Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 796
Filtrar
1.
Microbiome ; 12(1): 88, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741135

RESUMO

BACKGROUND: During the bloom season, the colonial cyanobacterium Microcystis forms complex aggregates which include a diverse microbiome within an exopolymer matrix. Early research postulated a simple mutualism existing with bacteria benefitting from the rich source of fixed carbon and Microcystis receiving recycled nutrients. Researchers have since hypothesized that Microcystis aggregates represent a community of synergistic and interacting species, an interactome, each with unique metabolic capabilities that are critical to the growth, maintenance, and demise of Microcystis blooms. Research has also shown that aggregate-associated bacteria are taxonomically different from free-living bacteria in the surrounding water. Moreover, research has identified little overlap in functional potential between Microcystis and members of its microbiome, further supporting the interactome concept. However, we still lack verification of general interaction and know little about the taxa and metabolic pathways supporting nutrient and metabolite cycling within Microcystis aggregates. RESULTS: During a 7-month study of bacterial communities comparing free-living and aggregate-associated bacteria in Lake Taihu, China, we found that aerobic anoxygenic phototrophic (AAP) bacteria were significantly more abundant within Microcystis aggregates than in free-living samples, suggesting a possible functional role for AAP bacteria in overall aggregate community function. We then analyzed gene composition in 102 high-quality metagenome-assembled genomes (MAGs) of bloom-microbiome bacteria from 10 lakes spanning four continents, compared with 12 complete Microcystis genomes which revealed that microbiome bacteria and Microcystis possessed complementary biochemical pathways that could serve in C, N, S, and P cycling. Mapping published transcripts from Microcystis blooms onto a comprehensive AAP and non-AAP bacteria MAG database (226 MAGs) indicated that observed high levels of expression of genes involved in nutrient cycling pathways were in AAP bacteria. CONCLUSIONS: Our results provide strong corroboration of the hypothesized Microcystis interactome and the first evidence that AAP bacteria may play an important role in nutrient cycling within Microcystis aggregate microbiomes. Video Abstract.


Assuntos
Lagos , Microbiota , Microcystis , Microcystis/genética , Microcystis/metabolismo , Microcystis/crescimento & desenvolvimento , China , Lagos/microbiologia , Nutrientes/metabolismo , Processos Fototróficos , Aerobiose , Eutrofização , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Nitrogênio/metabolismo , Carbono/metabolismo
2.
Microbes Environ ; 39(2)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38763742

RESUMO

Microcystins (MCs) produced by Microcystis aeruginosa are harmful to animal and human health, and there is currently no effective method for their removal. Therefore, the development of biological approaches that inhibit cyanobacteria and remove MCs is needed. We identified strain MB1, confirmed as Morchella, using morphological and mole-cular evolution methods. To assess the impact of strain MB1 on M. aeruginosa, we conducted an experiment in which we inoculated M. aeruginosa with Morchella strain MB1. After their co-cultivation for 4| |d, the inoculation with 0.9696| |g MB1 completely inhibited and removed M. aeruginosa while concurrently removing up to 95% of the MC content. Moreover, within 3| |d of their co-cultivation, MB1 removed more than 50% of nitrogen and phosphorus from the M. aeruginosa solution. Therefore, the development of effective biological techniques for MC removal is paramount in safeguarding both the environment and human well-being. We herein successfully isolated MB1 from its natural habitat. This strain effectively inhibited and removed M. aeruginosa and also reduced the content of nitrogen and phosphorus in the M. aeruginosa solution. Most importantly, it exhibited a robust capability to eliminate MCs. The present results offer a new method and technical reference for mitigating harmful algal blooms.


Assuntos
Proliferação Nociva de Algas , Microcistinas , Microcystis , Nitrogênio , Fósforo , Microcistinas/metabolismo , Microcystis/metabolismo , Microcystis/crescimento & desenvolvimento , Microcystis/química , Fósforo/metabolismo , Nitrogênio/metabolismo
3.
Harmful Algae ; 134: 102623, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38705613

RESUMO

Microcystins release from bloom-forming cyanobacteria is considered a way to gain competitive advantage in Microcystis populations, which threaten water resources security and aquatic ecological balance. However, the effects of microcystins on microalgae are still largely unclear. Through simulated culture experiments and the use of UHPLC-MS-based metabolomics, the effects of two microcystin-LR (MC-LR) concentrations (400 and 1,600 µg/L) on the growth and antioxidant properties of three algae species, the toxic Microcystis aeruginosa, a non-toxic Microcystis sp., and Chlorella vulgaris, were studied. The MC-LR caused damage to the photosynthetic system and activated the protective mechanism of the photosynthetic system by decreasing the chlorophyll-a and carotenoid concentrations. Microcystins triggered oxidative stress in C. vulgaris, which was the most sensitive algae species studied, and secreted more glycolipids into the extracellular compartment, thereby destroying its cell structure. However, C. vulgaris eliminated reactive oxygen species (ROS) by secreting terpenoids, thereby resisting oxidative stress. In addition, two metabolic pathways, the vitamin B6 and the sphingolipid pathways, of C. vulgaris were significantly disturbed by microcystins, contributing to cell membrane and mitochondrial damage. Thus, both the low (400 µg/L) and the high (1,600 µg/L) MC-LR concentration inhibited algae growth within 3 to 7 days, and the inhibition rates increased with the increase in the MC-LR concentration. The above results indicate that the toxin-producing Microcystis species have a stronger toxin tolerance under longer-term toxin exposure in natural water environments. Thus, microcystins participates in interspecific interaction and phytoplankton population regulation and creates suitable conditions for the toxin-producing M. aeruginosa to become the dominant species in algae blooms.


Assuntos
Antioxidantes , Toxinas Marinhas , Microcistinas , Microcystis , Fotossíntese , Microcistinas/metabolismo , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Microcystis/efeitos dos fármacos , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/metabolismo , Clorofila A/metabolismo
4.
Sci Rep ; 14(1): 10934, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740841

RESUMO

Cyanobacteria bloom and the secondary metabolites released by the microorganism are extremely harmful to aquatic animals, yet study on their adverse effects in zoobenthos is rare. Corbicula fluminea widely distributed in freshwater environment with algal blooms. It is a typical filter feeding zoobenthos that may be affected by the secondary metabolites of cyanobacteria due to its high filtering rate. In this study, C. fluminea was exposed to Microcystis aeruginosa exudates (MaE) for 96 h, which was obtained from 5 × 105 cells/mL and 2.5 × 106 cells/mL exponential stage M. aeruginosa culture solution that represented cyanobacteria cell density needs environmental risk precaution control and emergent control, respectively. The responses of C. fluminea critical organs to MaE were analyzed and evaluated based on histopathological sections, antitoxicity biomarkers, and organ function biomarkers. The results showed that all the organs underwent structural disorders, cell vacuolization, apoptosis, and necrosis, and the damage levels increased as MaE concentration increased. The detoxification and antioxidant defense systems biomarkers in each organ response to MaE exposure differently and the level of reaction improved when MaE concentration increased. The siphon rate and acetylcholinesterase activity showed that the filtration function decreased significantly as the MaE concentration increased. Increased activity of glutathione S-transferase and amylase in the digestive gland indicate that it is the major detoxification organ of C. fluminea. Increased vitellogenin concentration and enlarged oocytes in the gonad indicate that MaE may have an estrogenic effect on C. fluminea. This study demonstrates that cyanobacteria threat benthic bivalves by inducing oxidative stress, inhibiting filtering feeding system, and disturbing digestion system and reproduction potential of C. fluminea.


Assuntos
Corbicula , Microcystis , Reprodução , Animais , Microcystis/metabolismo , Corbicula/metabolismo , Corbicula/microbiologia , Filtração , Biomarcadores/metabolismo
5.
J Hazard Mater ; 470: 134241, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608594

RESUMO

Artemisinin, a novel plant allelochemical, has attracted attention for its potential selective inhibitory effects on algae, yet to be fully explored. This study compares the sensitivity and action targets of Microcystis aeruginosa (M. aeruginosa) and Chlorella pyrenoidosa (C. pyrenoidosa) to artemisinin algaecide (AMA), highlighting their differences. Results indicate that at high concentrations, AMA displaces the natural PQ at the QB binding site within M. aeruginosa photosynthetic system, impairing the D1 protein repair function. Furthermore, AMA disrupts electron transfer from reduced ferredoxin (Fd) to NADP+ by interfering with the iron-sulfur clusters in the ferredoxin-NADP+ reductases (FNR) domain of Fd. Moreover, significant reactive oxygen species (ROS) accumulation triggers oxidative stress and interrupts the tricarboxylic acid cycle, hindering energy acquisition. Notably, AMA suppresses arginine synthesis in M. aeruginosa, leading to reduced microcystins (MCs) release. Conversely, C. pyrenoidosa counters ROS accumulation via photosynthesis protection, antioxidant defenses, and by regulating intracellular osmotic pressure, accelerating damaged protein degradation, and effectively repairing DNA for cellular detoxification. Additionally, AMA stimulates the expression of DNA replication-related genes, facilitating cell proliferation. Our finding offer a unique approach for selectively eradicating cyanobacteria while preserving beneficial algae, and shed new light on employing eco-friendly algicides with high specificity.


Assuntos
Artemisininas , Chlorella , Microcystis , Fotossíntese , Espécies Reativas de Oxigênio , Microcystis/efeitos dos fármacos , Microcystis/metabolismo , Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Artemisininas/farmacologia , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Microcistinas/metabolismo
6.
J Hazard Mater ; 470: 134170, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613957

RESUMO

Cyanobacterial blooms, often dominated by Microcystis aeruginosa, are capable of producing estrogenic effects. It is important to identify specific estrogenic compounds produced by cyanobacteria, though this can prove challenging owing to the complexity of exudate mixtures. In this study, we used untargeted metabolomics to compare components of exudates from microcystin-producing and non-microcystin-producing M. aeruginosa strains that differed with respect to their ability to produce microcystins, and across two growth phases. We identified 416 chemicals and found that the two strains produced similar components, mainly organoheterocyclic compounds (20.2%), organic acids and derivatives (17.3%), phenylpropanoids and polyketides (12.7%), benzenoids (12.0%), lipids and lipid-like molecules (11.5%), and organic oxygen compounds (10.1%). We then predicted estrogenic compounds from this group using random forest machine learning. Six compounds (daidzin, biochanin A, phenylethylamine, rhein, o-Cresol, and arbutin) belonging to phenylpropanoids and polyketides (3), benzenoids (2), and organic oxygen compound (1) were tested and exhibited estrogenic potency based upon the E-screen assay. This study confirmed that both Microcystis strains produce exudates that contain compounds with estrogenic properties, a growing concern in cyanobacteria management.


Assuntos
Estrogênios , Aprendizado de Máquina , Metabolômica , Microcistinas , Microcystis , Microcystis/metabolismo , Microcystis/crescimento & desenvolvimento , Microcistinas/metabolismo , Microcistinas/análise , Microcistinas/química , Estrogênios/metabolismo , Estrogênios/química
7.
J Microbiol ; 62(3): 249-260, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38587591

RESUMO

The proliferation of harmful cyanobacterial blooms dominated by Microcystis aeruginosa has become an increasingly serious problem in freshwater ecosystems due to climate change and eutrophication. Microcystis-blooms in freshwater generate compounds with unpleasant odors, reduce the levels of dissolved O2, and excrete microcystins into aquatic ecosystems, potentially harming various organisms, including humans. Various chemical and biological approaches have thus been developed to mitigate the impact of the blooms, though issues such as secondary pollution and high economic costs have not been adequately addressed. Red clays and H2O2 are conventional treatment methods that have been employed worldwide for the mitigation of the blooms, while novel approaches, such as the use of plant or microbial metabolites and antagonistic bacteria, have also recently been proposed. Many of these methods rely on the generation of reactive oxygen species, the inhibition of photosynthesis, and/or the disruption of cellular membranes as their mechanisms of action, which may also negatively impact other freshwater microbiota. Nevertheless, the underlying molecular mechanisms of anticyanobacterial chemicals and antagonistic bacteria remain unclear. This review thus discusses both conventional and innovative approaches for the management of M. aeruginosa in freshwater bodies.


Assuntos
Água Doce , Microcystis , Microcystis/crescimento & desenvolvimento , Microcystis/efeitos dos fármacos , Microcystis/metabolismo , Água Doce/microbiologia , Proliferação Nociva de Algas , Eutrofização , Ecossistema , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Microcistinas/metabolismo , Fotossíntese , Mudança Climática
8.
J Hazard Mater ; 471: 134352, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38677120

RESUMO

Microcystis typically forms colonies under natural conditions, which contributes to occurrence and prevalence of algal blooms. The colonies consist of Microcystis and associated bacteria (AB), embedded in extracellular polymeric substances (EPS). Previous studies indicate that AB can induce Microcystis to form colonies, however the efficiency is generally low and results in a uniform morphotype. In this study, by using filtrated natural water, several AB strains induced unicellular M. aeruginosa to form colonies resembling several Microcystis morphotypes. The mechanisms were investigated with Methylobacterium sp. Z5. Ca2+ was necessary for Z5 to induce Microcystis to form colonies, while dissolved organic matters (DOM) facilitated AB to agglomerate Microcystis to form large colonies. EPS of living Z5, mainly the aromatic protein components, played a key role in colony induction. Z5 initially aggregated Microcystis via the bridging effects of Ca2+ and DOM, followed by the induction of EPS synthesis and secretion in Microcystis. In this process, the colony forming mode shifted from cell adhesion to a combination of cell adhesion and cell division. Intriguingly, Z5 drove the genomic rearrangement of Microcystis by upregulating some transposase genes. This study unveiled a novel mechanism about Microcystis colony formation and identified a new driver of Microcystis genomic evolution.


Assuntos
Cálcio , Matriz Extracelular de Substâncias Poliméricas , Microcystis , Microcystis/metabolismo , Cálcio/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Methylobacterium/metabolismo , Methylobacterium/genética
9.
J Hazard Mater ; 471: 134373, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678710

RESUMO

The cyanobacterial response to pharmaceuticals is less frequently investigated compared to green algae. Pharmaceuticals can influence not only the growth rate of cyanobacteria culture, but can also cause changes at the cellular level. The effect of diclofenac (DCF) as one of the for cyanobacteria has been rarely tested, and DCF has never been applied with cellular biomarkers. The aim of this work was to test the response of two unicellular cyanobacteria (Synechocystis salina and Microcystis aeruginosa) toward DCF (100 mg L-1) under photoautotrophic growth conditions. Such endpoints were analyzed as cells number, DCF uptake, the change in concentrations of photosynthetic pigments, the production of toxins, and chlorophyll a in vivo fluorescence. It was noted that during a 96 h exposure, cell proliferation was not impacted. Nevertheless, a biochemical response was observed. The increased production of microcystin was noted for M. aeruginosa. Due to the negligible absorption of DCF into cells, it is possible that the biochemical changes are induced by an external signal. The application of non-standard biomarkers demonstrates the effect of DCF on microorganism metabolism without a corresponding effect on biomass. The high resistance of cyanobacteria to DCF and the stimulating effect of DCF on the secretion of toxins raise concerns for environment biodiversity.


Assuntos
Biomarcadores , Clorofila A , Diclofenaco , Microcystis , Synechocystis , Microcystis/efeitos dos fármacos , Microcystis/metabolismo , Microcystis/crescimento & desenvolvimento , Diclofenaco/toxicidade , Diclofenaco/metabolismo , Biomarcadores/metabolismo , Synechocystis/metabolismo , Synechocystis/efeitos dos fármacos , Synechocystis/crescimento & desenvolvimento , Clorofila A/metabolismo , Microcistinas/metabolismo , Clorofila/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Fotossíntese/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia
10.
J Photochem Photobiol B ; 255: 112924, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688041

RESUMO

Whether rapid oxygen isotopic exchange between bicarbonate and water occurs in photosynthesis is the key to determine the source of oxygen by classic 18O-labeled photosynthetic oxygen evolution experiments. Here we show that both Microcystis aeruginosa and Chlamydomonas reinhardtii utilize a significant proportion (>16%) of added bicarbonate as a carbon source for photosynthesis. However, oxygen isotopic signal in added bicarbonate cannot be traced in the oxygen in organic matter synthesized by these photosynthetic organisms. This contradicts the current photosynthesis theory, which states that photosynthetic oxygen evolution comes only from water, and oxygen in photosynthetic organic matter comes only from carbon dioxide. We conclude that the photosynthetic organisms undergo rapid exchange of oxygen isotope between bicarbonate and water during photosynthesis. At the same time, this study also provides isotopic evidence for a new mechanism that half of the oxygen in photosynthetic oxygen evolution comes from bicarbonate photolysis and half comes from water photolysis, which provides a new explanation for the bicarbonate effect, and suggests that the Kok-Joliot cycle of photosynthetic oxygen evolution, must be modified to include a molecule of bicarbonate in addition to one molecule of water which in turn must be incorporated into the cycle instead of two water molecules. Furthermore, this study provides a theoretical basis for constructing a newer artificial photosynthetic reactor coupling light reactions with the dark reactions.


Assuntos
Bicarbonatos , Chlamydomonas reinhardtii , Isótopos de Oxigênio , Fotossíntese , Água , Bicarbonatos/química , Bicarbonatos/metabolismo , Água/química , Água/metabolismo , Isótopos de Oxigênio/química , Chlamydomonas reinhardtii/metabolismo , Microcystis/metabolismo , Oxigênio/metabolismo , Oxigênio/química , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química
11.
Chemosphere ; 358: 142104, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653399

RESUMO

Uptake of methylmercury (MeHg), a potent neurotoxin, by phytoplankton is a major concern due to its role as the primary pathway for MeHg entry into aquatic food webs, thereby posing a significant risk to human health. While it is widely believed that the MeHg uptake by plankton is negatively correlated with the concentrations of dissolved organic matter (DOM) in the water, ongoing debates continue regarding the specific components of DOM that exerts the dominant influence on this process. In this study, we employed a widely-used resin fractionation approach to separate and classify DOM derived from algae (AOM) and natural rivers (NOM) into distinct components: strongly hydrophobic, weakly hydrophobic, and hydrophilic fractions. We conduct a comparative analysis of different DOM components using a combination of spectroscopy and mass spectrometry techniques, aiming to identify their impact on MeHg uptake by Microcystis elabens, a prevalent alga in freshwater environments. We found that the hydrophobic components had exhibited more pronounced spectral characteristics associated with the protein structures while protein-like compounds between hydrophobic and hydrophilic components displayed significant variations in both distributions and the values of m/z (mass-to-charge ratio) of the molecules. Regardless of DOM sources, the low-proportion hydrophobic components usually dominated inhibition of MeHg uptake by Microcystis elabens. Results inferred from the correlation analysis suggest that the uptake of MeHg by the phytoplankton was most strongly and negatively correlated with the presence of protein-like components. Our findings underscore the importance of considering the diverse impacts of different DOM fractions on inhibition of phytoplankton MeHg uptake. This information should be considered in future assessments and modeling endeavors aimed at understanding and predicting risks associated with aquatic Hg contamination.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Compostos de Metilmercúrio , Fitoplâncton , Poluentes Químicos da Água , Compostos de Metilmercúrio/química , Compostos de Metilmercúrio/metabolismo , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/metabolismo , Poluentes Químicos da Água/metabolismo , Microcystis/efeitos dos fármacos , Microcystis/metabolismo , Rios/química , Cadeia Alimentar
12.
Appl Microbiol Biotechnol ; 108(1): 309, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661971

RESUMO

An alpha-proteobacterial strain JXJ CY 53 T was isolated from the cyanosphere of Microcystis sp. FACHB-905 (MF-905) collected from Lake Dianchi, China. JXJ CY 53 T was observed to be an aerobic, Gram-stain-negative, oval shaped, and mucus-secreting bacterium. It had C18:1ω7c and C16:0 as the major cellular fatty acids, Q-10 as the predominant ubiquinone, and sphingoglycolipid, diphosphatidylglycerol, phosphatidylcholine, and phosphatidylmethylethanolamine as the polar lipids. The G + C content of DNA was 65.85%. The bacterium had 16S rRNA gene sequence identities of 98.9% and 98.7% with Sphingomonas panni DSM 15761 T and Sphingomonas hankookensis KCTC 22579 T, respectively, while less than 97.4% identities with other members of the genus. Further taxonomic analysis indicated that JXJ CY 53 T represented a new member of Sphingomonas, and the species epithet was proposed as Sphingomonas lacusdianchii sp. nov. (type strain JXJ CY 53 T = KCTC 72813 T = CGMCC 1.17657 T). JXJ CY 53 T promoted the growth of MF-905 by providing bio-available phosphorus and nitrogen, plant hormones, vitamins, and carotenoids. It could modulate the relative abundances of nonculturable bacteria associated with MF-905 and influence the interactions of MF-905 and other bacteria isolated from the cyanobacterium, in addition to microcystin production characteristics. Meanwhile, MF-905 could provide JXJ CY 53 T dissolved organic carbon for growth, and control the growth of JXJ CY 53 T by secreting specific chemicals other than microcystins. Overall, these results suggest that the interactions between Microcystis and its attached bacteria are complex and dynamic, and may influence the growth characteristics of the cyanobacterium. This study provided new ideas to understand the interactions between Microcystis and its attached bacteria. KEY POINTS: • A novel bacterium (JXJCY 53 T) was isolated from the cyanosphere of Microcystis sp. FACHB-905 (MF-905) • JXJCY 53 T modulated the growth and microcystin production of MF-905 • MF-905 could control the attached bacteria by specific chemicals other than microcystins (MCs).


Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Sphingomonas , Sphingomonas/metabolismo , Sphingomonas/genética , Sphingomonas/isolamento & purificação , Sphingomonas/classificação , RNA Ribossômico 16S/genética , China , Ácidos Graxos/metabolismo , DNA Bacteriano/genética , Fosfolipídeos/análise , Microcystis/genética , Microcystis/metabolismo , Microcystis/crescimento & desenvolvimento , Lagos/microbiologia , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Simbiose , Ubiquinona
13.
ACS Nano ; 18(18): 11828-11836, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38659192

RESUMO

As essential primary producers, cyanobacteria play a major role in global carbon and nitrogen cycles. Though the influence of nanoplastics on the carbon metabolism of cyanobacteria is well-studied, little is known about how nanoplastics affect their nitrogen metabolism, especially under environmentally relevant nitrogen concentrations. Here, we show that nitrogen forms regulated growth inhibition, nitrogen consumption, and the synthesis and release of microcystin (MC) in Microcystis aeruginosa exposed to 10 µg/mL amino-modified polystyrene nanoplastics (PS-NH2) with a particle size of 50 nm under environmentally relevant nitrogen concentrations of nitrate, ammonium, and urea. We demonstrate that PS-NH2 inhibit M. aeruginosa differently in nitrate, urea, and ammonium, with inhibition rates of 51.87, 39.70, and 36.69%, respectively. It is caused through the differences in impairing cell membrane integrity, disrupting redox homeostasis, and varying nitrogen transport pathways under different nitrogen forms. M. aeruginosa respond to exposure of PS-NH2 by utilizing additional nitrogen to boost the production of amino acids, thereby enhancing the synthesis of MC, extracellular polymeric substances, and membrane phospholipids. Our results found that the threat of nanoplastics on primary producers can be regulated by the nitrogen forms in freshwater ecosystems, contributing to a better understanding of nanoplastic risks under environmentally relevant conditions.


Assuntos
Microcystis , Nitrogênio , Microcystis/efeitos dos fármacos , Microcystis/metabolismo , Microcystis/crescimento & desenvolvimento , Nitrogênio/química , Nitrogênio/metabolismo , Microcistinas/metabolismo , Poliestirenos/química , Tamanho da Partícula , Microplásticos/metabolismo , Nanopartículas/química , Nitratos/metabolismo , Nitratos/química , Ureia/metabolismo , Ureia/química , Ureia/farmacologia
14.
J Hazard Mater ; 470: 134117, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554519

RESUMO

The harmful algal blooms (HABs) can damage the ecological equilibrium of aquatic ecosystems and threaten human health. The bio-degradation of algal by algicidal bacteria is an environmentally friendly and economical approach to control HABs. This study applied an aerobic denitrification synchronization algicidal strain Streptomyces sp. LJH-12-1 (L1) to control HABs. The cell-free filtrate of the strain L1 showed a great algolytic effect on bloom-forming cyanobacterium, Microcystis aeruginosa (M. aeruginosa). The optimal algicidal property of strain L1 was indirect light-dependent algicidal with an algicidal rate of 85.0%. The functional metabolism, light-trapping, light-transfer efficiency, the content of pigments, and inhibition of photosynthesis of M. aeruginosa decreased after the addition of the supernatant of the strain L1 due to oxidative stress. Moreover, 96.05% nitrate removal rate synchronized with algicidal activity was achieved with the strain L1. The relative abundance of N cycling functional genes significantly increased during the strain L1 effect on M. aeruginosa. The algicidal efficiency of the strain L1 in the raw water was 76.70% with nitrate removal efficiency of 81.4%. Overall, this study provides a novel route to apply bacterial strain with the property of denitrification coupled with algicidal activity in treating micro-polluted water bodies.


Assuntos
Desnitrificação , Proliferação Nociva de Algas , Microcystis , Microcystis/metabolismo , Nitrogênio/metabolismo , Streptomyces/metabolismo , Nitratos/metabolismo , Fotossíntese
15.
Environ Pollut ; 348: 123878, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548158

RESUMO

Addressing notorious and worldwide Microcystis blooms, mechanical algae harvesting is an effective emergency technology for bloom mitigation and removal of nutrient loads in waterbodies. However, the absence of effective methods for removal of cyanobacterial toxins, e.g., microcystins (MCs), poses a challenge to recycle the harvested Microcystis biomass. In this study, we therefore introduced a novel approach, the "captured biomass-MlrA enzymatic MC degradation", by enriching microcystinase A (MlrA) via fermentation and spraying it onto salvaged Microcystis slurry to degrade all MCs. After storing the harvested Microcystis slurry, a rapid release of extracellular MCs occurred within the initial 8 h, reaching a peak concentration of 5.33 µg/mL at 48 h during the composting process. Upon spraying the recombinant MlrA crude extract (about 3.36 U) onto the Microcystis slurry in a ratio of 0.1% (v/v), over 95% of total MCs were degraded within a 24-h period. Importantly, we evaluated the reliability and safety of using MlrA extracts to degrade MCs. Results showed that organic matter/nutrient contents, e.g. soluble proteins, polysaccharides, phycocyanin and carotenoids, were not significantly altered. Furthermore, the addition of MlrA extracts did not significantly change the bacterial community composition and diversity in the Microcystis slurry, indicating that the MlrA extracts did not increase the risk of pathogenic bacteria. Our study provides an effective and promising method for the pre-treatment of harvested Microcystis biomass, highlighting an ecologically sustainable framework for addressing Microcystis blooms.


Assuntos
Cianobactérias , Microcystis , Microcistinas/metabolismo , Reprodutibilidade dos Testes , Cianobactérias/metabolismo , Microcystis/metabolismo , Biomassa
16.
Sci Total Environ ; 926: 172101, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38556017

RESUMO

Acyl-homoserine lactone (AHL) serves as a key signaling molecule for quorum sensing (QS) in bacteria. QS-related genes and physiological processes in Microcystis aeruginosa remain elusive. In this study, we elucidated the regulatory role of AHL-mediated QS in M. aeruginosa. Using AHL activity extract and transcriptomic analysis, we revealed significant effects of the AHL on growth and photosynthesis. AHL significantly increased chlorophyll a (Chl-a) content and accelerated photosynthetic rate thereby promoting growth. Transcriptome analysis revealed that AHL stimulated the up-regulation of photosynthesis-related genes (apcABF, petE, psaBFK, psbUV, etc.) as well as nitrogen metabolism and ribosomal metabolism. In addition, AHL-regulated pathways are associated with lipopolysaccharide and phenazine synthesis. Our findings deepen the understanding of the QS system in M. aeruginosa and are important for gaining insights into the role of QS in Microcystis bloom formation. It also provides new insights into the prevalence of M. aeruginosa in water blooms.


Assuntos
Microcystis , Percepção de Quorum , Microcystis/metabolismo , Acil-Butirolactonas/metabolismo , Clorofila A , Perfilação da Expressão Gênica , Pseudomonas aeruginosa/metabolismo
17.
Bioresour Technol ; 399: 130587, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490464

RESUMO

Textile industries discharge up to 280,000 tons of dye waste annually, resulting in global pollution and health risks. In Nigeria and other African countries, persistent dyes threaten aquatic life and human health. This study introduces a cost-effective, enzyme-mediated bioremediation alternative using a novel laccase from the cyanobacteriumMicrocystis flos-aquae. This purified enzyme yielded 0.55 % (w/w)with significant activity at 40 °C and pH 4.00. Kinetic studies showed the dependence of M. flos-aquae laccase on Cu2+and its inhibition by EDTA and Fe2+. The efficacy of the enzyme was demonstrated through rapid decolorization of the azo dye Cibacron Brilliant Blue over a wide temperature and pH range. As this enzyme effectively decolorizes dyes across a broad temperature and pH range, it offers a promising solution for bioremediation of textile effluents.


Assuntos
Cianobactérias , Microcystis , Humanos , Compostos Azo , Lacase/metabolismo , Biodegradação Ambiental , Cinética , Corantes , Microcystis/metabolismo , Cianobactérias/metabolismo
18.
Environ Sci Technol ; 58(9): 4070-4082, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38390827

RESUMO

Antibiotics are being increasingly detected in aquatic environments, and their potential ecological risk is of great concern. However, most antibiotic toxicity studies involve single-exposure experiments. Herein, we studied the effects and mechanisms of repeated versus single clarithromycin (CLA) exposure on Microcystis aeruginosa. The 96 h effective concentration of CLA was 13.37 µg/L upon single exposure but it reduced to 6.90 µg/L upon repeated exposure. Single-exposure CLA inhibited algal photosynthesis by disrupting energy absorption, dissipation and trapping, reaction center activation, and electron transport, thereby inducing oxidative stress and ultrastructural damage. In addition, CLA upregulated glycolysis, pyruvate metabolism, and the tricarboxylic acid cycle. Repeated exposure caused stronger inhibition of algal growth via altering photosynthetic pigments, reaction center subunits biosynthesis, and electron transport, thereby inducing more substantial oxidative damage. Furthermore, repeated exposure reduced carbohydrate utilization by blocking the pentose phosphate pathway, consequently altering the characteristics of extracellular polymeric substances and eventually impairing the defense mechanisms of M. aeruginosa. Risk quotients calculated from repeated exposure were higher than 1, indicating significant ecological risks. This study elucidated the strong influence of repeated antibiotic exposure on algae, providing new insight into antibiotic risk assessment.


Assuntos
Microcystis , Microcystis/metabolismo , Claritromicina/metabolismo , Claritromicina/farmacologia , Fotossíntese , Antibacterianos/toxicidade , Estresse Oxidativo , Metabolismo Energético
19.
J Hazard Mater ; 468: 133742, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367436

RESUMO

Harmful algal blooms (HABs) significantly impact on water quality and ecological balance. Ultrasound irradiation has proven to be an effective method for algal control. Nevertheless, the molecular mechanisms underlying the inactivation of M. aeruginosa by ultrasound are still unknown. In this study, the physiological activity and molecular mechanism of algal cells exposed to different frequencies of ultrasound were studied. The results indicated a pronounced inhibition of algal cell growth by high-frequency, high-dose ultrasound. Moreover, with increasing ultrasound dosage, there was a higher percentage of algal cell membrane ruptures. SEM and TEM observed obvious disruptions in membrane structure and internal matrix. Hydroxyl radicals generated by high-frequency ultrasound inflicted substantial cell membrane damage, while increased antioxidant enzyme activities fortified cells against oxidative stress. Following 2 min of ultrasound irradiation at 740 kHz, significant differential gene expression occurred in various aspects, including energy metabolism, carbohydrate metabolism, and environmental information processing pathways. Moreover, ultrasound irradiation influenced DNA repair and cellular apoptosis, suggesting that the algal cells underwent biological stress to counteract the damage caused by ultrasound. These findings reveal that ultrasound irradiation inactivates algae by destroying their cell structures and metabolic pathways, thereby achieving the purpose of algal suppression.


Assuntos
Microcystis , Microcystis/metabolismo , Ondas Ultrassônicas , Antioxidantes/metabolismo , Proliferação Nociva de Algas , Estresse Oxidativo
20.
Bioresour Technol ; 397: 130468, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378102

RESUMO

Positively charged bubbles efficiently capture and remove negatively charged algal cells without relying on coagulation-flocculation. However, the efficiency is notably influenced by the presence of algal organic matter (AOM). This study investigated the impact of AOM composition on flotation performance by analyzing AOM from various growth phases of Microcystis flos-aquae. The results indicated that low-concentration AOM (<5 mg C L-1), particularly the high molecular weight (>30 kDa) fractions containing high percentages of protein during the exponential growth phase, significantly improved the flotation efficiency by >18%. A high-speed camera system illustrates the pivotal role of low-concentration protein-containing AOM in forming network structures that enhance cell capture. These protein-driven network structures, which enhance the flotation efficiency, provide valuable insights into the development of effective in-situ algal bloom prevention techniques.


Assuntos
Microcystis , Microcystis/metabolismo , Eutrofização , Floculação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA