Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Harmful Algae ; 134: 102627, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38705620

RESUMO

Due to climate changes and eutrophication, blooms of predominantly toxic freshwater cyanobacteria are intensifying and are likely to colonize estuaries, thus impacting benthic organisms and shellfish farming representing a major ecological, health and economic risk. In the natural environment, Microcystis form large mucilaginous colonies that influence the development of both cyanobacterial and embedded bacterial communities. However, little is known about the fate of natural colonies of Microcystis by salinity increase. In this study, we monitored the fate of a Microcystis dominated bloom and its microbiome along a French freshwater-marine gradient at different phases of a bloom. We demonstrated changes in the cyanobacterial genotypic composition, in the production of specific metabolites (toxins and compatible solutes) and in the heterotrophic bacteria structure in response to the salinity increase. In particular M. aeruginosa and M. wesenbergii survived salinities up to 20. Based on microcystin gene abundance, the cyanobacteria became more toxic during their estuarine transfer but with no selection of specific microcystin variants. An increase in compatible solutes occurred along the continuum with extensive trehalose and betaine accumulations. Salinity structured most the heterotrophic bacteria community, with an increased in the richness and diversity along the continuum. A core microbiome in the mucilage-associated attached fraction was highly abundant suggesting a strong interaction between Microcystis and its microbiome and a likely protecting role of the mucilage against an osmotic shock. These results underline the need to better determine the interactions between the Microcystis colonies and their microbiome as a likely key to their widespread success and adaptation to various environmental conditions.


Assuntos
Água Doce , Microbiota , Água Doce/microbiologia , Microcystis/fisiologia , Cianobactérias/fisiologia , Cianobactérias/metabolismo , Cianobactérias/genética , Salinidade , Microcistinas/metabolismo , Proliferação Nociva de Algas , Água do Mar/microbiologia , Água do Mar/química , França
2.
Harmful Algae ; 134: 102622, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38705618

RESUMO

Colony formation is a crucial characteristic of Microcystis, a cyanobacterium known for causing cyanobacterial harmful algal blooms (cyanoHABs). It has been observed that as Microcystis colonies grow larger, they often become less densely packed, which correlates with a decrease in light penetration. The objective of this study was to investigate the effects of light limitation on the morphological variations in Microcystis, particularly in relation to the crowded cellular environment. The results indicated that when there was sufficient light (transmittance = 100 %) to support a growth rate of 0.11±0.01 day-1, a significant increase in colony size was found, from 466±15 µm to 1030±111 µm. However, under light limitation (transmittance = 50 % - 1 %) where the growth rate was lower than 0, there was no significant improvement in colony size. Microcystis in the light limitation groups exhibited a loose cell arrangement and even the presence of holes or pores within the colony, confirming the negative correlation between colony size and cell arrangement. This pattern is driven by regional differences in growth within the colony, as internal cells have a significantly lower frequency of division compared to peripheral cells, due to intra-colony self-shading (ICSS). The research demonstrates that Microcystis can adjust its cell arrangement to avoid excessive self-shading, which has implications for predicting and controlling cyanoHABs. These findings also contribute to the understanding of cyanobacterial variations and can potentially inform future research on the diverse phycosphere.


Assuntos
Proliferação Nociva de Algas , Luz , Microcystis , Microcystis/fisiologia , Microcystis/crescimento & desenvolvimento
3.
Harmful Algae ; 133: 102575, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485434

RESUMO

Interactions between bacteria and phytoplankton in the phycosphere facilitate and constrain biogeochemical cycling in aquatic ecosystems. Indole-3-acetic acid (IAA) is a bacterially produced chemical signal that promotes growth of phytoplankton and plants. Here, we explored the impact of IAA on bloom-forming cyanobacteria and their associated bacteria. Exposure to IAA and its precursor, tryptophan, resulted in a strong growth response in a bloom of the freshwater cyanobacterium, Microcystis. Metatranscriptome analysis revealed the induction of an antioxidant response in Microcystis upon exposure to IAA, potentially allowing populations to increase photosynthetic rate and overcome internally generated reactive oxygen. Our data reveal that co-occurring bacteria within the phycosphere microbiome exhibit a division of labor for supportive functions, such as nutrient mineralization and transport, vitamin synthesis, and reactive oxygen neutralization. These complex dynamics within the Microcystis phycosphere microbiome are an example of interactions within a microenvironment that can have ecosystem-scale consequences.


Assuntos
Cianobactérias , Ácidos Indolacéticos , Microbiota , Microcystis , Microcystis/fisiologia , Antioxidantes , Fitoplâncton , Oxigênio
4.
Harmful Algae ; 133: 102588, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485443

RESUMO

To investigate the detrimental impacts of cyanobacterial bloom, specifically Microcystis aeruginosa, on brackish water ecosystems, the study used Moina mongolica, a cladoceran species, as the test organism. In a chronic toxicology experiment, the survival and reproductive rates of M. mongolica were assessed under M. aeruginosa stress. It was observed that the survival rate of M. mongolica fed with M. aeruginosa significantly decreased with time and their reproduction rate dropped to zero, while the control group remained maintained stable and normal reproduction. To further explore the underlying molecular mechanisms of the effects of M. aeruginosa on M. mongolica, we conducted a transcriptomic analysis on newly hatched M. mongolica cultured under different food conditions for 24 h. The results revealed significant expression differences in 572 genes, with 233 genes significantly up-regulated and 339 genes significantly down-regulated. Functional analysis of these differentially expressed genes identified six categories of physiological functional changes, including nutrition and metabolism, oxidative phosphorylation, neuroimmunology, cuticle and molting, reproduction, and programmed cell death. Based on these findings, we outlined the basic mechanisms of microcystin toxicity. The discovery provides critical insights into the mechanisms of Microcystis toxicity on organisms and explores the response mechanisms of cladocerans under the stress of Microcystis.


Assuntos
Cladocera , Microcystis , Animais , Microcystis/fisiologia , Ecossistema , Perfilação da Expressão Gênica , Águas Salinas
5.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366257

RESUMO

Prediction of the complex cyanobacteria-environment interactions is vital for understanding harmful bloom formation. Most previous studies on these interactions considered specific properties of cyanobacterial cells as representative for the entire population (e.g. growth rate, mortality, and photosynthetic capacity (Pmax)), and assumed that they remained spatiotemporally unchanged. Although, at the population level, the alteration of such traits can be driven by intraspecific competition, little is known about how traits and their plasticity change in response to environmental conditions and affect the bloom formation. Here we test the hypothesis that intraspecific variations in Pmax of cyanobacteria (Microcystis spp.) play an important role in its population dynamics. We coupled a one-dimensional hydrodynamic model with a trait-based phytoplankton model to simulate the effects of physical drivers (turbulence and turbidity) on the Pmax of Microcystis populations for a range of dynamic conditions typical for shallow eutrophic lakes. Our results revealed that turbulence acts as a directional selective driver for changes in Pmax. Depending on the intensity of daily-periodic turbulence, representing wind-driven mixing, a shift in population-averaged phenotypes occurred toward either low Pmax, allowing the population to capture additional light in the upper layers, or high Pmax, enhancing the efficiency of light utilization. Moreover, we observed that a high intraspecific diversity in Pmax accelerated the formation of surface scum by up to more than four times compared to a lower diversity. This study offers insights into mechanisms by which cyanobacteria populations respond to turbulence and underscores the significance of intraspecific variations in cyanobacterial bloom formation.


Assuntos
Cianobactérias , Microcystis , Lagos/microbiologia , Monitoramento Ambiental , Cianobactérias/fisiologia , Microcystis/fisiologia , Fitoplâncton , Eutrofização
6.
Chemosphere ; 352: 141376, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316281

RESUMO

The increasing occurrence of harmful algal blooms (HABs) in freshwater ecosystems detrimentally affect global water environments. Zooplankton's role in controlling HABs is hindered by contaminant exposure, necessitating research into combined stressors' ecological impacts. The response of Daphnia, a freshwater keystone species, to environmental stressors can be influenced by its maternal effects. Here, we investigated the combined effects of the world-widely used insecticide spinetoram and non-toxic HABs species Microcystis aeruginosa on the life-history traits of D. pulex offspring produced from different maternal food conditions. Four maternal groups were established, with each group receiving a specific blend of C. vulgaris (Ch) and M. aeruginosa (Ma) in varying proportions: A (100% Ch), B (90% Ch + 10% Ma), C (80% Ch + 20% Ma), and D (70% Ch + 30% Ma). The offspring from the third brood were gathered, and a 21-day experiment was carried out, involving various feeding groups (AA, AD, BA, BB, CA, CC, DA, and DD). Results demonstrated that grazing on M. aeruginosa by D. pulex induced maternal effects on their offspring, with the continuous exposure group showing an enhanced tolerance to M. aeruginosa. This study also unveiled that spinetoram could interfere with the molting of D. pulex, leading to developmental retardation. The Recovery Group exhibited an intriguing phenomenon: under the influence of both concentrations of the pesticide spinetoram (0.18, 0.35 µg L-1), D. pulex produced more offspring. This might be due to a combined strategy of allocating more energy towards reproduction in response to low-quality food and a potential hormetic effect from low concentrations of spinetoram. Assessing the interplay of combined stressors across multiple generations, encompassing harmful algal blooms (HABs) and environmental pollutants, is essential for predicting population responses to evolving environmental conditions. This understanding is vital for the protection and management of aquatic environments and ecosystems.


Assuntos
Macrolídeos , Microcystis , Animais , Microcystis/fisiologia , Daphnia pulex , Ecossistema , Herança Materna , Daphnia
7.
Water Res ; 252: 121213, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306752

RESUMO

The occurrence of large Microcystis biomass in brackish waters is primarily caused by its downward transportation from the upstream freshwater lakes and reservoirs through rivers rather than due to in situ bloom formation. Factors that determine the survival of freshwater cyanobacteria in brackish waters have not been well investigated. Here, we studied the spatiotemporal variability of inorganic nitrogen in an upstream lake and conducted laboratory and in-situ experiments to assess the role of nitrogen availability on the salt tolerance of Microcystis and the release of microcystins. A series of field experiments were carried out during bloom seasons to evaluate the salt tolerance of natural Microcystis colonies. The salt tolerance threshold varied from 7 to 17 and showed a positive relationship with intracellular carbohydrate content and a negative relationship with nitrogen availability in water. In August when upstream nitrogen availability was lower, the Microcystis colonies could maintain their biomass even after a sudden increase in salinity from 4 to 10. Laboratory-cultivated Microcystis that accumulated higher carbohydrate content at lower nitrogen availability showed better cell survival at higher salinity. The sharp release of microcystins into the surrounding water occurred when salinity exceeded the salt tolerance threshold of the Microcystis. Thus, Microcystis with higher salt tolerance can accumulate more toxins in cells. The obtained results suggest that the cell survival and toxin concentration in brackish waters depend on the physiological properties of Microcystis formed in the upstream waters. Thus, the life history of Microcystis in upstream waters could have a significant impact on its salt tolerance in downstream brackish waters, where the ecological risk of the salt-tolerant Microcystis requires special and careful management in summer at low nitrogen availability.


Assuntos
Microcystis , Microcystis/fisiologia , Microcistinas , Tolerância ao Sal , Nitrogênio , Lagos/microbiologia , Águas Salinas , Água , Carboidratos
8.
Sci Total Environ ; 913: 169786, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38181954

RESUMO

Calcium ions (Ca2+) and magnesium ions (Mg2+) are pivotal in the community composition and stability of harmful cyanobacteria, yet the physiological and molecular responses remains poorly understood. This study aims to explore these responses in the high microcystin producer Microcystis aeruginosa (M. aeruginosa). Results indicate that the growth of M. aeruginosa is inhibited by Ca2+/Mg2+ exposure (0.5-10 mM), while Fv/Fm photosynthetic parameters and extracellular microcystin-leucine-arginine (MC-LR) concentrations increase. Additionally, MC-LR release is significantly elevated under exposure to Ca2+/Mg2+, posing potential aquatic environmental risks. Transcriptomic analysis reveals downregulation of genes related to cell architecture, membrane transport, and metabolism, while the genes linked to photosynthesis electron transmission and heavy metal-responsive transcriptional regulators are upregulated to adapt to environmental changes. Further analysis reveals that Ca2+ and Mg2+ primarily impact sulfur metabolism and transport of amino acids and mineral within cells. These findings provide insights into M. aeruginosa cells responses to Ca2+ and Mg2+ exposure.


Assuntos
Microcystis , Microcystis/fisiologia , Cálcio/metabolismo , Magnésio , Microcistinas/metabolismo , Perfilação da Expressão Gênica , Íons/metabolismo
9.
Sci Total Environ ; 908: 168290, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939934

RESUMO

Microcystis aeruginosa is ubiquitously found in various water bodies and can produce microcystins (MCs), which threaten the health of aquatic animals and human beings. The elimination of excessive M. aeruginosa is beneficial for the protection of the ecosystems and public health. In this regard, algae-lysing bacteria have been extensively studied as an effective measure for their eradication. However, the active substances generated by algae-lysing bacteria are limited. For this study, we reveal that the phenyllactic acid (PLA) produced by Leuconostoc mesenteroides DH exhibits high efficacy for the removal of M. aeruginosa, and explore the elimination mechanism of strain DH on M. aeruginosa. It was found that a cell-free supernatant of strain DH possessed high removal activities against M. aeruginosa. Abundant reactive oxygen species were induced in algal cells following exposure to strain DH supernatant, as well as superoxide dismutase and catalase responses. Furthermore, the integrity of algal cell membranes and photosynthesis was seriously damaged. Interestingly, added exogenous eugenol significantly inhibited the synthesis of active substance produced by strain DH, which further identified that PLA is one of the active substances that contribute to the eradication of M. aeruginosa on the basis of metabolomics analysis. Our finding demonstrated, for the first time, that PLA (as an anti-cyanobacterial compound) can be used for the removal of M. aeruginosa, which provides a theoretical basis for the control of M. aeruginosa.


Assuntos
Cianobactérias , Leuconostoc mesenteroides , Microcystis , Animais , Humanos , Microcystis/fisiologia , Leuconostoc mesenteroides/metabolismo , Ecossistema , Cianobactérias/metabolismo , Plantas/metabolismo , Microcistinas/metabolismo , Poliésteres
10.
Sci Total Environ ; 912: 169302, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104816

RESUMO

The risks of planktonic cyanobacteria blooms have been the focus of much scientific research, but studies on the ecotoxicological effects of benthic cyanobacteria are lagging. The impacts of cyanobacteria cells on fish populations might be more complex in contrast to purified cyanotoxins or cyanobacteria extracts. This study systematically compared the chronic effects of benthic Oscillatoria sp. (producing cylindrospermopsins) and planktonic Microcystis aeruginosa (producing microcystins) on the growth and reproduction of zebrafish through life-cycle exposure (5- 90 days post fertilization). The results showed that both Oscillatoria sp. and M. aeruginosa exposure caused growth inhibition and fecundity reduction in F0 generation by disrupting sex hormone levels, delayed ovarian and sperm development, and induced pathological lesions in zebrafish gonads. Furthermore, exposure to Oscillatoria sp. or M. aeruginosa in adult zebrafish increased mortality and teratogenicity in F1 embryos (without exposure), indicating a parental transmission effect of developmental toxicity. The difference was that M. aeruginosa exposure led to significant alterations in pathways, such as tissue development, redox processes, and steroid hormone synthesis. In contrast, Oscillatoria sp. exposure primarily disrupted the PPAR signaling pathway, cell adhesion molecules, and lipid transport pathways. Interestingly, the differentially expressed genes revealed that male fish were more sensitive to harmful cyanobacteria than females, whether exposed to Oscillatoria sp. or M. aeruginosa. These findings contribute to a better mechanistic understanding of the chronic toxic effects of distinct types of harmful cyanobacteria, suggesting that the ecological risk of benthic cyanobacteria requires further attention.


Assuntos
Cianobactérias , Microcystis , Oscillatoria , Animais , Feminino , Masculino , Microcystis/fisiologia , Peixe-Zebra/metabolismo , Sêmen , Microcistinas/metabolismo , Reprodução , Estágios do Ciclo de Vida
11.
Harmful Algae ; 130: 102527, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38061818

RESUMO

Microcystis species not only produce toxic cyanobacterial blooms, but can be a significant source of taste and odour. Previous studies have associated foul-smelling volatile organic sulfur compounds (VOSCs) with Microcystis blooms, but have largely attributed these compounds to bacterial bloom decomposition. However, earlier reports of the production of isopropylthio compounds by several Microcystis strains suggests that these cyanobacteria may themselves be a source of these VOSCs. Sulphur compounds have been shown to play important semiochemical roles in algal cell protection and grazer interactions in marine systems, but little is known about the production and chemical ecology of freshwater cyanobacterial VOSCs. To address this knowledge gap, we undertook the first detailed investigation of the biochemistry, ecophysiology and semiochemistry of these compounds and their production by Microcystis, and tested the hypothesis that they act as multifunctional semiochemicals in processes related to cell protection and grazer defence. Using short-term incubations and an adapted headspace-GC-MS technique, we investigated VOSC production by axenic and non-axenic strains, and verified that isopropylthio compounds are in fact produced by these cyanobacteria, identifying 5 isopropyl moiety-containing VOSCs (isopropylthiol (ISH), isopropylmethyl sulfide, isopropyl methyl disulfide, diisopropyl disulfide (ISSI) and diisopropyl trisulfide) as well as methanethiol in three strains. Further studies with the axenic strain Microcystis PCC 7806 using different light regimes, metabolic inhibitors (sodium azide, DCMU), the antioxidant enzyme catalase and stable labelled precursors (hydrogencarbonate, acetates and sulfate) demonstrated that ISH is a true exo-metabolite, synthesized via the acetate pathway. It is actively produced and continuously excreted by the cyanobacteria during growth, with minimal internal storage or post-lysis catalytic generation. The molar ratios of the redox pair ISH/ISSI are not directly involved in the photosynthetic and respiratory electron transport chains, but dependant on the redox state of the cell - likely mediated by reactive oxygen species (ROS), as shown by a marked effect of catalase. These results, along with toxicological and behavioural assays using the two aquatic invertebrates Thamnocephalus platyurus and Daphnia magna indicate that ISH plays multiple important physiological and ecological roles. It acts as an effective antioxidant against high ROS levels, as often experienced in surface blooms, it elicits avoidance-related behavioural responses in grazer communities and at high levels, it can be toxic to some invertebrates.


Assuntos
Cianobactérias , Microcystis , Microcystis/fisiologia , Catalase/metabolismo , Antioxidantes , Espécies Reativas de Oxigênio/metabolismo , Cianobactérias/fisiologia
12.
Water Res ; 246: 120704, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827036

RESUMO

Colonial cyanobacteria have been identified as the primary contributor to the global occurrence of cyanobacterial harmful algal blooms (cyanoHABs), which are further intensified by the presence of "pseudo-persistent" antibiotics. Nevertheless, the impact of antibiotics on the growth and size of colonial cyanobacteria remains unclear. In this study, the response of cyanobacterium Microcystis to varying doses of antibiotics was assessed (0, 0.1, 0.5, 1, 10, and 50 µg L-1) by comparing the unicellular and colonial morphotypes. Interestingly, the morphological structure of cyanobacteria plays a significant role in their reaction to antibiotics. In comparison to the unicellular morphotype, the colonial morphotype exhibited a greater promotion in growth rate (11 %-22 %) to low doses of antibiotics and was less inhibited (-121 %--62 %) under high doses. Furthermore, antibiotics may affect the size of cyanobacterial colonies by disrupting the secretion of algal organic matter, which also exhibited a two-phase pattern. This work sheds light on the significance of methodology research involving both unicellular and colonial cyanobacteria. Future research and lake management should prioritize studying the morphological traits of cyanobacteria under different levels of antibiotic exposure. This approach may lead to novel strategies for predicting cyanoHABs under antibiotic pollution more effectively.


Assuntos
Cianobactérias , Microcystis , Microcystis/fisiologia , Proliferação Nociva de Algas , Lagos , Antibacterianos/farmacologia
13.
Environ Sci Technol ; 57(44): 16929-16939, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37665318

RESUMO

Globally, cyanobacterial blooms have become serious problems in eutrophic water. Most previous studies have focused on environmental factors but have neglected the role of quorum sensing (QS) in bloom development and control. This study explored a key quorum sensing molecule (QSM) that promotes cell growth and then proposed a targeted quorum quencher to control blooms. A new QSM 3-OH-C4-HSL was identified with high-resolution mass spectrometry. It was found to regulate cellular carbon metabolism and energy metabolism as a means to promote Microcystis aeruginosa growth. To quench the QS induced by 3-OH-C4-HSL, three furanone-like inhibitors were proposed based on molecular structure, of which dihydro-3-amino-2-(3H)-furanone (FN) at a concentration of 20 µM exhibited excellent inhibition of M. aeruginosa growth (by 67%). Molecular docking analysis revealed that the inhibitor strongly occupied the QSM receptor protein LuxR by binding with Asn164(A) and His167(A) via two hydrogen bonds (the bond lengths were 3.04 and 4.04 Å) and the binding energy was -5.9 kcal/mol. The inhibitor blocked signaling regulation and induced programmed cell death in Microcystis. Importantly, FN presented little aquatic biotoxicity and negligibly affected aquatic microbial function. This study provides a promising new and eco-friendly strategy for controlling cyanobacterial blooms.


Assuntos
Cianobactérias , Microcystis , Percepção de Quorum , Microcystis/fisiologia , Simulação de Acoplamento Molecular
14.
Sci Total Environ ; 902: 165888, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544456

RESUMO

Although nutrient availability is widely recognized as the driving force behind Microcystis blooms, identifying the microorganisms that play a pivotal role in their formation is a challenging task. Our understanding of the contribution of bacterial communities to the development of Microcystis blooms remains incomplete, despite the fact that the relationship between Microcystis and bacterial communities has been extensively investigated. Most studies have focused on their interaction for a single year rather than for multiple years. To determine key bacteria crucial for the formation of Microcystis blooms, we collected samples from three sites in the Daechung Reservoir (Chuso, Hoenam, and Janggye) over three years (2017, 2019, and 2020). Our results indicated that Microcystis bloom-associated bacterial communities were more conserved across stations than across years. Bacterial communities could be separated into modules corresponding to the different phases of Microcystis blooms. Dolichospermum and Aphanizomenon belonged to the same module, whereas the module of Microcystis was distinct. The microbial recurrent association network (MRAN) showed that amplicon sequence variants (ASVs) directly linked to Microcystis belonged to Pseudanabaena, Microscillaceae, Sutterellaceae, Flavobacterium, Candidatus Aquiluna, Bryobacter, and DSSD61. These ASVs were also identified as key indicators of the bloom stage, indicating that they were fundamental biological elements in the development of Microcystis blooms. Overall, our study highlights that, although bacterial communities change annually, they continue to share core ASVs that may be crucial for the formation and maintenance of Microcystis blooms.


Assuntos
Aphanizomenon , Cianobactérias , Microcystis , Microcystis/fisiologia , Consórcios Microbianos , Lagos/microbiologia
15.
Microbiome ; 11(1): 108, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37194081

RESUMO

BACKGROUND: Cyanobacterial blooms are one of the most common stressors encountered by metazoans living in freshwater lentic systems such as lakes and ponds. Blooms reportedly impair fish health, notably through oxygen depletion and production of bioactive compounds including cyanotoxins. However, in the times of the "microbiome revolution", it is surprising that so little is still known regarding the influence of blooms on fish microbiota. In this study, an experimental approach is used to demonstrate that blooms affect fish microbiome composition and functions, as well as the metabolome of holobionts. To this end, the model teleost Oryzias latipes is exposed to simulated Microcystis aeruginosa blooms of various intensities in a microcosm setting, and the response of bacterial gut communities is evaluated in terms of composition and metabolome profiling. Metagenome-encoded functions are compared after 28 days between control individuals and those exposed to highest bloom level. RESULTS: The gut bacterial community of O. latipes exhibits marked responses to the presence of M. aeruginosa blooms in a dose-dependent manner. Notably, abundant gut-associated Firmicutes almost disappear, while potential opportunists increase. The holobiont's gut metabolome displays major changes, while functions encoded in the metagenome of bacterial partners are more marginally affected. Bacterial communities tend to return to original composition after the end of the bloom and remain sensitive in case of a second bloom, reflecting a highly reactive gut community. CONCLUSION: Gut-associated bacterial communities and holobiont functioning are affected by both short and long exposure to M. aeruginosa, and show evidence of post-bloom resilience. These findings point to the significance of bloom events to fish health and fitness, including survival and reproduction, through microbiome-related effects. In the context of increasingly frequent and intense blooms worldwide, potential outcomes relevant to conservation biology as well as aquaculture warrant further investigation. Video Abstract.


Assuntos
Cianobactérias , Microbioma Gastrointestinal , Microcystis , Oryzias , Animais , Microcystis/fisiologia , Cianobactérias/genética , Lagos/microbiologia , Metaboloma , Oryzias/fisiologia
16.
Sci Total Environ ; 889: 164277, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211116

RESUMO

Cyanobacteria and their toxins widely exist in freshwater ecosystems. Microcystis aeruginosa is among dominant bloom-forming cyanobacteria. Water temperature is a key factor influencing the life cycle of M. aeruginosa. We simulated elevated temperature (4-35 °C) experiment and cultured M. aeruginosa during the overwintering, recruitment and rapid growth phases. The results showed that M. aeruginosa recovered growth after overwintering at 4-8 °C and recruited at 16 °C. The total extracellular polymeric substance (TEPS) concentration increased rapidly at 15 °C. The actual quantum yield of photosystem II (Fv'/Fm') peaked at 20 °C during the rapid growth phase, and the optimum temperature of M. aeruginosa growth was 20-25 °C. Additionally, TEPS and microcystins (MCs) secretion peaked at 20-25 °C. The cell density accumulated rapidly from 26 °C to 35 °C. Furthermore, enzymes of RuBisCO and FBA related to photosynthetic activity were confirmed to contribute to the metabolism, as well as mcyB gene was affected by elevated temperature. Our results provide insights of the physiological effects and metabolic activity during annual cycle of M. aeruginosa. And it is predicted that global warming may promote the earlier recruitment of M. aeruginosa, extend the optimum growth period, enhance the toxicity, and finally intensify M. aeruginosa blooms.


Assuntos
Microcystis , Temperatura , Cianobactérias , Ecossistema , Matriz Extracelular de Substâncias Poliméricas , Microcistinas/metabolismo , Microcystis/fisiologia
17.
Sci Total Environ ; 881: 163390, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37044329

RESUMO

Harmful algal blooms impair the aesthetic quality and healthy performance of in-situ water. Worse yet, dramatic temperature variability arises additional difficulty in algal-induced risk assessment, which is so far poorly explored. Microcystis aeruginosa (FACHB 905), was selected to explore the odor-producing pattern (ß-cyclocitral, the major odorant of the test alga) under several temperature-varying scenarios. Significant differences were observed in total ß-cyclocitral yield between these scenarios, e.g., a rapid yield response as a result of acute temperature variation. Yield response was not only dependent on absolute temperature, but influenced by temperature variability stress. Acute increase (AI) or sequential increase (SI) in temperature caused extra production response, while the opposite was observed in groups with acute decrease (AD) and sequential decrease (SD) in temperature. Cell growth in AD group showed severe inhibition, with the specific growth rates fluctuating around half of that in 16-control. Whereas, SD could relieve such detrimental growth effects. Cell quota of ß-cyclocitral yield was sensitive to temperature variation, with notable increase in AI and SI. Further, peaks in cell quota for SI group (79.3 %) were higher than for AI group (57.9 %). Cell quota variations in temperature-varying conditions contributed to the total yield response (R2 = 0.566-0.980) more than cell intensity variations (R2 = 0.0397-0.548). Further, it was also found that the internal mechanism by reactive oxygen species and pigments varied in various thermal scenarios. Overall, it was demonstrated that more than absolute value differences, temperature varying patterns across time influence algal behavior and related hazards, which should be noted in resource water quality management.


Assuntos
Diterpenos , Microcystis , Odorantes , Temperatura , Aldeídos , Microcystis/fisiologia
18.
Sci Total Environ ; 878: 163136, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37001662

RESUMO

Cyanobacterial blooms caused by eutrophication have become a major environmental problem in aquatic ecosystems worldwide over the last few decades. Phosphorus is a limiting nutrient that affects the growth of cyanobacteria and plays a role in dynamic changes in algal density and the formation of cyanobacterial blooms. Therefore, identifying the association between phosphorus sources and Microcystis, which is the most representative and harmful cyanobacteria, is essential for building an understanding of the ecological risks of cyanobacterial blooms. However, systematic reviews summarizing the relationships between Microcystis and phosphorus in aquatic environments are rare. Thus, this study provides a comprehensive overview of the physiological and ecological interactions between phosphorus sources and Microcystis in aquatic environments from the following perspectives: (i) the effects of phosphorus source and concentration on Microcystis growth, (ii) the impacts of phosphorus on the environmental behaviors of Microcystis, (iii) mechanisms of phosphorus-related metabolism in Microcystis, and (iv) role of Microcystis in the distribution of phosphorus sources within aquatic environments. In addition, relevant unsolved issues and essential future investigations (e.g., secondary ecological risks) have been highlighted and discussed. This review provides deeper insights into the relationship between phosphorus sources and Microcystis and can serve as a reference for the evaluation, monitoring, and effective control of cyanobacterial blooms.


Assuntos
Cianobactérias , Microcystis , Microcystis/fisiologia , Fósforo , Ecossistema , Eutrofização , Lagos/microbiologia
19.
Water Res ; 235: 119839, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924554

RESUMO

Light is an important driver of algal growth and for the formation of surface blooms. Long-term buoyancy maintenance of Microcystis colonies is crucial for their aggregation at the water surface and the following algal bloom development. However, the effect of light-mediated variations of colony morphology on the buoyancy regulation of Microcystis colonies remains unclear. In this study, growth parameters, colony morphology and floatation/sinking performance of Microcystis colonies were determined to explore how variations in colony morphology influence the buoyancy of colonies under different light conditions. We quantified colony compactness through the cell volume to colony volume ratio (VR) and found different responses of colony size and VR under different light intensities. Microcystis colonies with higher VR could stay longer at the water surface under low light conditions, which was beneficial for the long-term growth and buoyancy maintenance. However, increased colony size and decreased compactness were observed at a later growth stage under relatively higher light intensity (i.e., >108 µmol photons m-2 s-1). Interestingly, we found a counterintuitive negative correlation between colony size and buoyancy of Microcystis under high light intensity. Additionally, we found that the influence of colony morphology on buoyancy was stronger at high light intensity. These results indicate that light could regulate the buoyancy via colonial morphology and that the role of colony morphology in buoyancy regulation needs to be accounted for in further studies under variable environmental conditions.


Assuntos
Microcystis , Microcystis/fisiologia , Eutrofização , Água
20.
Sci Total Environ ; 858(Pt 1): 159785, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309262

RESUMO

Utilization of allelochemicals to inhibit overgrowth of toxic cyanobacteria is considered to be an environmentally friendly approach. However, the regulatory role of the signaling molecule nitric oxide (NO) on cyanobacteria under allelopathic stress remains unanswered. Here we demonstrate that the effect of NO on the cyanobacterium Microcystis aeruginosa depends on allelopathic stress of pyrogallic acid (PA). The experimental results revealed that general stimulation of M. aeruginosa by PA occurred within the concentration range 0.4-0.8 mg/L. In parallel with increasing concentration of PA (1.6-16.0 mg/L), the growth of M. aeruginosa was observed to decrease. The effect of NO on M. aeruginosa was evaluated by addition of the NO scavenger hemoglobin. In the stimulation stage, intracellular NO was seen to decreased to modulate the level of reactive oxygen species (ROS) and to maintain redox homeostasis of the cells. In the inhibition stage, the physiological characteristics of M. aeruginosa were changed significantly. Additionally, the accumulation of S-nitrosothiol by M. aeruginosa indicated that the high concentrations of PA induced nitric oxidative stress in M. aeruginosa. This study provides a new thought to understand the role of NO in controlling harmful algal blooms through the allelopathic effect of aquatic macrophytes.


Assuntos
Cianobactérias , Microcystis , Microcystis/fisiologia , Proliferação Nociva de Algas , Pirogalol/farmacologia , Óxido Nítrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA