Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 530
Filtrar
1.
BMC Ophthalmol ; 24(1): 161, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605375

RESUMO

BACKGROUND: Myopia is becoming a huge burden on the world's public health systems. The purpose of this study was to explore the effect of brimonidine in the treatment of form-deprivation myopia (FDM) and the relationship between intraocular pressure (IOP) and myopia development. METHODS: Monocular form deprivation myopia (FDM) was induced in three-week-old pigmented male guinea pigs. They were treated with 3 different methods of brimonidine administration (eye drops, and subconjunctival or intravitreal injections). Four different concentrations of brimonidine were tested for each method (2µg/µL, 4µg/µL, 20µg/µL, and 40µg/µL). All treatments continued for a period of 21 days. Tonometry, retinoscopy, and A-scan ultrasonography were used to monitor intraocular pressure, refractive error and axial length (AL), respectively. RESULTS: Treatment with subconjunctival brimonidine at 40µg/µL, and intravitreal brimonidine at 2µg/µL and 4µg/µL, inhibited the development of FDM. The myopic refraction, excessive axial length, and elevation of IOP were significantly decreased. Brimonidine in eye drops was ineffective. CONCLUSION: Brimonidine at appropriate doses significantly reduced the development of FD myopia in guinea pigs. The IOP may change with FD myopia.


Assuntos
Miopia , Erros de Refração , Masculino , Animais , Cobaias , Tartarato de Brimonidina/uso terapêutico , Miopia/tratamento farmacológico , Refração Ocular , Soluções Oftálmicas , Privação Sensorial , Modelos Animais de Doenças
2.
Transl Vis Sci Technol ; 13(4): 22, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38625083

RESUMO

Purpose: To evaluate the effect of low-concentration (0.01% and 0.05%) atropine eyedrops on ocular surface characteristics in young adults. Methods: Twenty-six myopic students aged 18 to 30 years were randomly assigned to receive either 0.01% or 0.05% atropine once nightly for 14 days, followed by cessation, with a ≥14-day interval between each administration. Assessments were conducted one, two, seven, and 14 days after using atropine with corresponding timepoints after atropine cessation. Tear meniscus height and first and average noninvasive keratograph tear film breakup time (NIKBUT-first, NIKBUT-average) were measured using Keratograph 5M, whereas the objective scatter index (OSI) was measured by OQAS II devices; the ocular surface disease index (OSDI) score was also obtained. Results: The mean OSI peaked after two days of administration of 0.05% atropine (ß = 0.51, P = 0.001), accompanied by significant decreases in NIKBUT-first (ß = -7.73, P < 0.001) and NIKBUT-average (ß = -8.10, P < 0.001); the OSDI peaked after 14 days (ß = 15.41, P < 0.001). The above parameters returned to baseline one week after atropine discontinuation (all P > 0.05). NIKBUT-first and NIKBUT-average reached their lowest points after 14 days of 0.01% atropine administration (NIKBUT-first: ß = -4.46, P = 0.005; NIKBUT-average: ß = -4.42, P = 0.001), but those significant changes were diminished once atropine treatment stopped. Conclusions: Young adult myopes experienced a significant but temporary impact on the ocular surface with 0.05% atropine administration, whereas 0.01% atropine had a minimal effect. Translational Relevance: The investigation of the ocular surface effects of different concentrations of atropine may inform evidence-based clinical decisions regarding myopia control in young adults.


Assuntos
Olho , Miopia , Humanos , Adulto Jovem , Atropina , Miopia/tratamento farmacológico , Soluções Oftálmicas
3.
Klin Monbl Augenheilkd ; 241(4): 554-558, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38653306

RESUMO

We report the case of a 32-year-old male who presented with an acute myopic shift as a result of uveal effusion following a single administration of 250 mg acetazolamide. The drug was discontinued and following cycloplegia and topical steroid therapy, we observed progressive deepening of the anterior chamber, reopening of the iridocorneal angle, and complete resolution of the myopic shift after 5 days. A literature review since 1956 identified 23 cases, including ours, which developed a myopic shift after a median time of 24 h (3 - 24) following a median dose of 500 mg (125 - 1000) acetazolamide, with about a third complicated by angle closure ocular hypertension. This presumed idiosyncratic reaction can occur without prior drug exposure and independent of the phakic status. Treatment options include systematic drug withdrawal associated with cycloplegia, anti-glaucomatous agents, and/or corticosteroids. Full recovery is achieved within about 5 days (2 - 14). Given the widespread use of acetazolamide, awareness of this idiosyncratic reaction is crucial to avoid complications of acute angle-closure glaucoma.


Assuntos
Acetazolamida , Miopia , Humanos , Acetazolamida/uso terapêutico , Acetazolamida/efeitos adversos , Acetazolamida/administração & dosagem , Masculino , Adulto , Miopia/induzido quimicamente , Miopia/tratamento farmacológico , Inibidores da Anidrase Carbônica/efeitos adversos , Inibidores da Anidrase Carbônica/administração & dosagem , Inibidores da Anidrase Carbônica/uso terapêutico , Doença Aguda , Resultado do Tratamento
4.
Biomacromolecules ; 25(5): 2728-2739, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38563621

RESUMO

Myopia is a global public health issue. Rigid contact lenses (RCLs) are an effective way to correct or control myopia. However, bioadhesion issues remain one of the significant obstacles limiting its clinical application. Although enhancing hydrophilicity through various surface treatments can mitigate this problem, the duration of effectiveness is short-lived and the processing involved is complex and costly. Herein, an antiadhesive RCLs material was designed via 8-armed methacrylate-POSS (8MA-POSS), and poly(ethylene glycol) methacrylate (PEGMA) copolymerization with 3-[tris(trimethylsiloxy)silyl] propyl methacrylate (TRIS). The POSS and PEG segments incorporated P(TRIS-co-PEGMA-co-8MA-POSS) (PTPM) material was obtained and their optical transparency, refractive index, resolution, hardness, surface charge, thermal features, and wettability were tested and optimized. The antibioadhesion activities, including protein, lipid, and bacteria, were evaluated as well. In vitro and in vivo results indicated that the optimized antibioadhesive PTPM materials present good biocompatibility and biosafety. Thus, such POSS and PEG segments containing material were a potential antibioadhesive RCL material option.


Assuntos
Lentes de Contato , Metacrilatos , Compostos de Organossilício , Polietilenoglicóis , Polietilenoglicóis/química , Metacrilatos/química , Animais , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Camundongos , Materiais Biocompatíveis/química , Humanos , Miopia/tratamento farmacológico
8.
J Mater Chem B ; 12(10): 2559-2570, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38362614

RESUMO

Pathologic myopia has seriously jeopardized the visual health of adolescents in the past decades. The progression of high myopia is associated with a decrease in collagen aggregation and thinning of the sclera, which ultimately leads to longer eye axis length and image formation in front of the retina. Herein, we report a fibroblast-loaded hydrogel as a posterior scleral reinforcement (PSR) surgery implant for the prevention of myopia progression. The fibroblast-loaded gelatin methacrylate (GelMA)-poly(ethylene glycol) diacrylate (PEGDA) hydrogel was prepared through bioprinting with digital light processing (DLP). The introduction of the PEGDA component endowed the GelMA-PEGDA hydrogel with a high compression modulus for PRS surgery. The encapsulated fibroblasts could consistently maintain a high survival rate during 7 days of in vitro incubation, and could normally secrete collagen type I. Eventually, both the hydrogel and fibroblast-loaded hydrogel demonstrated an effective shortening of the myopic eye axis length in a guinea pig model of visual deprivation over three weeks after implantation, and the sclera thickness of myopic guinea pigs became significantly thicker after 4 weeks, verifying the success of sclera remodeling and showing that myopic progression was effectively controlled. In particular, the fibroblast-loaded hydrogel demonstrated the best therapeutic effect through the synergistic effect of cell therapy and PSR surgery.


Assuntos
Miopia , Esclera , Animais , Cobaias , Modelos Animais de Doenças , Esclera/patologia , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Miopia/tratamento farmacológico , Miopia/prevenção & controle , Miopia/patologia , Fibroblastos/patologia , Impressão Tridimensional
9.
Br J Ophthalmol ; 108(4): 588-592, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38290805

RESUMO

OBJECTIVE: The objective of this study was to assess the efficacy of low-dose atropine 0.01% in controlling myopia progression among Indian children over a 2-year period. METHODS: This retrospective study, conducted across 20 centres in India, monitored the progression of myopia over 2 years after initiating treatment with 0.01% atropine eye drops. This included children between 6 and 14 years with baseline myopia ranging from -0.5 D to -6 D, astigmatism≤-1.5 D, anisometropia ≤ -1 D and documented myopia progression of ≥0.5 D in the year prior to starting atropine. Subjects with any other ocular pathologies were excluded. RESULTS: A total of 732 children were included in the data analysis. The mean age of the subjects was 9.3±2.7 years. The mean myopia progression at baseline (1 year before starting atropine) was -0.75±0.31 D. The rate of myopia progression was higher in younger subjects and those with higher baseline myopic error. After initiating atropine, myopia progression significantly decreased to -0.27±0.14 D at the end of the first year and -0.24±0.15 D at the end of the second year (p<0.001). Younger children (p<0.001) and higher baseline myopia (p<0.001) was associated with greater myopia progression and poor treatment response (p<0.001 for both). CONCLUSION: Low-dose atropine (0.01%) effectively reduces myopia progression over 2 years in Indian children.


Assuntos
Atropina , Miopia , Criança , Humanos , Atropina/uso terapêutico , Estudos Retrospectivos , Progressão da Doença , Miopia/diagnóstico , Miopia/tratamento farmacológico , Soluções Oftálmicas/uso terapêutico , Refração Ocular , Midriáticos/uso terapêutico
10.
Acta Ophthalmol ; 102(1): e69-e77, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37143398

RESUMO

PURPOSE: The morphological changes in the cornea and crystalline lens have not been closely evaluated after the administration of atropine 0.01%. This study aims to evaluate the radii of curvature and refractive power of the cornea and lens in myopic eyes during atropine 0.01% treatment. METHODS: Children aged 6-14 years with myopia <-6.0 D were randomized to receive atropine 0.01% once nightly with single vision lenses or simply wear single vision lenses. Ocular biometric parameters were measured using the IOLMaster 700 biometry and the radii of corneal and lenticular curvature were simulated using a customized program. RESULTS: At the 9-month visit, 69 atropine-treated eyes and 50 control eyes were included in the final analyses. In atropine-treated eyes, the posterior corneal surface steepened (-0.05 ± 0.13 mm) and the anterior lenticular surface flattened (0.20 ± 0.69 mm) significantly within 3-6 months, whereas the posterior corneal surface and anterior lenticular surface gradually flattened (0.07 ± 0.23 and 0.32 ± 0.80 mm respectively) in the control eyes over 9 months. The difference in the change of corneal refractive power was significant between groups (-0.03 ± 0.18 D vs. 0.11 ± 0.24 D, p = 0.001), while that in the change of lenticular refractive power was statistically insignificant (0.01 ± 0.92 D vs. -0.22 ± 0.86 D, p = 0.161). CONCLUSIONS: The administration of atropine 0.01% exhibited a clinically short and subtle impact on the cornea and lens, which may shed light on new targets of action for atropine in inhibiting myopia.


Assuntos
Cristalino , Miopia , Criança , Humanos , Atropina , Córnea , Topografia da Córnea , Miopia/tratamento farmacológico , Soluções Oftálmicas , Rádio (Anatomia) , Refração Ocular , Adolescente
11.
Eye (Lond) ; 38(3): 455-463, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37740053

RESUMO

A range of optical interventions have been developed to slow the progression of myopia. This review summarizes key studies and their outcomes. Peer-reviewed, randomized controlled clinical trials of at least 18 months duration were identified. Randomized clinical trials were identified and summarised: 13 for spectacles, 5 for overnight orthokeratology, 5 for soft contact lenses, and 3 for orthokeratology combined with low concentration atropine. Overnight orthokeratology trials were the most consistent with 2-year slowing of axial elongation between 0.24 and 0.32 mm. Other modalities were more variable due to the wide range of optical designs. Among spectacle interventions, progressive addition lenses were the least effective, slowing axial elongation and myopia progression by no more than 0.11 mm and 0.31 D, respectively. In contrast, novel designs with peripheral lenslets slow 2-year elongation and progression by up to 0.35 mm and 0.80 D. Among soft contact lens interventions, medium add concentric bifocals slow 3-year elongation and progression by only 0.07 mm and 0.16 D, while a dual-focus design slows 3-year elongation and progression by 0.28 mm and 0.67 D. In summary, all three optical interventions have the potential to significantly slow myopia progression. Quality of vision is largely unaffected, and safety is satisfactory. Areas of uncertainty include the potential for post-treatment acceleration of progression and the benefit of adding atropine to optical interventions.


Assuntos
Lentes de Contato Hidrofílicas , Miopia , Procedimentos Ortoceratológicos , Humanos , Atropina/uso terapêutico , Comprimento Axial do Olho , Progressão da Doença , Miopia/prevenção & controle , Miopia/tratamento farmacológico , Refração Ocular , Ensaios Clínicos Controlados Aleatórios como Assunto
12.
Acta Ophthalmol ; 102(3): e245-e256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37694816

RESUMO

PURPOSE: The Myopia Outcome Study of Atropine in Children (MOSAIC) is an investigator-led, double-masked, randomized controlled trial investigating the efficacy and safety of 0.01% atropine eye drops for managing myopia progression in a predominantly White, European population. METHODS: Children aged 6-16 years with myopia were randomly allocated 2:1 to nightly 0.01% atropine or placebo eye drops in both eyes for 2 years. The primary outcome was cycloplegic spherical equivalent (SE) progression at 24 months. Secondary outcomes included axial length (AL) change, safety and acceptability. Linear mixed models with random intercepts were used for statistical analyses. RESULTS: Of 250 participants enrolled, 204 (81.6%) completed the 24-month visit (136 (81.4%) treatment, 68 (81.9%) placebo). Baseline characteristics, drop-out and adverse event rates were similar between treatment and control groups. At 24 months, SE change was not significantly different between 0.01% atropine and placebo groups (effect = 0.10 D, p = 0.07), but AL growth was lower in the 0.01% atropine group, compared to the placebo group (-0.07 mm, p = 0.007). Significant treatment effects on SE (0.14 D, p = 0.049) and AL (-0.11 mm, p = 0.002) were observed in children of White, but not non-White (SE = 0.05 D, p = 0.89; AL = 0.008 mm, p = 0.93), ethnicity at 24 months. A larger treatment effect was observed in subjects least affected by COVID-19 restrictions (SE difference = 0.37 D, p = 0.005; AL difference = -0.17 mm, p = 0.001). CONCLUSIONS: Atropine 0.01% was safe, well-tolerated and effective in slowing axial elongation in this European population. Treatment efficacy varied by ethnicity and eye colour, and potentially by degree of COVID-19 public health restriction exposure during trial participation.


Assuntos
COVID-19 , Miopia , Criança , Humanos , Atropina , Miopia/diagnóstico , Miopia/tratamento farmacológico , Miopia/epidemiologia , Refração Ocular , Resultado do Tratamento , Comprimento Axial do Olho , Soluções Oftálmicas , Progressão da Doença , COVID-19/epidemiologia
13.
Eye (Lond) ; 38(3): 434-441, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37717107

RESUMO

The prevalence of myopia is increasing across the world. Controlling myopia progression would be beneficial to reduce adverse outcomes such as retinal detachment and myopic maculopathy which are associated with increased axial length. Pharmacological control of myopia progression with atropine has been investigated since the 19th century and the benefits of slowing myopia progression are considered against the side-effects of near blur and photophobia. More recently, randomised trials have focused on determining the optimum concentration of atropine leading to low-concentration atropine being used to manage myopia progression by practitioners across the world. Currently, in the United Kingdom, there is no licensed pharmacological intervention for myopia management. The aim of this review is to interpret the available data to inform clinical practice. We conducted a narrative review of the literature and identified peer-reviewed randomised controlled trials using the search terms 'myopia' and 'atropine', limited to the English language. We identified two key studies, which were the Atropine in the Treatment Of Myopia (ATOM) and Low-concentration Atropine for Myopia Progression (LAMP). Further studies were identified using the above search terms and the references from the identified literature. Atropine 0.01% has a modest effect on controlling axial length progression. Atropine 0.05% appears to be superior to atropine 0.01% in managing myopia progression. There is a dose-dependent rebound effect when treatment is stopped. Atropine is a well-tolerated, safe, and effective intervention. Treatment would be needed for several years and into adolescence, until axial length progression is stable.


Assuntos
Atropina , Miopia , Humanos , Atropina/uso terapêutico , Soluções Oftálmicas/uso terapêutico , Miopia/tratamento farmacológico , Prevalência , Reino Unido , Progressão da Doença , Refração Ocular , Midriáticos/uso terapêutico
14.
Ophthalmic Physiol Opt ; 44(2): 280-291, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38037443

RESUMO

BACKGROUND: To investigate the short-term effects of cyclopentolate and tropicamide eyedrops on choroidal thickness (ChT) in myopic children using placebo or low-dose atropine eyedrops. METHODS: The analysis included 242 myopic individuals (7-19 years) enrolled in two randomised placebo-controlled clinical trials of low-dose atropine eyedrops. Cycloplegia was induced using either one drop of 1% cyclopentolate (n = 161), two drops of 1% cyclopentolate (n = 32) or two drops of 1% tropicamide (n = 49). ChT measurements were taken using swept-source optical coherence tomography before and 30 min after administering the cycloplegic eye drops. A subset of 51 participants underwent test-retest measurements prior to cycloplegia. RESULTS: Mean changes in subfoveal ChT after two drops of tropicamide and one and two drops of cyclopentolate were -2.5 µm (p = 0.10), -4.3 µm (p < 0.001) and -9.6 µm (p < 0.001), respectively. Subfoveal ChT changes after one and two drops of cyclopentolate were significantly greater than the test-retest changes (test-retest mean change: -3.1 µm; p < 0.05), while the tropicamide group was not significantly different (p = 0.64). Choroidal thinning post-cyclopentolate was not significantly different between atropine and placebo treatment groups (p > 0.05 for all macular locations). The coefficient of repeatability (CoR) in the tropicamide group (range: 8.2-14.4 µm) was similar to test-retest (range: 7.5-12.2 µm), whereas greater CoR values were observed in the cyclopentolate groups (one drop: range: 10.8-15.3 µm; two drops: range: 12.2-24.6 µm). CONCLUSIONS: Cyclopentolate eye drops caused dose-dependent choroidal thinning and increased variation in pre- to post-cycloplegia measurements compared with test-retest variability, whereas tropicamide did not. These findings have practical implications for ChT measurements when cyclopentolate is used, particularly for successive measurements.


Assuntos
Miopia , Presbiopia , Criança , Humanos , Atropina , Ciclopentolato , Midriáticos , Miopia/tratamento farmacológico , Soluções Oftálmicas , Tropicamida/farmacologia , Tropicamida/uso terapêutico , Adolescente , Adulto Jovem
16.
Acta Ophthalmol ; 102(3): 364-366, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38131255

RESUMO

Over a century ago, atropine has been tested to arrest myopia progression with good results. In recent years, many randomized clinical trials have tested different concentrations against placebo. Three recent such studies with low-dose atropine showed that it was less effective than previous studies, even the last one showing no difference in myopia progression between the treated and control group. Previous randomized studies had been performed in Asian populations, and these last three were extended to Western Caucasian populations, based on the initial observation that differences in iris pigmentation could be a factor for a difference in effectiveness. We have noticed that the three last studies in the West have used the same patented formulation, while previous studies have preferred compounded low-dose atropine. Here we review how the power of hydrogen (pH) and preservatives could account for differences in drug penetration to the eye, possibly explaining the differences between studies.


Assuntos
Atropina , Miopia , Humanos , Soluções Oftálmicas/uso terapêutico , Progressão da Doença , Miopia/tratamento farmacológico , Concentração de Íons de Hidrogênio , Refração Ocular , Midriáticos
17.
BMJ Open ; 13(12): e079833, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38128934

RESUMO

INTRODUCTION: Assessment of near work-induced transient myopia (NITM) is important for permanent myopia development and progression. Atropine eye drop has been reported to be beneficial in reducing initial NITM and slowing down myopic progression. This study aimed to investigate the efficacy of 0.01% atropine in treating NITM and its possible association with the progression of refractive change in Chinese myopic children. METHODS AND ANALYSIS: The study is designed as a parallel assignment prospective, randomised, double-blinded, placebo-controlled trial conducted at He Eye Specialist Hospital in Shenyang, China. One hundred fifty participants will be randomly assigned in a 1:1 ratio to receive 0.01% atropine or placebo eye drop once nightly bilaterally for 1 year. Initial NITM, cycloplegic refraction, axial length, best-corrected visual acuity, intraocular pressure and pupil diameter will be measured at baseline, 4 weeks, 12 weeks, 24 weeks, 36 weeks and 48 weeks. Visual Function Questionnaire will be administered at baseline and each follow-up visit. Adverse events also will be monitored and documented at each subsequent follow-up visit. ETHICS AND DISSEMINATION: A parallel assignment prospective, randomised, double-blinded, placebo-controlled trial to evaluate the efficacy of 0.01% atropine for near work-induced transient myopia and myopic progression registered on 10 September 2023. Ethics approval number: IRB (2023) K025.01. The study's findings will be shared regardless of the effect's direction. TRIAL REGISTRATION NUMBER: NCT06034366.


Assuntos
Atropina , Miopia , Masculino , Criança , Humanos , Atropina/uso terapêutico , Estudos Prospectivos , Miopia/tratamento farmacológico , Método Duplo-Cego , Soluções Oftálmicas/uso terapêutico , China , Progressão da Doença , Ensaios Clínicos Controlados Aleatórios como Assunto
18.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958819

RESUMO

Myopia, one of the most prevalent ocular diseases worldwide, is projected to affect nearly half of the global population by 2050. The main cause of myopia in most patients is axial myopia, which primarily occurs due to the elongation of the eyeball, driven by changes in the extracellular matrix (ECM) of scleral cells. Previous studies have shown that NLRP3, an important inflammatory mediator, plays a critical role in regulating the expression of MMP-2 in the sclera. This, in turn, leads to a decrease in the expression of Collagen-1, a major component of the scleral ECM, triggering the remodeling of the scleral ECM. This study aimed to investigate the effect of MCC950, an inhibitor of NLRP3, on the progression of myopia using a mouse form-deprivation myopia (FDM) model. The FDM mouse model was constructed by subjecting three-week-old C57BL/6J mice to form-deprivation. The mice were divided into experimental (n = 10/group; FDM2M, FDM4M, FDM2W, and FDM4W) and control groups (n = 5/group). The experimental groups were further categorized based on the duration of form deprivation (2 and 4 weeks, labeled as 2 and 4, respectively) and the type of injection received (MCC950 or saline, labeled as M and W, respectively). MCC950 was injected at a concentration of 50 mg/mL, with a dose of 10 mg per kilogram of body weight. Meanwhile, the saline group received the same volume of saline. Refraction and axial length measurements were performed for each eye. The expression levels of NLRP3, caspase-1, IL-1ß, IL-18, MMP-2, and Collagen-1 in the sclera were assessed using immunohistochemistry and Western blotting. The intraperitoneal injection of MCC950 did not significantly affect refraction or axial length in normal mice (p > 0.05). However, in FDM mice, MCC950 attenuated the elongation of the axial length and resulted in a smaller shift towards myopia compared to the saline group (FDM4M vs. FDM4W, p = 0.03 and p < 0.05, respectively). MCC950 decreased MMP-2 expression (p < 0.05) but increased Collagen-1 expression (p < 0.05) in the experimental eyes when compared to the saline group. Within the MCC950 group, the expression of MMP-2 was increased in the experimental eyes at 4 weeks (p < 0.05), while that of Collagen-1 was decreased (p < 0.05), which is consistent with changes in refractive error. Immunohistochemical analysis yielded similar results (p < 0.05). MCC950 also reduced the expression levels of NLRP3 (p = 0.03), caspase-1 (p < 0.05), IL-1ß (p < 0.05), and IL-18 (p < 0.05) in the experimental eyes compared to the saline group. Within the MCC950 group, the expression levels of NLRP3 and caspase-1 were comparable between the experimental and control eyes (p > 0.05), whereas IL-18 expression was higher in experimental eyes (p < 0.05). IL-1ß expression was higher in the experimental eyes only at week 4 (p < 0.05). The intraperitoneal injection of MCC950 can inhibit the progression of myopia in FDM mice, possibly by regulating collagen remodeling in the sclera through the NLRP3-MMP-2 signaling pathway. Therefore, MCC950 holds promise as a potential therapeutic agent for controlling the progression of myopia.


Assuntos
Metaloproteinase 2 da Matriz , Miopia , Animais , Camundongos , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Interleucina-18/metabolismo , Injeções Intraperitoneais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Endogâmicos C57BL , Miopia/tratamento farmacológico , Miopia/metabolismo , Esclera/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Caspases/metabolismo , Modelos Animais de Doenças
19.
Invest Ophthalmol Vis Sci ; 64(14): 15, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955611

RESUMO

Purpose: The incidence of myopia has rapidly increased in recent decades, making it a growing public health concern worldwide. Interventions to suppress the progression of myopia are needed; one suggested strategy is the prevention of choroidal thinning, which can improve choroidal blood perfusion (ChBP). Bunazosin hydrochloride (BH) is an alpha1-adrenergic blocker and commercialized glaucoma eye drop that increases in blood circulation in the eye. In this study, we evaluated the efficacy of BH in suppressing the progression of myopia in a lens-induced murine model. Methods: Lens-induced myopia was induced in 3-week-old C57BL/6 J mice with -30 diopter (D) lenses for three weeks. Refractive error, axial length, and choroidal thickness were evaluated at three and six weeks of age using an infrared photorefractor and a spectral domain optical coherence tomography (OCT) system. Moreover, ChBP and scleral thickness were evaluated using swept-source OCT and histological analysis. Results: Compared with the controls, the administration of BH eye drops suppressed the myopic shift of refractive error (mean difference ± standard error in the eye with -30 D lens, -13.65 ± 5.69 D vs. 2.55 ± 4.30 D; P < 0.001), axial elongation (0.226 ± 0.013 mm vs. 0.183 ± 0.023 mm; P < 0.05), choroidal thinning (-2.01 ± 1.80 µm vs. 1.88 ± 1.27 µm; P < 0.001), and scleral thinning (11.41 ± 3.91 µm vs. 19.72 ± 4.01 µm; P < 0.01) with myopia progression and increased ChBP (52.0% ± 4.1% vs. 59.5% ± 6.3%; P < 0.05). The suppressive effect of BH eye drops was dose-dependent and higher than that of other glaucoma eye drops and alpha1 blockers. Conclusions: These results demonstrate the potential of BH eye drops in the treatment of myopia and support further investigation of their efficacy in humans. Further studies are needed to determine the mechanism of action and long-term safety of this treatment.


Assuntos
Glaucoma , Miopia , Erros de Refração , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Miopia/tratamento farmacológico , Miopia/prevenção & controle , Soluções Oftálmicas , Perfusão
20.
Int J Med Sci ; 20(10): 1363-1376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37786442

RESUMO

Repeated low-level red-light (RLRL), characterized by increased energy supply and cellular metabolism, thus enhancing metabolic repair processes, has gained persistent worldwide attention in recent years as a new novel scientific approach for therapeutic application in myopia. This therapeutic revolution led by RLRL therapy is due to significant advances in bioenergetics and photobiology, for instance, enormous progresses in photobiomodulation regulated by cytochrome c oxidase, the primary photoreceptor of the light in the red to near infrared regions of the electromagnetic spectrum, as the primary mechanism of action in RLRL therapy. This oxidase is also a key mitochondrial enzyme for cellular bioenergetics, especially for the nerve cells in the retina and brain. In addition, dopamine (DA)-enhanced release of nitric oxide may also be involved in controlling myopia by activation of nitric oxide synthase, enhancing cGMP signaling. Recent evidence has also suggested that RLRL may inhibit myopia progression by inhibiting spherical equivalent refraction (SER) progression and axial elongation without adverse effects. In this review, we provide scientific evidence for RLRL therapy as a unique paradigm to control myopia and support the theory that targeting neuronal energy metabolism may constitute a major target for the neurotherapeutics of myopia, with emphasis on its molecular, cellular, and nervous tissue levels, and the potential benefits of RLRL therapy for myopia.


Assuntos
Terapia com Luz de Baixa Intensidade , Miopia , Humanos , Miopia/tratamento farmacológico , Retina/metabolismo , Refração Ocular , Dopamina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA