgae to reveal the related reaction mechanisms and develop effective methods to prevent N from ending in biocrude, which eventually increases the quality of biocrude. Extending from our previous works that mainly focused on two high-protein (>50 wt%) microalgae (Chlorella sp. and Spirulina sp.), Nannochloropsis sp., which has a high lipid content (>70 wt%), was used as the feedstock for this project using the same methodology. The high lipid content in Na. induced less nitrogen during the oil phase and as a result, reduced the heteroatom content while also improving the quality of biocrude. It is worth noting that another investigation was conducted on the model compounds with different types of amino acids to specify the effects of the types of amino acids in the proteins in microalgae on the N pathway and their distribution in the products (aqueous phase, oil, solid, and gas). It was found that the basic amino acid in microalgae caused the formation of more N-heterocyclic compounds in the biocrude. The mass flow based on the mass balance was demonstrated to further refine the map showing the predicted reaction pathway of nitrogen from the previous version.


Assuntos
Chlorella , Microalgas , Temperatura , Aminoácidos , Microalgas/química , Nitrogênio , Água , Lipídeos , Biocombustíveis , Biomassa
20.
Bioresour Technol ; 390: 129899, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865151

RESUMO

An instantaneous and reversible flocculation method for Scenedesmus harvesting was developed, based on the complexation of Chitosan (CTS) and Xanthan Gum (XG). Under rapid stirring, Scenedesmus cells formed centimeter-sized flocs within 20 s using binary flocculants of 4 mg/L CTS and 16 mg/L XG. These flocs exhibited a remarkable harvest efficiency exceeding 95 % when filtered through 500-µm-pore-sized sieves. Furthermore, the flocs could be completely disintegrated by using alkaline or NaCl solutions (pH > 11 or NaCl concentration > 1.5 mol/L). Adjusting pH allowed recovery of 50 % CTS and 75 % XG, resulting in microalgae biomass with lower flocculant content and reducing reagent costs. Electrostatic interaction of -COO- of XG and -NH3+ of CTS deduced the formation of polyelectrolyte complexes (PECs), which shrink and wrap the coexisting algal cells to form the flocs under stirring. CTS and XG complexation was instantaneous and reversible, explaining quick flocculation and disintegration.


Assuntos
Quitosana , Microalgas , Scenedesmus , Quitosana/química , Floculação , Cloreto de Sódio , Microalgas/química , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA