RESUMO
Mimiviruses are giant viruses of amoeba that can be found in association with virophages. These satellite-like viruses are dependent on the mimivirus viral factory to replicate. Mimiviruses can also be associated with linear DNA molecules called transpovirons. Transpovirons and virophages are important drivers of giant virus evolution although they are still poorly studied elements. Here, we describe the isolation and genomic characterization of a mimivirus/virophage/transpoviron tripartite system from Brazil. We analyzed transmission electron microscopy images and performed genome sequencing and assembly, gene annotation, and phylogenetic analysis. Our data confirm the isolation of a lineage A mimivirus (1.2 Mb/1012 ORFs), called mimivirus argentum, and a sputnik virophage (18,880 bp/20 ORFs). We also detected a third sequence corresponding to a transpoviron from clade A (6365 bp/6 ORFs) that presents small terminal inverted repeats (77 nt). The main genomic features of mimivirus argentum and of its virophage/transpoviron elements corroborates with what is described for other known elements. This highlights that this triple genomic and biological interaction may be ancient and well-conserved. The results expand the basic knowledge about unique and little-known elements and pave the way to future studies that might contribute to a better understanding of this tripartite relationship.
Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Vírus Gigantes/genética , Mimiviridae/genética , Virófagos/genética , Brasil , Genoma Viral , Genômica , Vírus Gigantes/classificação , Mimiviridae/classificação , Fases de Leitura Aberta , Filogenia , Proteínas Virais/genética , Virófagos/classificaçãoRESUMO
Recently, Poland has become a leading producer of sturgeon meat and caviar in Europe and is one of the largest in the world. The growing importance of this branch of aquaculture means that diseases of these fish, especially viral ones, are becoming the object of interest for ichthyopathologists. In recent years, there have been increasing reports of health problems in the dynamically developing sturgeon farming. The greatest risk appears to be emerging infectious diseases that are caused by viruses and that can become a serious threat to the development of the aquaculture industry and the success of sturgeon restitution programs undertaken in many European countries, including Poland. In this paper, an attempt was made to determine the spread of the two most important groups of viruses in Polish sturgeon farming: These include the herpesviruses and sturgeon nucleocytoplasmic large DNA viruses (sNCLDV), in particular, mimiviruses. In the years 2016-2020, 136 samples from nine farms were collected and tested by using the WSSK-1 cell line, PCR and Real Time PCR methods. All results were negative for herpesviruses. Out of the samples, 26% of the samples have been tested positive for mimiviruses. Sanger sequencing of mimiviruses demonstrated their affiliation with AciV-E. The sequence characterization confirmed the presence of both V1 and V2 lineages in Polish fish facilities, but variant V2 seems to be more widespread, as is observed in other European countries.
Assuntos
Aquicultura , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Peixes/virologia , Infecções por Herpesviridae/veterinária , Herpesviridae/genética , Mimiviridae/genética , Animais , Proteínas do Capsídeo/genética , Peixes/classificação , Herpesviridae/classificação , Herpesviridae/isolamento & purificação , Mimiviridae/classificação , Mimiviridae/isolamento & purificação , Filogenia , PolôniaRESUMO
Since 2003, various viruses from the subfamily Megavirinae in the family Mimiviridae have been isolated worldwide, including icosahedral mimiviruses and tailed tupanviruses. To date, the evolutionary relationship between tailed and nontailed mimiviruses has not been elucidated. Here, we present the genomic and morphological features of a newly isolated giant virus, Cotonvirus japonicus (cotonvirus), belonging to the family Mimiviridae. It contains a linear double-stranded DNA molecule of 1.47 Mb, the largest among the reported viruses in the subfamily Megavirinae, excluding tupanviruses. Among its 1,306 predicted open reading frames, 1,149 (88.0%) were homologous to those of the family Mimiviridae. Several nucleocytoplasmic large DNA virus (NCLDV) core genes, aminoacyl-tRNA synthetase genes, and the host specificity of cotonvirus were highly similar to those of Mimiviridae lineages A, B, and C; however, lineage A was slightly closer to cotonvirus than the others were. Moreover, based on its genome size, the presence of two copies of 18S rRNA-like sequences, and the period of its infection cycle, cotonvirus is the most similar to the tupanviruses among the icosahedral mimiviruses. Interestingly, the cotonvirus utilizes Golgi apparatus-like vesicles for virion factory (VF) formation. Overall, we showed that cotonvirus is a novel lineage of the subfamily Megavirinae. Our findings support the diversity of icosahedral mimiviruses and provide mechanistic insights into the replication, VF formation, and evolution of the subfamily Megavirinae. IMPORTANCE We have isolated a new virus of an independent lineage belonging to the family Mimiviridae, subfamily Megavirinae, from the fresh water of a canal in Japan, named Cotonvirus. In a proteomic tree, this new nucleocytoplasmic large DNA virus (NCLDV) is phylogenetically placed at the root of three lineages of the subfamily Megavirinae-lineages A (mimivirus), B (moumouvirus), and C (megavirus). Multiple genomic and phenotypic features of cotonvirus are more similar to those of tupanviruses than to those of the A, B, or C lineages, and other genomic features, while the host specificity of cotonvirus is more similar to those of the latter than of the former. These results suggest that cotonvirus is a unique virus that has chimeric features of existing viruses of Megavirinae and uses Golgi apparatus-like vesicles of the host cells for virion factory (VF) formation. Thus, cotonvirus can provide novel insights into the evolution of mimiviruses and the underlying mechanisms of VF formation.
Assuntos
Acanthamoeba/virologia , Linhagem da Célula , Genoma Viral , Complexo de Golgi/virologia , Especificidade de Hospedeiro , Mimiviridae/genética , Mimiviridae/ultraestrutura , Acanthamoeba/classificação , Evolução Molecular , Tamanho do Genoma , Microscopia Eletrônica de Transmissão , Mimiviridae/classificação , Mimiviridae/isolamento & purificação , Filogenia , VírionRESUMO
A group of pathogenic nucleocytoplasmic large DNA viruses (NCLDVs) related to the Mimiviridae family infect farmed sturgeons across Europe, causing mild-to-severe losses. One of these viruses, Acipenser iridovirus-European (AcIV-E), was identified in six sturgeon species. During the 2018-2019 period, nine sick Siberian (A. baerii) and Russian (A. gueldenstaedtii) sturgeons were sampled in Ukrainian farms and tested for the presence of AcIV-E using real-time PCR. The presence of AcIV-E was confirmed in some samples. High-resolution melting (HRM) assay and Sanger sequencing demonstrated the presence in three farms of two alleles of the major capsid protein (MCP) gene, called var1 and var2. Five samples carried both var1 and var2 at varying ratios, and the sixth sample was infected with only var1. These results constitute the first detection of AcIV-E in Ukraine and the first detection of a sample carrying only var1. The full-length sequences of the MCP genes confirmed the existence of two genetic lineages of AcIV-E, tentatively named V1 and V2, each displaying multiple substitutions in the MCP gene. Some of the MCP sequences showed a genetic relationship to both V1 and V2 lineages, depending on the fragment examined. Most likely, these sequences resulted from recombination events.
Assuntos
Doenças dos Peixes/virologia , Mimiviridae/genética , Animais , Aquicultura , Proteínas do Capsídeo/genética , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/epidemiologia , Peixes , Mimiviridae/classificação , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Ucrânia/epidemiologiaRESUMO
Since its discovery, the first identified giant virus associated with amoebae, Acanthamoeba polyphaga mimivirus (APMV), has been rigorously studied to understand the structural and genomic complexity of this virus. In this work, we report the isolation and genomic characterization of a new mimivirus of lineage B, named "Borely moumouvirus". This new virus exhibits a structure and replicative cycle similar to those of other members of the family Mimiviridae. The genome of the new isolate is a linear double-strand DNA molecule of ~1.0 Mb, containing over 900 open reading frames. Genome annotation highlighted different translation system components encoded in the DNA of Borely moumouvirus, including aminoacyl-tRNA synthetases, translation factors, and tRNA molecules, in a distribution similar to that in other lineage B mimiviruses. Pan-genome analysis indicated an increase in the genetic arsenal of this group of viruses, showing that the family Mimiviridae is still expanding. Furthermore, phylogenetic analysis has shown that Borely moumouvirus is closely related to moumouvirus australiensis. This is the first mimivirus lineage B isolated from Brazilian territory to be characterized. Further prospecting studies are necessary for us to better understand the diversity of these viruses so a better classification system can be established.
Assuntos
Genoma Viral , Mimiviridae/isolamento & purificação , Rios/virologia , Brasil , Genômica , Mimiviridae/classificação , Mimiviridae/genética , Mimiviridae/fisiologia , Filogenia , Replicação ViralRESUMO
Microbes trapped in permanently frozen paleosoils (permafrost) are the focus of increasing research in the context of global warming. Our previous investigations led to the discovery and reactivation of two Acanthamoeba-infecting giant viruses, Mollivirus sibericum and Pithovirus sibericum, from a 30,000-year old permafrost layer. While several modern pithovirus strains have since been isolated, no contemporary mollivirus relative was found. We now describe Mollivirus kamchatka, a close relative to M. sibericum, isolated from surface soil sampled on the bank of the Kronotsky River in Kamchatka, Russian Federation. This discovery confirms that molliviruses have not gone extinct and are at least present in a distant subarctic continental location. This modern isolate exhibits a nucleocytoplasmic replication cycle identical to that of M. sibericum Its spherical particle (0.6 µm in diameter) encloses a 648-kb GC-rich double-stranded DNA genome coding for 480 proteins, of which 61% are unique to these two molliviruses. The 461 homologous proteins are highly conserved (92% identical residues, on average), despite the presumed stasis of M. sibericum for the last 30,000 years. Selection pressure analyses show that most of these proteins contribute to virus fitness. The comparison of these first two molliviruses clarify their evolutionary relationship with the pandoraviruses, supporting their provisional classification in a distinct family, the Molliviridae, pending the eventual discovery of intermediary missing links better demonstrating their common ancestry.IMPORTANCE Virology has long been viewed through the prism of human, cattle, or plant diseases, leading to a largely incomplete picture of the viral world. The serendipitous discovery of the first giant virus visible under a light microscope (i.e., >0.3 µm in diameter), mimivirus, opened a new era of environmental virology, now incorporating protozoan-infecting viruses. Planet-wide isolation studies and metagenome analyses have shown the presence of giant viruses in most terrestrial and aquatic environments, including upper Pleistocene frozen soils. Those systematic surveys have led authors to propose several new distinct families, including the Mimiviridae, Marseilleviridae, Faustoviridae, Pandoraviridae, and Pithoviridae We now propose to introduce one additional family, the Molliviridae, following the description of M. kamchatka, the first modern relative of M. sibericum, previously isolated from 30,000-year-old arctic permafrost.
Assuntos
Vírus Gigantes/classificação , Vírus Gigantes/genética , Vírus Gigantes/isolamento & purificação , Filogenia , Acanthamoeba/virologia , Vírus de DNA/classificação , Vírus de DNA/genética , Genoma Viral , Genômica , Vírus Gigantes/ultraestrutura , Mimiviridae/classificação , Mimiviridae/genética , Federação Russa , Microbiologia do Solo , Vírion/genética , Vírion/ultraestrutura , Vírus não Classificados/classificação , Vírus não Classificados/genética , Vírus não Classificados/isolamento & purificaçãoRESUMO
Giant viruses, like pandoraviruses and mimiviruses, have been discovered from diverse environments, and their broad global distribution has been established. Here, we report two new isolates of Pandoravirus spp. and one Mimivirus sp., named Pandoravirus hades, Pandoravirus persephone, and Mimivirus sp. isolate styx, co-isolated from riverbank soil in Japan. We obtained nearly complete sequences of the family B DNA polymerase gene (polB) of P. hades and P. persephone; the former carried two known intein regions, while the latter had only one. Phylogenetic analysis revealed that the two new pandoravirus isolates are closely related to Pandoravirus dulcis. Furthermore, random amplified polymorphic DNA analysis revealed that P. hades and P. persephone might harbor different genome structures. Based on phylogenetic analysis of the partial polB sequence, Mimivirus sp. isolate styx belongs to mimivirus lineage A. DNA staining suggested that the Pandoravirus spp. asynchronously replicates in amoeba cells while Mimivirus sp. replicates synchronously. We also observed that P. persephone- or Mimivirus sp. isolate styx-infected amoeba cytoplasm is extruded by the cells. To the best of our knowledge, we are the first to report the isolation of pandoraviruses in Asia. In addition, our results emphasize the importance of virus isolation from soil to reveal the ecology of giant viruses.
Assuntos
Vírus de DNA/isolamento & purificação , Mimiviridae/isolamento & purificação , Amoeba/ultraestrutura , Amoeba/virologia , Vírus de DNA/classificação , Japão/epidemiologia , Mimiviridae/classificação , Técnicas de Amplificação de Ácido Nucleico , Filogenia , Microbiologia do SoloRESUMO
Viruses are a highly abundant, dynamic, and diverse component of planktonic communities that have key roles in marine ecosystems. We aimed to reveal the diversity and dynamics of marine large dsDNA viruses infecting algae in the Northern Skagerrak, South Norway through the year by metabarcoding, targeting the major capsid protein (MCP) and its correlation to protist diversity and dynamics. Metabarcoding results demonstrated a high diversity of algal viruses compared to previous metabarcoding surveys in Norwegian coastal waters. We obtained 313 putative algal virus operational taxonomic units (vOTUs), all classified by phylogenetic analyses to either the Phycodnaviridae or Mimiviridae families, most of them in clades without any cultured or environmental reference sequences. The viral community showed a clear temporal variation, with some vOTUs persisting for several months. The results indicate co-occurrences between abundant viruses and potential hosts during long periods. This study gives new insights into the virus-algal host dynamics and provides a baseline for future studies of algal virus diversity and temporal dynamics.
Assuntos
Eucariotos/virologia , Microalgas/virologia , Mimiviridae , Phycodnaviridae , Biodiversidade , Proteínas do Capsídeo/genética , Vírus de DNA/isolamento & purificação , Genes Virais , Interações entre Hospedeiro e Microrganismos , Metagenômica , Mimiviridae/classificação , Mimiviridae/genética , Mimiviridae/isolamento & purificação , Noruega , Phycodnaviridae/classificação , Phycodnaviridae/genética , Phycodnaviridae/isolamento & purificação , Filogenia , Plâncton/virologia , Estações do Ano , Água do Mar/virologiaRESUMO
The family of giant viruses is still expanding, and evidence of a translational machinery is emerging in the virosphere. The Klosneuvirinae group of giant viruses was first reconstructed from in silico studies, and then a unique member was isolated, Bodo saltans virus. Here we describe the isolation of a new member in this group using coculture with the free-living amoeba Vermamoeba vermiformis This giant virus, called Yasminevirus, has a 2.1-Mb linear double-stranded DNA genome encoding 1,541 candidate proteins, with a GC content estimated at 40.2%. Yasminevirus possesses a nearly complete translational machinery, with a set of 70 tRNAs associated with 45 codons and recognizing 20 amino acids (aa), 20 aminoacyl-tRNA synthetases (aaRSs) recognizing 20 aa, as well as several translation factors and elongation factors. At the genome scale, evolutionary analyses placed this virus in the Klosneuvirinae group of giant viruses. Rhizome analysis demonstrated that the genome of Yasminevirus is mosaic, with â¼34% of genes having their closest homologues in other viruses, followed by â¼13.2% in Eukaryota, â¼7.2% in Bacteria, and less than 1% in Archaea Among giant virus sequences, Yasminevirus shared 87% of viral hits with Klosneuvirinae. This description of Yasminevirus sheds light on the Klosneuvirinae group in a captivating quest to understand the evolution and diversity of giant viruses.IMPORTANCE Yasminevirus is an icosahedral double-stranded DNA virus isolated from sewage water by amoeba coculture. Here its structure and replicative cycle in the amoeba Vermamoeba vermiformis are described and genomic and evolutionary studies are reported. This virus belongs to the Klosneuvirinae group of giant viruses, representing the second isolated and cultivated giant virus in this group, and is the first isolated using a coculture procedure. Extended translational machinery pointed to Yasminevirus among the quasiautonomous giant viruses with the most complete translational apparatus of the known virosphere.
Assuntos
DNA Viral/genética , Regulação Viral da Expressão Gênica , Genoma Viral , Vírus Gigantes/genética , Mimiviridae/genética , Vírion/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/classificação , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Composição de Bases , Mapeamento Cromossômico , Técnicas de Cocultura , Códon/química , Códon/metabolismo , DNA Viral/metabolismo , Tamanho do Genoma , Vírus Gigantes/classificação , Vírus Gigantes/metabolismo , Vírus Gigantes/ultraestrutura , Hartmannella/virologia , Mimiviridae/classificação , Mimiviridae/metabolismo , Mimiviridae/ultraestrutura , Fatores de Alongamento de Peptídeos/classificação , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Filogenia , Biossíntese de Proteínas , RNA de Transferência/classificação , RNA de Transferência/genética , RNA de Transferência/metabolismo , Análise de Sequência de DNA , Vírion/metabolismo , Vírion/ultraestruturaRESUMO
Mimiviruses have been detected in various habitats. Analyses of single nucleotide substitutions (SNSs) have revealed that SNSs are mainly localized on both ends of the mimivirus genome, and mimivirus lineage A has been split into three genotype groups; therefore, mimiviruses may be classified into lineages and genotype groups based on SNSs. We isolated 9 mimiviruses from Japan and analyzed SNSs. These isolates were classified as lineage A genotype group type 2, suggesting that the local diversity of members of the family Mimiviridae isolated from Acanthamoeba spp. is lower than that of giant viruses from other families isolated in Japan.
Assuntos
Genoma Viral/genética , Mimiviridae/classificação , Mimiviridae/genética , Acanthamoeba/virologia , Biodiversidade , Análise por Conglomerados , Genótipo , Japão , Polimorfismo de Nucleotídeo ÚnicoRESUMO
The genus "Tupanvirus" is a new proposed taxon to be included in the family Mimiviridae. The two known tupanvirus isolates were isolated from soda lake and oceanic sediments samples collected in Brazil and were named "tupanvirus soda lake" and "tupanvirus deep ocean", respectively. These viruses exhibit similarities to amoeba-infecting mimiviruses, but there are also several differences that place them in a separate group within the family Mimiviridae. Their virions have a mean size of 1.2 µm, which include a mimivirus-like capsid and a large cylindrical tail, both covered by fibrils. The linear double-stranded DNA genomes of up to 1,516,267 base pairs encode over 1,200 genes, among which ~ 30% have no homologs in any database, including in other mimivirus genomes. Compared to other mimiviruses, tupanviruses exhibit a broader host range and cause a cytotoxic effect in host and non-host organisms, a phenotype that is not observed for other mimiviruses. Remarkably, these viruses possess the most complete gene set related to the protein synthesis process, including 20 aminoacyl-tRNA synthetases, 67-70 tRNAs, many translation factors, and genes involved in maturation and modification of tRNA and mRNA, among others. Moreover, diverse phylogenomic analyses put tupanviruses in a distinct group within the family Mimiviridae. In light of the set of different features observed for these giant viruses, we propose establishment of a new genus to allow proper classification of two known tupanviruses and possibly many more similar viruses yet to be characterized.
Assuntos
Mimiviridae/classificação , Mimiviridae/genética , Amoeba/virologia , DNA Viral , Regulação Viral da Expressão Gênica , Genoma Viral , Genômica , Filogenia , ProteomaRESUMO
BACKGROUND: The discovery of mimivirus in 2003 prompted the quest for other giant viruses of amoebae. Mimiviruses and their relatives were found to differ considerably from other viruses. Their study led to major advances in virology and evolutionary biology. AIMS: We summarized the widening gap between mimiviruses and other viruses. SOURCES: We collected data from articles retrieved from PubMed using as keywords 'giant virus', 'mimivirus' and 'virophage', as well as quoted references from these articles. CONTENT: Data accumulated during the last 15 years on mimiviruses and other giant viruses highlight that there is a quantum leap between these infectious agents, the complexity of which is similar to that of intracellular microorganisms, and classical viruses. Notably, in addition to their giant structures and genomes, giant viruses have abundant gene repertoires with genes unique in the virosphere, including a tremendous set of translation components. The viruses contain hundreds of proteins and many transcripts. They share a core of central and ancient proteins but their genome sequences display a substantial level of mosaicism. Finally, mimiviruses have a specific mobilome, including virophages that can integrate into their genomes, and against which they can defend themselves through integration of short fragments of the DNA of these invaders. IMPLICATIONS: Mimiviruses and subsequently discovered giant viruses have changed the virus paradigm and contradict many virus definition criteria delineated for classical viruses. The major cellular hallmark that is still lacking in giant viruses is the ribosome, including both ribosomal protein and RNA encoding genes, which makes them bona fide microbes without ribosomes.
Assuntos
Vírus Gigantes/classificação , Mimiviridae/classificação , Acanthamoeba/virologia , DNA Viral/genética , Humanos , Mimiviridae/genéticaRESUMO
Known giant virus diversity is currently skewed towards viruses isolated from aquatic environments and cultivated in the laboratory. Here, we employ cultivation-independent metagenomics and mini-metagenomics on soils from the Harvard Forest, leading to the discovery of 16 novel giant viruses, chiefly recovered by mini-metagenomics. The candidate viruses greatly expand phylogenetic diversity of known giant viruses and either represented novel lineages or are affiliated with klosneuviruses, Cafeteria roenbergensis virus or tupanviruses. One assembled genome with a size of 2.4 Mb represents the largest currently known viral genome in the Mimiviridae, and others encode up to 80% orphan genes. In addition, we find more than 240 major capsid proteins encoded on unbinned metagenome fragments, further indicating that giant viruses are underexplored in soil ecosystems. The fact that most of these novel viruses evaded detection in bulk metagenomes suggests that mini-metagenomics could be a valuable approach to unearth viral giants.
Assuntos
Proteínas do Capsídeo/genética , Genoma Viral , Vírus Gigantes/genética , Mimiviridae/genética , Filogenia , Solo , Proteínas do Capsídeo/metabolismo , Ecossistema , Expressão Gênica , Tamanho do Genoma , Vírus Gigantes/classificação , Vírus Gigantes/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Metagenômica/métodos , Mimiviridae/classificação , Mimiviridae/isolamento & purificaçãoRESUMO
Since 1998, when Jim van Etten's team initiated its characterization, Paramecium bursaria Chlorella virus 1 (PBCV-1) had been the largest known DNA virus, both in terms of particle size and genome complexity. In 2003, the Acanthamoeba-infecting Mimivirus unexpectedly superseded PBCV-1, opening the era of giant viruses, i.e., with virions large enough to be visible by light microscopy and genomes encoding more proteins than many bacteria. During the following 15 years, the isolation of many Mimivirus relatives has made Mimiviridae one of the largest and most diverse families of eukaryotic viruses, most of which have been isolated from aquatic environments. Metagenomic studies of various ecosystems (including soils) suggest that many more remain to be isolated. As Mimiviridae members are found to infect an increasing range of phytoplankton species, their taxonomic position compared to the traditional Phycodnaviridae (i.e., etymologically "algal viruses") became a source of confusion in the literature. Following a quick historical review of the key discoveries that established the Mimiviridae family, we describe its current taxonomic structure and propose a set of operational criteria to help in the classification of future isolates.
Assuntos
Organismos Aquáticos/virologia , DNA Viral , Eucariotos/virologia , Genoma Viral , Mimiviridae/classificação , Mimiviridae/genética , Filogenia , Animais , Infecções por Vírus de DNA/virologia , Genômica/métodos , Mimiviridae/isolamento & purificaçãoRESUMO
BACKGROUND: The giant amoebal viruses of Mimivirus and Marseillevirus are large DNA viruses and have been documented in water, soil, and sewage samples. The trend of discovering these giant amoebal viruses has been increasing throughout Asia with Japan, India, and Saudi Arabia being the latest countries to document the presence of these viruses. To date, there have been no reports of large amoebal viruses being isolated in South East Asia. OBJECTIVE: In this study, we aim to discover these viruses from soil samples in an aboriginal village (Serendah village) in Peninsular -Malaysia. METHOD AND RESULTS: We successfully detected and isolated both Mimivirus-like and Marseillevirus-like viruses using Acanthamoeba castellanii. Phylogeny analysis identified them as Mimivirus and Marseillevirus, respectively. CONCLUSION: The ubiquitous nature of both Mimivirus and Marseillevirus is further confirmed in our study as they are detected in higher quantity in soil that is near to water vicinities in an aboriginal village in Peninsular Malaysia. However, this study is limited by our inability to investigate the impact of Mimivirus and Marseillevirus on the aboriginal villagers. More studies on the potential impact of these viruses on human health, especially on the aborigines, are warranted.
Assuntos
Vírus de DNA/classificação , Vírus de DNA/genética , Mimiviridae/classificação , Mimiviridae/genética , Microbiologia do Solo , Vírus de DNA/isolamento & purificação , Genes Virais , Genoma Viral , Mimiviridae/isolamento & purificação , FilogeniaRESUMO
Giant viruses are ecologically important players in aquatic ecosystems that have challenged concepts of what constitutes a virus. Herein, we present the giant Bodo saltans virus (BsV), the first characterized representative of the most abundant group of giant viruses in ocean metagenomes, and the first isolate of a klosneuvirus, a subgroup of the Mimiviridae proposed from metagenomic data. BsV infects an ecologically important microzooplankton, the kinetoplastid Bodo saltans. Its 1.39 Mb genome encodes 1227 predicted ORFs, including a complex replication machinery. Yet, much of its translational apparatus has been lost, including all tRNAs. Essential genes are invaded by homing endonuclease-encoding self-splicing introns that may defend against competing viruses. Putative anti-host factors show extensive gene duplication via a genomic accordion indicating an ongoing evolutionary arms race and highlighting the rapid evolution and genomic plasticity that has led to genome gigantism and the enigma that is giant viruses.
Assuntos
Vírus Gigantes/isolamento & purificação , Kinetoplastida/virologia , Mimiviridae/isolamento & purificação , Água do Mar/virologia , Evolução Molecular , Genes Virais , Genoma Viral , Vírus Gigantes/classificação , Vírus Gigantes/genética , Interações Hospedeiro-Patógeno , Metagenômica , Mimiviridae/classificação , Mimiviridae/genética , Oceanos e Mares , Fases de Leitura AbertaRESUMO
The inclusion of Mimiviridae members in the putative monophyletic nucleocytoplasmic large DNA virus (NCLDV) group is based on genomic and phylogenomic patterns. This shows that, along with other viral families, they share a set of genes known as core or "hallmark genes," including the gene for the major capsid protein (MCP). Although previous studies have suggested that the maturation of mimivirus MCP transcripts is dependent on splicing, there is little information about the processing of this transcript in other mimivirus isolates. Here we report the characterization of a new mimivirus isolate, called Kroon virus (KV) mimivirus. Analysis of the structure, synteny, and phylogenetic relationships of the MCP genes in many mimivirus isolates revealed a remarkable variation at position and types of intronic and exonic regions, even for mimiviruses belonging to the same lineage. In addition, sequencing of KV and Acanthamoeba polyphaga mimivirus (APMV) MCP transcripts has shown that inside the family, even related giant viruses may present different ways to process the MCP mRNA. These results contribute to the understanding of the genetic organization and evolution of the MCP gene in mimiviruses.IMPORTANCE Mimivirus isolates have been obtained by prospecting studies since 2003. Based on genomic and phylogenomic studies of conserved genes, these viruses have been clustered together with members of six other viral families. Although the major capsid protein (MCP) gene is an important member of the so-called "hallmark genes," there is little information about the processing and structure of this gene in many mimivirus isolates. In this work, we have analyzed the structure, synteny, and phylogenetic relationships of the MCP genes in many mimivirus isolates; these genes showed remarkable variation at position and types of intronic and exonic regions, even for mimiviruses belonging to the same lineage. These results contribute to the understanding of the genetic organization and evolution of the MCP gene in mimiviruses.
Assuntos
Proteínas do Capsídeo/genética , Evolução Molecular , Regulação Viral da Expressão Gênica , Mimiviridae/genética , Splicing de RNA , Transcrição Gênica , Genoma Viral , Mimiviridae/classificação , Mimiviridae/isolamento & purificação , Mimiviridae/ultraestrutura , Filogenia , RNA Viral , Replicação Viral , Microbiologia da ÁguaRESUMO
The natural history of mimiviruses (i.e., viruses that are members of the Mimivirus genus) is a challenge for modern biology. A new domain of life to include these organisms has been proposed from analysis of gene conservation. We analyzed the evolutionary relationship of proteins involved in the translation system, and our data show that mimiviruses are a sister group of Eukarya. New data about the origins of Eukarya, in which Eukarya appears as a branch derived from the Archaea domain, were discussed, and we suggest that the mimiviruses emerged from the initial population that gave origin to Eukarya and that, in this way are not part of a new domain of life.
Assuntos
Evolução Molecular , Mimiviridae/genética , Filogenia , Proteínas Virais/genética , Mimiviridae/classificação , Modelos Genéticos , Biossíntese de Proteínas/genética , Homologia de Sequência , Proteínas Virais/metabolismoRESUMO
Chrysochromulina ericina virus CeV-01B (CeV) was isolated from Norwegian coastal waters in 1998. Its icosahedral particle is 160 nm in diameter and encloses a 474-kb double-stranded DNA (dsDNA) genome. This virus, although infecting a microalga (the haptophyceae Haptolina ericina, formerly Chrysochromulina ericina), is phylogenetically related to members of the Mimiviridae family, initially established with the acanthamoeba-infecting mimivirus and megavirus as prototypes. This family was later split into two genera (Mimivirus and Cafeteriavirus) following the characterization of a virus infecting the heterotrophic stramenopile Cafeteria roenbergensis (CroV). CeV, as well as two of its close relatives, which infect the unicellular photosynthetic eukaryotes Phaeocystis globosa (Phaeocystis globosa virus [PgV]) and Aureococcus anophagefferens (Aureococcus anophagefferens virus [AaV]), are currently unclassified by the International Committee on Viral Taxonomy (ICTV). The detailed comparative analysis of the CeV genome presented here confirms the phylogenetic affinity of this emerging group of microalga-infecting viruses with the Mimiviridae but argues in favor of their classification inside a distinct clade within the family. Although CeV, PgV, and AaV share more common features among them than with the larger Mimiviridae, they also exhibit a large complement of unique genes, attesting to their complex evolutionary history. We identified several gene fusion events and cases of convergent evolution involving independent lateral gene acquisitions. Finally, CeV possesses an unusual number of inteins, some of which are closely related despite being inserted in nonhomologous genes. This appears to contradict the paradigm of allele-specific inteins and suggests that the Mimiviridae are especially efficient in spreading inteins while enlarging their repertoire of homing genes.IMPORTANCE Although it infects the microalga Chrysochromulina ericina, CeV is more closely related to acanthamoeba-infecting viruses of the Mimiviridae family than to any member of the Phycodnaviridae, the ICTV-approved family historically including all alga-infecting large dsDNA viruses. CeV, as well as its relatives that infect the microalgae Phaeocystic globosa (PgV) and Aureococcus anophagefferens (AaV), remains officially unclassified and a source of confusion in the literature. Our comparative analysis of the CeV genome in the context of this emerging group of alga-infecting viruses suggests that they belong to a distinct clade within the established Mimiviridae family. The presence of a large number of unique genes as well as specific gene fusion events, evolutionary convergences, and inteins integrated at unusual locations document the complex evolutionary history of the CeV lineage.
Assuntos
Evolução Molecular , Genoma Viral , Mimiviridae/classificação , Mimiviridae/genética , Phycodnaviridae/classificação , Phycodnaviridae/genética , Filogenia , Análise por Conglomerados , Análise de Sequência de DNA , Homologia de SequênciaRESUMO
Mimivirus was identified in 2003 from a biofilm of an industrial water-cooling tower in England. Later, numerous new giant viruses were found in oceans and freshwater habitats, some of them having 2,500 genes. We have demonstrated their likely presence in four soil samples taken from the Kutch Desert (Gujarat, India). Here we describe a bioinformatics work-flow, called the "Giant Virus Finder" that is capable of discovering the likely presence of the genomes of giant viruses in metagenomic shotgun-sequenced datasets. The new workflow is applied to numerous hot and cold desert soil samples as well as some tundra- and forest soils. We show that most of these samples contain giant viruses, especially in the Antarctic dry valleys. The results imply that giant viruses could be frequent not only in aqueous habitats, but in a wide spectrum of soils on our planet.