Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Genet Genomic Med ; 8(8): e1343, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32519820

RESUMO

BACKGROUND: MYO3A, encoding the myosin IIIA protein, is associated with autosomal recessive and autosomal dominant nonsyndromic hearing loss. To date, only two missense variants located in the motor-head domain of MYO3A have been described in autosomal dominant families with progressive, mild-to-profound sensorineural hearing loss. These variants alter the ATPase activity of myosin IIIA. METHODS: Exome sequencing of a proband from a three-generation German family with prelingual, moderate-to-profound, high-frequency hearing loss was performed. Segregation analysis confirmed a dominant inheritance pattern. Regression analysis of mean hearing level thresholds per individual and ear was performed at high-, mid-, and low-frequencies. RESULTS: A novel heterozygous missense variant c.716T>C, p.(Leu239Pro) in the kinase domain of MYO3A was identified that is predicted in silico as disease causing. High-frequency, progressive hearing loss was identified. CONCLUSION: Correlation analysis of pure-tone hearing thresholds revealed progressive hearing loss, especially in the high-frequencies. In the present study, we report the first dominant likely pathogenic variant in MYO3A in a European family and further support MYO3A as an autosomal dominant hearing loss gene.


Assuntos
Perda Auditiva Neurossensorial/genética , Cadeias Pesadas de Miosina/genética , Miosina Tipo III/genética , Limiar Auditivo , Feminino , Genes Dominantes , Perda Auditiva Neurossensorial/patologia , Humanos , Masculino , Mutação de Sentido Incorreto , Cadeias Pesadas de Miosina/química , Miosina Tipo III/química , Linhagem , Domínios Proteicos
2.
PLoS One ; 15(4): e0230982, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315303

RESUMO

Atrial septal defect (ASD) is one of the most common congenital heart defects diagnosed in children. Sarcomeric genes has been attributed to ASD and knockdown of MYH3 functionally homologues gene in chick models indicated abnormal atrial septal development. Here, we report for the first time, a case-control study investigating the role of MYH3 among non-syndromic ASD patients in contributing to septal development. Four amplicons which will amplifies the 40 kb MYH3 were designed and amplified using long range-PCR. The amplicons were then sequenced using indexed paired-end libraries on the MiSeq platform. The STREGA guidelines were applied for planning and reporting. The non-synonymous c. 3574G>A (p.Ala1192Thr) [p = 0.001, OR = 2.30 (1.36-3.87)] located within the tail domain indicated a highly conserved protein region. The mutant model of c. 3574G>A (p.Ala1192Thr) showed high root mean square deviation (RMSD) values compared to the wild model. To our knowledge, this is the first study to provide compelling evidence on the pathogenesis of MYH3 variants towards ASD hence, suggesting the crucial role of non-synonymous variants in the tail domain of MYH3 towards atrial septal development. It is hoped that this gene can be used as panel for diagnosis of ASD in future.


Assuntos
Proteínas do Citoesqueleto/genética , Comunicação Interatrial/genética , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo III/genética , Adolescente , Adulto , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Estudos de Casos e Controles , Criança , Pré-Escolar , Sequência Conservada , Proteínas do Citoesqueleto/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Modelos Moleculares , Mutação de Sentido Incorreto , Cadeias Pesadas de Miosina/química , Miosina Tipo III/química , Polimorfismo de Nucleotídeo Único , Adulto Jovem
3.
Elife ; 52016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26785147

RESUMO

Class III myosins (Myo3) and actin-bundling protein Espin play critical roles in regulating the development and maintenance of stereocilia in vertebrate hair cells, and their defects cause hereditary hearing impairments. Myo3 interacts with Espin1 through its tail homology I motif (THDI), however it is not clear how Myo3 specifically acts through Espin1 to regulate the actin bundle assembly and stabilization. Here we discover that Myo3 THDI contains a pair of repeat sequences capable of independently and strongly binding to the ankyrin repeats of Espin1, revealing an unexpected Myo3-mediated cross-linking mechanism of Espin1. The structures of Myo3 in complex with Espin1 not only elucidate the mechanism of the binding, but also reveal a Myo3-induced release of Espin1 auto-inhibition mechanism. We also provide evidence that Myo3-mediated cross-linking can further promote actin fiber bundling activity of Espin1.


Assuntos
Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo III/metabolismo , Multimerização Proteica , Actinas/química , Cristalografia por Raios X , Proteínas dos Microfilamentos/química , Modelos Moleculares , Cadeias Pesadas de Miosina/química , Miosina Tipo III/química , Conformação Proteica
4.
Biochemistry ; 53(49): 7835-45, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25402663

RESUMO

Motor activity of myosin III is regulated by autophosphorylation. To investigate the role of the kinase activity on the transporter function of myosin IIIA (Myo3A), we identified the phosphorylation sites of kinase domain (KD), which is responsible for the regulation of kinase activity and thus motor function. Using mass spectrometry, we identified six phosphorylation sites in the KD, which are highly conserved among class III myosins and Ste20-related misshapen (Msn) kinases. Two predominant sites, Thr¹84 and Thr¹88, in KD are important for phosphorylation of the KD as well as the motor domain, which regulates the affinity for actin. In the Caco2 cells, the full-length human Myo3A (hMyo3AFull) markedly enlarged the microvilli, although it did not show discrete localization within the microvilli. On the other hand, hMyo3AFull(T184A) and hMyo3AFull(T188A) both showed clear localization at the microvilli tips. Our results suggest that Myo3A induces large actin bundle formation to form microvilli, and phosphorylation of KD at Thr¹84 and Thr¹88 is critical for the kinase activity of Myo3A, and regulation of Myo3A translocation to the tip of microvilli. Retinal extracts potently dephosphorylate both KD and motor domain without IQ motifs (MDIQo), which was inhibited by okadaic acid (OA) with nanomolar range and by tautomycetin (TMC) with micromolar range. The results suggest that Myo3A phosphatase is protein phosphatase type 2A (PP2A). Supporting this result, recombinant PP2Ac potently dephosphorylates both KD and MDIQo. We propose that the phosphorylation-dephosphorylation mechanism plays an essential role in mediating the transport and actin bundle formation and stability functions of hMyo3A.


Assuntos
Enterócitos/metabolismo , Microvilosidades/metabolismo , Modelos Moleculares , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo III/metabolismo , Processamento de Proteína Pós-Traducional , Citoesqueleto de Actina/efeitos dos fármacos , Substituição de Aminoácidos , Animais , Células CACO-2 , Domínio Catalítico , Enterócitos/efeitos dos fármacos , Enterócitos/ultraestrutura , Inibidores Enzimáticos/farmacologia , Furanos/farmacologia , Humanos , Lipídeos/farmacologia , Microvilosidades/efeitos dos fármacos , Microvilosidades/ultraestrutura , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Cadeias Pesadas de Miosina/antagonistas & inibidores , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Miosina Tipo III/antagonistas & inibidores , Miosina Tipo III/química , Miosina Tipo III/genética , Ácido Okadáico/farmacologia , Fosforilação/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Treonina/química
5.
J Biol Chem ; 288(52): 37126-37, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24214986

RESUMO

Class III myosins are unique members of the myosin superfamily in that they contain both a motor and kinase domain. We have found that motor activity is decreased by autophosphorylation, although little is known about the regulation of the kinase domain. We demonstrate by mass spectrometry that Thr-178 and Thr-184 in the kinase domain activation loop and two threonines in the loop 2 region of the motor domain are autophosphorylated (Thr-908 and Thr-919). The kinase activity of MYO3A 2IQ with the phosphomimic (T184E) or phosphoblock (T184A) mutations demonstrates that kinase activity is reduced 30-fold as a result of the T184A mutation, although the Thr-178 site only had a minor impact on kinase activity. Interestingly, the actin-activated ATPase activity of MYO3A 2IQ is slightly reduced as a result of the T178A and T184A mutations suggesting coupling between motor and kinase domains. Full-length GFP-tagged T184A and T184E MYO3A constructs transfected into COS7 cells do not disrupt the ability of MYO3A to localize to filopodia structures. In addition, we demonstrate that T184E MYO3A reduces filopodia elongation in the presence of espin-1, whereas T184A enhances filopodia elongation in a similar fashion to kinase-dead MYO3A. Our results suggest that as MYO3A accumulates at the tips of actin protrusions, autophosphorylation of Thr-184 enhances kinase activity resulting in phosphorylation of the MYO3A motor and reducing motor activity. The differential regulation of the kinase and motor activities allows for MYO3A to precisely self-regulate its concentration in the actin bundle-based structures of cells.


Assuntos
Actinas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo III/metabolismo , Pseudópodes/enzimologia , Actinas/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Substituição de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Humanos , Mutação de Sentido Incorreto , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Miosina Tipo III/química , Miosina Tipo III/genética , Fosforilação , Estrutura Terciária de Proteína , Pseudópodes/genética , Células Sf9 , Spodoptera
6.
J Neurochem ; 119(4): 772-84, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21895655

RESUMO

As class III unconventional myosins are motor proteins with an N-terminal kinase domain, it seems likely they play a role in both signaling and actin based transport. A growing body of evidence indicates that the motor functions of human class IIIA myosin, which has been implicated in progressive hearing loss, are modulated by intermolecular autophosphorylation. However, the phosphorylation sites have not been identified. We studied the kinase activity and phosphorylation sites of mouse class III myosins, mMyo3A and 3B, which are highly similar to their human orthologs. We demonstrate that the kinase domains of mMyo3A and 3B are active kinases, and that they have similar, if not identical, substrate specificities. We show that the kinase domains of these proteins autophosphorylate, and that they can phosphorylate sites within their myosin and tail domains. Using liquid chromatography-mass spectrometry, we identified phosphorylated sites in the kinase, myosin motor and tail domains of both mMyo3A and 3B. Most of the phosphorylated sites we identified and their consensus phosphorylation motifs are highly conserved among vertebrate class III myosins, including human class III myosins. Our findings are a major step toward understanding how the functions of class III myosins are regulated by phosphorylation.


Assuntos
Miosina Tipo III/química , Miosina Tipo III/metabolismo , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Aminoácidos , Animais , Humanos , Espectrometria de Massas , Camundongos , Miosina Tipo III/classificação , Miosina Tipo III/genética , Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análise de Sequência de Proteína , Especificidade por Substrato
7.
Mamm Genome ; 22(3-4): 170-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21165622

RESUMO

The motor protein myosin IIIA is critical for maintenance of normal hearing. Homozygosity and compound heterozygosity for loss-of-function mutations in MYO3A, which encodes myosin IIIA, are responsible for inherited human progressive hearing loss DFNB30. To further evaluate this hearing loss, we constructed a mouse model, Myo3a(KI/KI), that harbors the mutation equivalent to the nonsense allele responsible for the most severe human phenotype. Myo3a(KI/KI) mice were compared to their wild-type littermates. Myosin IIIA, with a unique N-terminal kinase domain and a C-terminal actin-binding domain, localizes to the tips of stereocilia in wild-type mice but is absent in the mutant. The phenotype of the Myo3a(KI/KI) mouse parallels the phenotype of human DFNB30. Hearing loss, as measured by auditory brainstem response, is reduced and progresses significantly with age. Vestibular function is normal. Outer hair cells of Myo3a(KI/KI) mice degenerate with age in a pattern consistent with their progressive hearing loss.


Assuntos
Modelos Animais de Doenças , Perda Auditiva/metabolismo , Camundongos , Cadeias Pesadas de Miosina/deficiência , Miosina Tipo III/deficiência , Fatores Etários , Animais , Sequência de Bases , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Perda Auditiva/genética , Perda Auditiva/fisiopatologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Miosina Tipo III/química , Miosina Tipo III/genética , Estrutura Terciária de Proteína
8.
Biochemistry ; 49(17): 3695-702, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20192276

RESUMO

Previous findings suggested that the motor activity of human myosin IIIA (HM3A) is influenced by phosphorylation [Kambara, T., et al. (2006) J. Biol. Chem. 281, 37291-37301]; however, how phosphorylation controls the motor activity of HM3A is obscure. In this study, we clarify the kinetic basis of the effect of phosphorylation on the ATP hydrolysis cycle of the motor domain of HM3A (huM3AMD). The affinity of human myosin IIIA for filamentous actin in the presence of ATP is more than 100-fold decreased by phosphorylation, while the maximum rate of ATP turnover is virtually unchanged. The rate of release of ADP from acto-phosphorylated huM3AMD is 6-fold greater than the overall cycle rate, and thus not a rate-determining step. The rate constant of the ATP hydrolysis step of the actin-dissociated form is markedly increased by phosphorylation by 30-fold. The dissociation constant for dissociation of the ATP-bound form of huM3AMD from actin is greatly increased by phosphorylation, and this result agrees well with the significant increase in the K(actin) value of the steady-state ATPase reaction. The rate constant of the P(i) off step is greater than 60 s(-1), suggesting that this step does not limit the overall ATP hydrolysis cycle rate. Our kinetic model indicates that phosphorylation induces the dissociation of huM3AMD from actin during the ATP hydrolysis cycle, and this is due to the phosphorylation-dependent marked decrease in the affinity of huM3AMD.ATP for actin and the increase in the ATP hydrolysis rate of huM3AMD in the actin-dissociated state. These results suggest that the phosphorylation of myosin IIIA significantly lowers the duty ratio, which may influence the cargo transporting ability of the native form of myosin IIIA that contains the ATP-independent actin binding site in the tail.


Assuntos
Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo III/metabolismo , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Catálise , Humanos , Hidrólise , Cinética , Cadeias Pesadas de Miosina/química , Miosina Tipo III/química , Fosforilação , Estrutura Terciária de Proteína
9.
Biochemistry ; 47(8): 2485-96, 2008 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-18229949

RESUMO

Myosin IIIA is unique among myosin proteins in that it contains an N-terminal kinase domain capable of autophosphorylating sites on the motor domain. A construct of myosin IIIA lacking the kinase domain localizes more efficiently to the stereocilia tips and alters the morphology of the tips in inner ear hair cells. Therefore, we performed a kinetic analysis of myosin IIIA without the kinase domain (MIII DeltaK) and compared these results with our reported analysis of myosin IIIA containing the kinase domain (MIII). The steady-state kinetic properties of MIII DeltaK indicate that it has a 2-fold higher maximum actin-activated ATPase rate (kcat = 1.5 +/- 0.1 s-1) and a 5-fold tighter actin affinity (KATPase = 6.0 +/- 1.4 microM, and KActin = 1.4 +/- 0.4 microM) compared to MIII. The rate of ATP binding to the motor domain is enhanced in MIII DeltaK (K1k+2 approximately 0.10 +/- 0.01 microM-1.s-1) to a level similar to the rate of binding to MIII in the presence of actin. The rate of ATP hydrolysis in the absence of actin is slow and may be rate limiting. Actin-activated phosphate release is identical with and without the kinase domain. The transition between actomyosin.ADP states, which is rate limiting in MIII, is enhanced in MIII DeltaK. MIII DeltaK accumulates more efficiently at the tips of filopodia in HeLa cells. Our results suggest a model in which the activity and concentration of myosin IIIA localized to the tips of actin bundles mediates the morphology of the tips in sensory cells.


Assuntos
Movimento , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/fisiologia , Miosina Tipo III/química , Miosina Tipo III/fisiologia , Fosfotransferases , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Ativação Enzimática , Células HeLa , Humanos , Hidrólise , Cinética , Modelos Biológicos , Movimento/fisiologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo III/genética , Miosina Tipo III/metabolismo , Neurônios Aferentes/metabolismo , Fosfotransferases/metabolismo , Fosfotransferases/fisiologia , Ligação Proteica , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Coelhos , Spodoptera , Transfecção
10.
Biochemistry ; 46(14): 4280-93, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17367164

RESUMO

Little is known about the functions of class III unconventional myosins although, with an N-terminal kinase domain, they are potentially both signaling and motor proteins. Limulus myosin III is particularly interesting because it is a phosphoprotein abundant in photoreceptors that becomes more heavily phosphorylated at night by protein kinase A. This enhanced nighttime phosphorylation occurs in response to signals from an endogenous circadian clock and correlates with dramatic changes in photoreceptor structure and function. We seek to understand the role of Limulus myosin III and its phosphorylation in photoreceptors. Here we determined the sites that become phosphorylated in Limulus myosin III and investigated its kinase, actin binding, and myosin ATPase activities. We show that Limulus myosin III exhibits kinase activity and that a major site for both protein kinase A and autophosphorylation is located within loop 2 of the myosin domain, an important actin binding region. We also identify the phosphorylation of an additional protein kinase A and autophosphorylation site near loop 2, and a predicted phosphorylation site within loop 2. We show that the kinase domain of Limulus myosin III shares some pharmacological properties with protein kinase A, and that it is a potential opsin kinase. Finally, we demonstrate that Limulus myosin III binds actin but lacks ATPase activity. We conclude that Limulus myosin III is an actin-binding and signaling protein and speculate that interactions between actin and Limulus myosin III are regulated by both second messenger mediated phosphorylation and autophosphorylation of its myosin domain within and near loop 2.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Caranguejos Ferradura/metabolismo , Miosina Tipo III/química , Miosina Tipo III/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Cromatografia Líquida , Escherichia coli/genética , Vetores Genéticos , Cinética , Dados de Sequência Molecular , Mutação , Miosina Tipo III/genética , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Spodoptera/citologia , Spodoptera/metabolismo , Espectrometria de Massas em Tandem
11.
J Biol Chem ; 282(1): 216-31, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17074769

RESUMO

Myosin IIIA is specifically expressed in photoreceptors and cochlea and is important for the phototransduction and hearing processes. In addition, myosin IIIA contains a unique N-terminal kinase domain and C-terminal tail actin-binding motif. We examined the kinetic properties of baculovirus expressed human myosin IIIA containing the kinase, motor, and two IQ domains. The maximum actin-activated ATPase rate is relatively slow (k(cat) = 0.77 +/- 0.08 s(-1)), and high actin concentrations are required to fully activate the ATPase rate (K(ATPase) = 34 +/- 11 microm). However, actin co-sedimentation assays suggest that myosin III has a relatively high steady-state affinity for actin in the presence of ATP (K(actin) approximately 7 microm). The rate of ATP binding to the motor domain is quite slow both in the presence and absence of actin (K(1)k(+2) = 0.020 and 0.001 microm(-1).s(-1), respectively). The rate of actin-activated phosphate release is more than 100-fold faster (85 s(-1)) than the k(cat), whereas ADP release in the presence of actin follows a two-step mechanism (7.0 and 0.6 s(-1)). Thus, our data suggest a transition between two actomyosin-ADP states is the rate-limiting step in the actomyosin III ATPase cycle. Our data also suggest the myosin III motor spends a large fraction of its cycle in an actomyosin ADP state that has an intermediate affinity for actin (K(d) approximately 5 microm). The long lived actomyosin-ADP state may be important for the ability of myosin III to function as a cellular transporter and actin cross-linker in the actin bundles of sensory cells.


Assuntos
Miosina Tipo III/química , Actinas/química , Motivos de Aminoácidos , Relação Dose-Resposta a Droga , Humanos , Cinética , Luz , Modelos Químicos , Miosinas/química , Fosfatos/química , Fosforilação , Conformação Proteica , Estrutura Terciária de Proteína , Espalhamento de Radiação , Espectrometria de Fluorescência
12.
J Biol Chem ; 282(1): 478-85, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17102130

RESUMO

Aldehyde oxidoreductase (carboxylic acid reductase (Car)) catalyzes the magnesium-, ATP-, and NADPH-dependent reduction of carboxylic acids to their corresponding aldehydes. Heterologous expression of the car gene in Escherichia coli afforded purified recombinant enzyme with a specific activity nearly 50-fold lower than that of purified native Nocardia sp. enzyme. The 5-fold increase in specific activity obtained by incubating purified recombinant Car with CoA and Nocardia cell-free extracts indicated that post-translational phosphopantetheinylation of Car is required for maximum enzyme activity. Nocardia phosphopantetheine transferase (PPTase) expressed in E. coli was isolated and characterized. When incubated with [(3)H]acetyl-CoA and Nocardia PPTase, the labeled acetylphosphopantetheine moiety was incorporated into recombinant Car. Coexpression of Nocardia Car and PPTase in E. coli gave a reductase with nearly 20-fold higher specific activity. Site-directed mutagenesis in which Ser(689) was replaced with Ala resulted in an inactive Car mutant. The results show that Car expressed in Escherichia coli is an apoenzyme that is converted to a holoenzyme by post-translational modification via phosphopantetheinylation. Doubly recombinant resting E. coli cells efficiently reduce vanillic acid to vanillin.


Assuntos
Aldeído Oxirredutases/fisiologia , Ácidos Carboxílicos/metabolismo , Nocardia/enzimologia , Aldeído Oxirredutases/química , Proteínas de Bactérias/química , Benzaldeídos/química , Álcoois Benzílicos/química , Ácidos Carboxílicos/química , Escherichia coli/metabolismo , Modelos Biológicos , Modelos Químicos , Mutagênese Sítio-Dirigida , Miosina Tipo III/química , Oxirredutases/química , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Fatores de Tempo , Transferases (Outros Grupos de Fosfato Substituídos)/química
13.
J Biol Chem ; 281(49): 37291-301, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17012748

RESUMO

Myosin IIIA is expressed in photoreceptor cells and thought to play a critical role in phototransduction processes, yet its function on a molecular basis is largely unknown. Here we clarified the kinetic mechanism of the ATPase cycle of human myosin IIIA. The steady-state ATPase activity was markedly activated approximately 10-fold with very low actin concentration. The rate of ADP off from actomyosin IIIA was 10 times greater than the overall cycling rate, thus not a rate-determining step. The rate constant of the ATP hydrolysis step of the actin-dissociated form was very slow, but the rate was markedly accelerated by actin binding. The dissociation constant of the ATP-bound form of myosin IIIA from actin is submicromolar, which agrees well with the low K(actin). These results indicate that ATP hydrolysis predominantly takes place in the actin-bound form for actomyosin IIIA ATPase reaction. The obtained K(actin) was much lower than the previously reported one, and we found that the autophosphorylation of myosin IIIA dramatically increased the K(actin), whereas the V(max) was unchanged. Our kinetic model indicates that both the actin-attached hydrolysis and the P(i) release steps determine the overall cycle rate of the dephosphorylated form. Although the stable steady-state intermediates of actomyosin IIIA ATPase reaction are not typical strong actin-binding intermediates, the affinity of the stable intermediates for actin is much higher than conventional weak actin binding forms. The present results suggest that myosin IIIA can spend a majority of its ATP hydrolysis cycling time on actin.


Assuntos
Actinas/metabolismo , Proteínas Motores Moleculares/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo III/metabolismo , Actomiosina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Hidrólise , Técnicas In Vitro , Cinética , Modelos Biológicos , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Miosina Tipo III/química , Miosina Tipo III/genética , Miosinas/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
J Biol Chem ; 278(24): 21352-60, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12672820

RESUMO

The class III myosin is the most divergent member of the myosin superfamily, having a domain with homology to a protein kinase. However, the function of class III myosin at a molecular level is not known at all, and it has been questioned whether it is actually an actin-based motor molecule. Here, we showed that human myosin III has an ATPase activity that is significantly activated by actin (20-fold) with Kactin of 112 microm and Vmax of 0.34 s-1, indicating the mechanoenzymatic activity of myosin III. Furthermore, we found that human myosin III has actin translocating activity (0.11 +/- 0.05 microm/s) using an in vitro actin gliding assay, and it moves toward the plus end of actin filaments. Myosin III containing calmodulin as the light chain subunit showed a protein kinase activity and underwent autophosphorylation. The autophosphorylation was the intramolecular process, and the sites were at the C-terminal end of the motor domain. Autophosphorylation significantly activated the kinase activity, although it did not affect the ATPase activity. The present study is the first report that clearly demonstrates that the class III myosin is an actin-based motor protein having a protein kinase activity.


Assuntos
Miosina Tipo III/química , Miosina Tipo III/fisiologia , Proteínas Quinases/metabolismo , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Cromatografia em Gel , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Humanos , Immunoblotting , Cinética , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA