Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 709
Filtrar
1.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38728007

RESUMO

Activation of PINK1 and Parkin in response to mitochondrial damage initiates a response that includes phosphorylation of RAB7A at Ser72. Rubicon is a RAB7A binding negative regulator of autophagy. The structure of the Rubicon:RAB7A complex suggests that phosphorylation of RAB7A at Ser72 would block Rubicon binding. Indeed, in vitro phosphorylation of RAB7A by TBK1 abrogates Rubicon:RAB7A binding. Pacer, a positive regulator of autophagy, has an RH domain with a basic triad predicted to bind an introduced phosphate. Consistent with this, Pacer-RH binds to phosho-RAB7A but not to unphosphorylated RAB7A. In cells, mitochondrial depolarization reduces Rubicon:RAB7A colocalization whilst recruiting Pacer to phospho-RAB7A-positive puncta. Pacer knockout reduces Parkin mitophagy with little effect on bulk autophagy or Parkin-independent mitophagy. Rescue of Parkin-dependent mitophagy requires the intact pRAB7A phosphate-binding basic triad of Pacer. Together these structural and functional data support a model in which the TBK1-dependent phosphorylation of RAB7A serves as a switch, promoting mitophagy by relieving Rubicon inhibition and favoring Pacer activation.


Assuntos
Mitofagia , Proteínas Serina-Treonina Quinases , Ubiquitina-Proteína Ligases , Proteínas rab de Ligação ao GTP , proteínas de unión al GTP Rab7 , Mitofagia/genética , Humanos , Fosforilação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Células HeLa , Ligação Proteica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Células HEK293
2.
J Tradit Chin Med ; 44(3): 468-477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38767630

RESUMO

OBJECTIVE: To investigate the effect of acupotomy, on mitophagy and the Pink1-Parkin pathway in chondrocytes from rabbits with knee osteoarthritis (KOA). METHODS: A KOA model was established via the modified Videman method. Rabbits were randomly divided into a control group (CON), KOA group and KOA + acupotomy group (Acu). Rabbits in the acupotomy group were subjected to acupotomy for 4 weeks after model establishment. The behavior of the rabbits before and after intervention was recorded. Cartilage degeneration was evaluated by optical microscopy and fluorescence microscopy. The level of mitophagy was evaluated by transmission electron microscopy, immunofluorescence and enzyme-linked immunosorbent assay (ELISA). The expression of phosphatase and tensin homolog (PTEN)-induced kinase 1 (Pink1)-Parkin mitophagy pathway components was evaluated by immunofluorescence, Western blotting and real-time polymerase chain reaction. RESULTS: In rabbits with KOA, joint pain, mobility disorders and cartilage degeneration were observed, the Mankin score was increased, collagen type Ⅱ (Col-Ⅱ) expression was significantly decreased, mitophagy was inhibited, mitochondrial function was impaired, and factors associated with the Pink1-Parkin pathway were inhibited. Acupotomy regulated the expression of Pink1-Parkin pathway-related proteins, the mitophagy-related protein microtubule-associated protein-1 light chain-3, the translocase of the outer membrane, and the inner mitochondrial membrane 23; increased the colocalization of mitochondria and autophagosomes; promoted the removal of damaged mitochondria; restored mitochondrial adenosine-triphosphate (ATP) production; and alleviated cartilage degeneration in rabbits with KOA. CONCLUSIONS: Acupotomy played a role in alleviating KOA in rabbits by activating mitophagy in chondrocytes via the regulation of proteins that are related to the Pink1-Parkin pathway.


Assuntos
Terapia por Acupuntura , Condrócitos , Mitofagia , Osteoartrite do Joelho , Proteínas Quinases , Ubiquitina-Proteína Ligases , Animais , Coelhos , Mitofagia/genética , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/terapia , Condrócitos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Masculino , Humanos , Transdução de Sinais , Mitocôndrias/metabolismo , Mitocôndrias/genética
3.
Cell Mol Life Sci ; 81(1): 223, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767677

RESUMO

Parkinson's disease (PD) is a common and incurable neurodegenerative disorder that arises from the loss of dopaminergic neurons in the substantia nigra and is mainly characterized by progressive loss of motor function. Monogenic familial PD is associated with highly penetrant variants in specific genes, notably the PRKN gene, where homozygous or compound heterozygous loss-of-function variants predominate. PRKN encodes Parkin, an E3 ubiquitin-protein ligase important for protein ubiquitination and mitophagy of damaged mitochondria. Accordingly, Parkin plays a central role in mitochondrial quality control but is itself also subject to a strict protein quality control system that rapidly eliminates certain disease-linked Parkin variants. Here, we summarize the cellular and molecular functions of Parkin, highlighting the various mechanisms by which PRKN gene variants result in loss-of-function. We emphasize the importance of high-throughput assays and computational tools for the clinical classification of PRKN gene variants and how detailed insights into the pathogenic mechanisms of PRKN gene variants may impact the development of personalized therapeutics.


Assuntos
Doença de Parkinson , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Ubiquitinação/genética , Mitofagia/genética , Animais
4.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697845

RESUMO

Defective mitophagy in renal tubular epithelial cells is one of the main drivers of renal fibrosis in diabetic kidney disease. Our gene sequencing data showed the expression of PINK1 and BNIP3, two key molecules of mitophagy, was decreased in renal tissues of VDR-knockout mice. Herein, streptozotocin (STZ) was used to induce renal interstitial fibrosis in mice. VDR deficiency exacerbated STZ-induced renal impairment and defective mitophagy. Paricalcitol (pari, a VDR agonist) and the tubular epithelial cell-specific overexpression of VDR restored the expression of PINK1 and BNIP3 in the renal cortex and attenuated STZ-induced kidney fibrosis and mitochondrial dysfunction. In HK-2 cells under high glucose conditions, an increased level of α-SMA, COL1, and FN and a decreased expression of PINK1 and BNIP3 with severe mitochondrial damage were observed, and these alterations could be largely reversed by pari treatment. ChIP-qPCR and luciferase reporter assays showed VDR could positively regulate the transcription of Pink1 and Bnip3 genes. These findings reveal that VDR could restore mitophagy defects and attenuate STZ-induced fibrosis in diabetic mice through regulation of PINK1 and BNIP3.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ergocalciferóis , Proteínas de Membrana , Camundongos Knockout , Mitofagia , Proteínas Quinases , Receptores de Calcitriol , Estreptozocina , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Mitofagia/genética , Mitofagia/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Humanos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/genética , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Fibrose , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Camundongos Endogâmicos C57BL , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos
5.
Front Immunol ; 15: 1370647, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694511

RESUMO

Background: Hepatic Ischemia-Reperfusion Injury (HIRI) is a major complication in liver transplants and surgeries, significantly affecting postoperative outcomes. The role of mitophagy, essential for removing dysfunctional mitochondria and maintaining cellular balance, remains unclear in HIRI. Methods: To unravel the role of mitophagy-related genes (MRGs) in HIRI, we assembled a comprehensive dataset comprising 44 HIRI samples alongside 44 normal control samples from the Gene Expression Omnibus (GEO) database for this analysis. Using Random Forests and Support Vector Machines - Recursive Feature Elimination (SVM-RFE), we pinpointed eight pivotal genes and developed a logistic regression model based on these findings. Further, we employed consensus cluster analysis for classifying HIRI patients according to their MRG expression profiles and conducted weighted gene co-expression network analysis (WGCNA) to identify clusters of genes that exhibit high correlation within different modules. Additionally, we conducted single-cell RNA sequencing data analysis to explore insights into the behavior of MRGs within the HIRI. Results: We identified eight key genes (FUNDC1, VDAC1, MFN2, PINK1, CSNK2A2, ULK1, UBC, MAP1LC3B) with distinct expressions between HIRI and controls, confirmed by PCR validation. Our diagnostic model, based on these genes, accurately predicted HIRI outcomes. Analysis revealed a strong positive correlation of these genes with monocytic lineage and a negative correlation with B and T cells. HIRI patients were divided into three subclusters based on MRG profiles, with WGCNA uncovering highly correlated gene modules. Single-cell analysis identified two types of endothelial cells with different MRG scores, indicating their varied roles in HIRI. Conclusions: Our study highlights the critical role of MRGs in HIRI and the heterogeneity of endothelial cells. We identified the macrophage migration inhibitory factor (MIF) and cGAS-STING (GAS) pathways as regulators of mitophagy's impact on HIRI. These findings advance our understanding of mitophagy in HIRI and set the stage for future research and therapeutic developments.


Assuntos
Células Endoteliais , Fígado , Mitofagia , Traumatismo por Reperfusão , Humanos , Mitofagia/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Células Endoteliais/metabolismo , Fígado/metabolismo , Fígado/patologia , Perfilação da Expressão Gênica , Masculino , Redes Reguladoras de Genes , Transcriptoma , Feminino
6.
Stem Cell Reports ; 19(5): 673-688, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38579709

RESUMO

Maintenance of mitochondrial function plays a crucial role in the regulation of muscle stem cell (MuSC), but the underlying mechanisms remain ill defined. In this study, we monitored mitophagy in MuSCS under various myogenic states and examined the role of PINK1 in maintaining regenerative capacity. Results indicate that quiescent MuSCs actively express mitophagy genes and exhibit a measurable mitophagy flux and prominent mitochondrial localization to autophagolysosomes, which become rapidly decreased during activation. Genetic disruption of Pink1 in mice reduces PARKIN recruitment to mitochondria and mitophagy in quiescent MuSCs, which is accompanied by premature activation/commitment at the expense of self-renewal and progressive loss of muscle regeneration, but unhindered proliferation and differentiation capacity. Results also show that impaired fate decisions in PINK1-deficient MuSCs can be restored by scavenging excess mitochondrial ROS. These data shed light on the regulation of mitophagy in MuSCs and position PINK1 as an important regulator of their mitochondrial properties and fate decisions.


Assuntos
Diferenciação Celular , Mitofagia , Proteínas Quinases , Regeneração , Células-Tronco , Animais , Mitofagia/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/deficiência , Camundongos , Diferenciação Celular/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/deficiência , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia , Espécies Reativas de Oxigênio/metabolismo , Desenvolvimento Muscular/genética , Proliferação de Células
7.
Free Radic Biol Med ; 219: 163-179, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38615890

RESUMO

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) is one of the liver illnesses that may be affected by mitophagy, which is the selective removal of damaged mitochondria. RNF31, an E3 ubiquitin ligase, is carcinogenic in many malignancies. However, the influence of RNF31 on mitochondrial homeostasis and NAFLD development remains unknown. METHODS: Oleic-palmitic acid treated hepatocytes and high-fat diet (HFD)-fed mice were established to observe the effect of RNF31 on hepatocyte mitophagy and steatosis. Mitophagy processes were comprehensively assessed by mt-Keima fluorescence imaging, while global changes in hepatic gene expression were measured by RNA-seq. RESULTS: The present study discovered a reduction in RNF31 expression in lipotoxic hepatocytes with mitochondrial dysfunction. The observed decrease in RNF31 expression was associated with reduced mitochondrial membrane potential, disturbed mitophagy, and increased steatosis. Additionally, the findings indicated that RNF31 is a pivotal factor in the initiation of mitophagy and the facilitation of mitochondrial homeostasis, resulting in a decrease in steatosis in lipotoxic hepatocytes. Mechanistically, RNF31 enhanced p53 ubiquitination and subsequent proteasomal degradation. Down-regulation of p53 led to increased expression of the mitophagy receptor protein BCL2 and adenovirus E1B 19 kDa-interacting protein 3 (BNIP3), thereby promoting mitophagy in hepatocytes. Furthermore, it was demonstrated that the transportation of RNF31 via small extracellular vesicles derived from mesenchymal stem cells (referred to as sEV) had a substantial influence on reducing hepatic steatosis and restoring liver function in HFD-fed mice. CONCLUSIONS: The findings highlight RNF31's essential role in the regulation of mitochondrial homeostasis in hepatocytes, emphasizing its potential as a therapeutic target for NAFLD.


Assuntos
Dieta Hiperlipídica , Hepatócitos , Proteínas de Membrana , Mitofagia , Hepatopatia Gordurosa não Alcoólica , Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases , Animais , Mitofagia/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Humanos , Dieta Hiperlipídica/efeitos adversos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Ubiquitinação , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Masculino , Camundongos Endogâmicos C57BL , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/genética
8.
Front Immunol ; 15: 1360527, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601155

RESUMO

Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which leads to muscle weakness and eventual paralysis. Numerous studies have indicated that mitophagy and immune inflammation have a significant impact on the onset and advancement of ALS. Nevertheless, the possible diagnostic and prognostic significance of mitophagy-related genes associated with immune infiltration in ALS is uncertain. The purpose of this study is to create a predictive model for ALS using genes linked with mitophagy-associated immune infiltration. Methods: ALS gene expression profiles were downloaded from the Gene Expression Omnibus (GEO) database. Univariate Cox analysis and machine learning methods were applied to analyze mitophagy-associated genes and develop a prognostic risk score model. Subsequently, functional and immune infiltration analyses were conducted to study the biological attributes and immune cell enrichment in individuals with ALS. Additionally, validation of identified feature genes in the prediction model was performed using ALS mouse models and ALS patients. Results: In this study, a comprehensive analysis revealed the identification of 22 mitophagy-related differential expression genes and 40 prognostic genes. Additionally, an 18-gene prognostic signature was identified with machine learning, which was utilized to construct a prognostic risk score model. Functional enrichment analysis demonstrated the enrichment of various pathways, including oxidative phosphorylation, unfolded proteins, KRAS, and mTOR signaling pathways, as well as other immune-related pathways. The analysis of immune infiltration revealed notable distinctions in certain congenital immune cells and adaptive immune cells between the low-risk and high-risk groups, particularly concerning the T lymphocyte subgroup. ALS mouse models and ALS clinical samples demonstrated consistent expression levels of four mitophagy-related immune infiltration genes (BCKDHA, JTB, KYNU, and GTF2H5) with the results of bioinformatics analysis. Conclusion: This study has successfully devised and verified a pioneering prognostic predictive risk score for ALS, utilizing eighteen mitophagy-related genes. Furthermore, the findings indicate that four of these genes exhibit promising roles in the context of ALS prognostic.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Animais , Camundongos , Humanos , Esclerose Lateral Amiotrófica/genética , Mitofagia/genética , Biologia Computacional , Bases de Dados Factuais , Modelos Animais de Doenças
9.
Sci Rep ; 14(1): 7877, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570643

RESUMO

Replication stress is a major contributor to tumorigenesis because it provides a source of chromosomal rearrangements via recombination events. PARK2, which encodes parkin, a regulator of mitochondrial homeostasis, is located on one of the common fragile sites that are prone to rearrangement by replication stress, indicating that replication stress may potentially impact mitochondrial homeostasis. Here, we show that chronic low-dose replication stress causes a fixed reduction in parkin expression, which is associated with mitochondrial dysfunction, indicated by an increase in mtROS. Consistent with the major role of parkin in mitophagy, reduction in parkin protein expression was associated with a slight decrease in mitophagy and changes in mitochondrial morphology. In contrast, cells expressing ectopic PARK2 gene does not show mtROS increases and changes in mitochondrial morphology even after exposure to chronic replication stress, suggesting that intrinsic fragility at PARK2 loci associated with parkin reduction is responsible for mitochondrial dysfunction caused by chronic replication stress. As endogenous replication stress and mitochondrial dysfunction are both involved in multiple pathophysiology, our data support the therapeutic development of recovery of parkin expression in human healthcare.


Assuntos
Doenças Mitocondriais , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Mitofagia/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo
10.
Oncogene ; 43(21): 1581-1593, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565942

RESUMO

Deubiquitinating enzymes (DUBs) are promising targets for cancer therapy because of their pivotal roles in various physiological and pathological processes. Among these, ubiquitin-specific peptidase 26 (USP26) is a protease with crucial regulatory functions. Our study sheds light on the upregulation of USP26 in colorectal cancer (CRC), in which its increased expression correlates with an unfavorable prognosis. Herein, we evidenced the role of USP26 in promoting CRC tumorigenesis in a parkin RBR E3 ubiquitin-protein ligase (PRKN) protein-dependent manner. Our investigation revealed that USP26 directly interacted with PRKN protein, facilitating its deubiquitination, and subsequently reducing its activity. Additionally, we identified the K129 site on PRKN as a specific target for USP26-mediated deubiquitination. Our research highlights that a K-to-R mutation at the site on PRKN diminishes its potential for activation and ability to mediate mitophagy. In summary, our findings underscore the significance of USP26-mediated deubiquitination in restraining the activation of the PRKN-mediated mitophagy pathway, ultimately driving CRC tumorigenesis. This study not only elucidated the multifaceted role of USP26 in CRC but also introduced a promising avenue for therapeutic exploration through the development of small molecule inhibitors targeting USP26. This strategy holds promise as a novel therapeutic approach for CRC.


Assuntos
Carcinogênese , Neoplasias Colorretais , Mitofagia , Ubiquitina-Proteína Ligases , Ubiquitinação , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Mitofagia/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Camundongos , Linhagem Celular Tumoral , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Camundongos Nus , Regulação Neoplásica da Expressão Gênica
11.
BMC Cardiovasc Disord ; 24(1): 183, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539069

RESUMO

BACKGROUND: Myocardial ischemia is a prevalent cardiovascular disorder associated with significant morbidity and mortality. While prompt restoration of blood flow is essential for improving patient outcomes, the subsequent reperfusion process can result in myocardial ischemia-reperfusion injury (MIRI). Mitophagy, a specialized autophagic mechanism, has consistently been implicated in various cardiovascular disorders. However, the specific connection between ischemia-reperfusion and mitophagy remains elusive. This study aims to elucidate and validate central mitophagy-related genes associated with MIRI through comprehensive bioinformatics analysis. METHODS: We acquired the microarray expression profile dataset (GSE108940) from the Gene Expression Omnibus (GEO) and identified differentially expressed genes (DEGs) using GEO2R. Subsequently, these DEGs were cross-referenced with the mitophagy database, and differential nucleotide sequence analysis was performed through enrichment analysis. Protein-protein interaction (PPI) network analysis was employed to identify hub genes, followed by clustering of these hub genes using cytoHubba and MCODE within Cytoscape software. Gene set enrichment analysis (GSEA) was conducted on central genes. Additionally, Western blotting, immunofluorescence, and quantitative polymerase chain reaction (qPCR) analyses were conducted to validate the expression patterns of pivotal genes in MIRI rat model and H9C2 cardiomyocytes. RESULTS: A total of 2719 DEGs and 61 mitophagy-DEGs were identified, followed by enrichment analyses and the construction of a PPI network. HSP90AA1, RPS27A, EEF2, EIF4A1, EIF2S1, HIF-1α, and BNIP3 emerged as the seven hub genes identified by cytoHubba and MCODE of Cytoscape software. Functional clustering analysis of HIF-1α and BNIP3 yielded a score of 9.647, as determined by Cytoscape (MCODE). In our MIRI rat model, Western blot and immunofluorescence analyses confirmed a significant elevation in the expression of HIF-1α and BNIP3, accompanied by a notable increase in the ratio of LC3II to LC3I. Subsequently, qPCR confirmed a significant upregulation of HIF-1α, BNIP3, and LC3 mRNA in the MIRI group. Activation of the HIF-1α/BNIP3 pathway mediates the regulation of the degree of Mitophagy, thereby effectively reducing apoptosis in rat H9C2 cardiomyocytes. CONCLUSIONS: This study has identified seven central genes among mitophagy-related DEGs that may play a pivotal role in MIRI, suggesting a correlation between the HIF-1α/BNIP3 pathway of mitophagy and the pathogenesis of MIRI. The findings highlight the potential importance of mitophagy in MIRI and provide valuable insights into underlying mechanisms and potential therapeutic targets for further exploration in future studies.


Assuntos
Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Humanos , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Mitofagia/genética , Mapas de Interação de Proteínas/genética , Biologia Computacional
12.
Biochem Biophys Res Commun ; 708: 149779, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38518724

RESUMO

Embryonic stem cells (ESCs) exhibit a metabolic preference for glycolysis over oxidative phosphorylation to meet their substantial adenosine triphosphate (ATP) demands during self-renewal. This metabolic choice inherently maintains low mitochondrial activity and minimal reactive oxygen species (ROS) generation. Nonetheless, the intricate molecular mechanisms governing the restraint of ROS production and the mitigation of cellular damage remain incompletely elucidated. In this study, we reveal the pivotal role of RNA-binding motif protein 46 (RBM46) in ESCs, acting as a direct post transcriptional regulator of ROS levels by modulating BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (Bnip3) mRNA expression. Rbm46 knockout lead to diminished mitochondrial autophagy, culminating in elevated ROS within ESCs, disrupting the delicate balance required for healthy self-renewal. These findings provide insights into a novel mechanism governing ROS regulation in ESCs.


Assuntos
Mitofagia , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Autofagia , Mitocôndrias/metabolismo , Mitofagia/genética , Células-Tronco Embrionárias Murinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Transl Vis Sci Technol ; 13(3): 19, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517447

RESUMO

Purpose: The regulation of mitophagy by Sirt3 has rarely been studied in ocular diseases. In the present study, we determined the effects of Sirt3 on AMPK/mTOR/ULK1 signaling pathway-mediated mitophagy in retinal pigment epithelial (RPE) cells in a high glucose environment. Methods: The mRNA expression levels of Sirt3, AMPK, mTOR, ULK1, and LC3B in RPE cells under varying glucose conditions were measured by real-time polymerase chain reaction (RT-PCR). The expressions of Sirt3, mitophagy protein, and AMPK/mTOR/ULK1 signaling pathway-related proteins were detected by Western blotting. Lentivirus (LV) transfection mediated the stable overexpression of Sirt3 in cell lines. The experimental groups were NG (5.5 mM glucose), hypertonic, HG (30 mM glucose), HG + LV-GFP, and HG + LV-Sirt3. Western blotting was performed to detect the expressions of mitophagy proteins and AMPK/mTOR/ULK1-related proteins in a high glucose environment during the overexpression of Sirt3. Reactive oxygen species (ROS) production in a high glucose environment was measured by DCFH-DA staining. Mitophagy was detected by labeling mitochondria and lysosomes with MitoTracker and LysoTracker probes, respectively. Apoptosis was detected by flow cytometry. Results: Sirt3 expression was reduced in the high glucose group, inhibiting the AMPK/mTOR/ULK1 pathway, with diminished mitophagy and increased intracellular ROS production. The overexpression of Sirt3, increased expression of p-AMPK/AMPK and p-ULK1/ULK1, and decreased expression of p-mTOR/mTOR inhibited cell apoptosis and enhanced mitophagy. Conclusions: Sirt3 protected RPE cells from high glucose-induced injury by activating the AMPK/mTOR/ULK1 signaling pathway. Translational Relevance: By identifying new targets of action, we aimed to establish effective therapeutic targets for diabetic retinopathy treatment.


Assuntos
Retinopatia Diabética , Mitofagia , Sirtuína 3 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Retinopatia Diabética/metabolismo , Células Epiteliais/metabolismo , Glucose/toxicidade , Mitofagia/genética , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Retina/patologia , Sirtuína 3/genética , Sirtuína 3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Humanos
14.
Exp Mol Med ; 56(3): 674-685, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443598

RESUMO

Mitophagy induction upon mitochondrial stress is critical for maintaining mitochondrial homeostasis and cellular function. Here, we found that Mst1/2 (Stk3/4), key regulators of the Hippo pathway, are required for the induction of mitophagy under various mitochondrial stress conditions. Knockdown of Mst1/2 or pharmacological inhibition by XMU-MP-1 treatment led to impaired mitophagy induction upon CCCP and DFP treatment. Mechanistically, Mst1/2 induces mitophagy independently of the PINK1-Parkin pathway and the canonical Hippo pathway. Moreover, our results suggest the essential involvement of BNIP3 in Mst1/2-mediated mitophagy induction upon mitochondrial stress. Notably, Mst1/2 knockdown diminishes mitophagy induction, exacerbates mitochondrial dysfunction, and reduces cellular survival upon neurotoxic stress in both SH-SY5Y cells and Drosophila models. Conversely, Mst1 and Mst2 expression enhances mitophagy induction and cell survival. In addition, AAV-mediated Mst1 expression reduced the loss of TH-positive neurons, ameliorated behavioral deficits, and improved mitochondrial function in an MPTP-induced Parkinson's disease mouse model. Our findings reveal the Mst1/2-BNIP3 regulatory axis as a novel mediator of mitophagy induction under conditions of mitochondrial stress and suggest that Mst1/2 play a pivotal role in maintaining mitochondrial function and neuronal viability in response to neurotoxic treatment.


Assuntos
Mitofagia , Neuroblastoma , Proteínas Serina-Treonina Quinases , Serina-Treonina Quinase 3 , Animais , Humanos , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Mitofagia/genética , Mitofagia/fisiologia , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Serina-Treonina Quinase 3/genética , Serina-Treonina Quinase 3/metabolismo , Drosophila/genética
15.
Zhen Ci Yan Jiu ; 49(3): 221-230, 2024 Mar 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38500318

RESUMO

OBJECTIVES: To observe the effects of electroacupuncture (EA) at "Fengfu"(GV16), "Taichong"(LR3), and "Zusanli"(ST36) on mitophagy mediated by silencing regulatory protein 3 (SIRT3)/ PTEN induced putative kinase 1 (PINK1)/PARK2 gene coding protein (Parkin) in the midbrain substantia nigra of Parkinson's disease (PD) mice, and to explore the potential mechanisms of EA in treating PD. METHODS: C57BL/6 mice were randomly divided into the control, model, EA, and sham EA groups, with 12 mice in each group. The PD mouse model was established by intraperitoneal injection of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). The EA group received EA stimulation at GV16, LR3 and ST36, while the sham EA group received shallow needling 1 mm away from the above acupoints without electrical stimulation. The motor ability of mice in each group was evaluated using an open field experiment. Immunohistochemistry was used to detect the expression of tyrosine hydroxylase (TH) and α-synuclein (α-syn) in the substantia nigra of mice. The ultrastructure of neurons in substantia nigra was observed by transmission electron microscope (TEM). Immunofluorescence was used to detect the expression of the autophagy marker autophagy-associated protein light chain 3 (LC3). The expression levels of TH, α-syn, SIRT3, PINK1, Parkin, P62, Beclin-1, LC3Ⅱ mRNA and protein were detected by PCR and Western blot. RESULTS: Compared with the control group, mice in the model group showed a decrease in the total exercise distance, time, movement speed and times of crossing central region (P<0.01);the positive expressions of TH and LC3 were decreased (P<0.01), while the positive expression of α-syn increased (P<0.01), accompanied by mitochondrial swelling, mitochondrial cristae fragmentation and decrease, and decreased lysosome count;the expression levels of TH, SIRT3, PINK1, Parkin, Beclin-1, and LC3Ⅱ mRNA and protein in the midbrain substantia nigra were decreased (P<0.01), while the expression levels of α-syn and P62 mRNA and protein were increased (P<0.01, P<0.05). Compared with the model group, the mice in EA group showed a significant increase in the total exercise distance, time, movement speed and times of crossing central region (P<0.01, P<0.05);the positive expressions of TH and LC3 were increased (P<0.01, P<0.05), while the positive expression of α-syn was decreased (P<0.01), accompanied by an increase in mitochondrial count, appearance of autophagic va-cuoles, and a decrease in swelling, the expression levels of TH, SIRT3, PINK1, Parkin, Beclin-1 and LC3Ⅱ mRNA and protein in the midbrain substantia nigra were increased (P<0.01, P<0.05), while the mRNA and protein expression levels of α-syn and P62 were decreased (P<0.01);the sham EA group showed an increase in the total exercise distance and time(P<0.05), with an increase in the positive expression of TH (P<0.05) and a decrease in the positive expression of α-syn (P<0.05);some mitochondria exhibited swelling, and no autophagic vacuoles were observed;the protein expression levels of TH, SIRT3, Parkin and LC3Ⅱ were increased (P<0.01, P<0.05), and the expression levels of P62 mRNA, α-syn mRNA and protein were decreased (P<0.01, P<0.05), and LC3Ⅱ mRNA expression was increased (P<0.05). In comparison to the sham EA group, the EA group showed an extension in the total exercise time (P<0.01), the positive expression and mRNA expression levels of α-syn were decreased (P<0.01, P<0.05), while the expression levels of TH, SIRT3, PINK1, Parkin mRNA and SIRT3 protein were increased (P<0.05). CONCLUSIONS: EA at GV16, LR3, and ST36 can exert neuroprotective function and improve the motor ability of PD mice by activating the SIRT3/PINK1/Parkin pathway to enhance the expression of TH and reduce α-syn aggregation in the substantia nigra of PD mice.


Assuntos
Eletroacupuntura , Doença de Parkinson , Sirtuína 3 , Camundongos , Animais , Doença de Parkinson/genética , Doença de Parkinson/terapia , Sirtuína 3/genética , Mitofagia/genética , Proteínas Quinases/genética , Proteína Beclina-1 , Camundongos Endogâmicos C57BL , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , RNA Mensageiro
16.
Nat Commun ; 15(1): 2264, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480688

RESUMO

NME3 is a member of the nucleoside diphosphate kinase (NDPK) family localized on the mitochondrial outer membrane (MOM). Here, we report a role of NME3 in hypoxia-induced mitophagy dependent on its active site phosphohistidine but not the NDPK function. Mice carrying a knock-in mutation in the Nme3 gene disrupting NME3 active site histidine phosphorylation are vulnerable to ischemia/reperfusion-induced infarction and develop abnormalities in cerebellar function. Our mechanistic analysis reveals that hypoxia-induced phosphatidic acid (PA) on mitochondria is essential for mitophagy and the interaction of DRP1 with NME3. The PA binding function of MOM-localized NME3 is required for hypoxia-induced mitophagy. Further investigation demonstrates that the interaction with active NME3 prevents DRP1 susceptibility to MUL1-mediated ubiquitination, thereby allowing a sufficient amount of active DRP1 to mediate mitophagy. Furthermore, MUL1 overexpression suppresses hypoxia-induced mitophagy, which is reversed by co-expression of ubiquitin-resistant DRP1 mutant or histidine phosphorylatable NME3. Thus, the site-specific interaction with active NME3 provides DRP1 a microenvironment for stabilization to proceed the segregation process in mitophagy.


Assuntos
Dinaminas , Mitofagia , Animais , Camundongos , Dinaminas/genética , Dinaminas/metabolismo , Histidina/metabolismo , Hipóxia , Mitofagia/genética , Ubiquitinação
18.
Exp Mol Med ; 56(3): 747-759, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531963

RESUMO

Intervertebral disc degeneration (IDD) is an important pathological basis for degenerative spinal diseases and is involved in mitophagy dysfunction. However, the molecular mechanisms underlying mitophagy regulation in IDD remain unclear. This study aimed to clarify the role of DJ-1 in regulating mitophagy during IDD pathogenesis. Here, we showed that the mitochondrial localization of DJ-1 in nucleus pulposus cells (NPCs) first increased and then decreased in response to oxidative stress. Subsequently, loss- and gain-of-function experiments revealed that overexpression of DJ-1 in NPCs inhibited oxidative stress-induced mitochondrial dysfunction and mitochondria-dependent apoptosis, whereas knockdown of DJ-1 had the opposite effect. Mechanistically, mitochondrial translocation of DJ-1 promoted the recruitment of hexokinase 2 (HK2) to damaged mitochondria by activating Akt and subsequently Parkin-dependent mitophagy to inhibit oxidative stress-induced apoptosis in NPCs. However, silencing Parkin, reducing mitochondrial recruitment of HK2, or inhibiting Akt activation suppressed DJ-1-mediated mitophagy. Furthermore, overexpression of DJ-1 ameliorated IDD in rats through HK2-mediated mitophagy. Taken together, these findings indicate that DJ-1 promotes HK2-mediated mitophagy under oxidative stress conditions to inhibit mitochondria-dependent apoptosis in NPCs and could be a therapeutic target for IDD.


Assuntos
Degeneração do Disco Intervertebral , Mitofagia , Proteína Desglicase DJ-1 , Animais , Ratos , Apoptose , Hexoquinase/genética , Hexoquinase/farmacologia , Hexoquinase/uso terapêutico , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Mitofagia/genética , Mitofagia/fisiologia , Proteínas Proto-Oncogênicas c-akt , Ubiquitina-Proteína Ligases/genética , Proteína Desglicase DJ-1/metabolismo
19.
Phytother Res ; 38(4): 1838-1862, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38356178

RESUMO

Mitochondrial damage is associated with the development of Parkinson's disease (PD), indicating that mitochondrial-targeted treatments could hold promise as disease-modifying approaches for PD. Notably, natural compounds have demonstrated the ability to modulate mitochondrial-related processes. In this review article, we discussed the possible neuroprotective mechanisms of natural compounds against PD in modulating mitophagy and mitochondrial function. A comprehensive literature search on natural compounds related to the treatment of PD by regulating mitophagy and mitochondrial function was conducted from PubMed, Web of Science and Chinese National Knowledge Infrastructure databases from their inception until April 2023. We summarize recent advancements in mitophagy's molecular mechanisms, including upstream and downstream processes, and its relationship with PD-related genes or proteins. Importantly, we highlight how natural compounds can therapeutically regulate various mitochondrial processes through multiple targets and pathways to alleviate oxidative stress, neuroinflammation, Lewy's body aggregation and apoptosis, which are key contributors to PD pathogenesis. Unlike the single-target strategy of modern medicine, natural compounds provide neuroprotection against PD by modulating various mitochondrial-related processes, including ameliorating mitophagy by targeting the PINK1/parkin pathway, the NIX/BNIP3 pathway, and autophagosome formation (i.e., LC3 and p62). Given the prevalence of mitochondrial damage in various neurodegenerative diseases, exploring the exact mechanism of natural compounds on mitophagy and mitochondrial dysfunction could shed light on the development of highly effective disease-modifying or adjuvant therapies targeting PD and other neurodegenerative disorders.


Assuntos
Mitofagia , Doença de Parkinson , Humanos , Mitofagia/genética , Doença de Parkinson/tratamento farmacológico , Proteínas Quinases/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320662

RESUMO

Mitochondrial encephalopathy is a neurological disorder caused by impaired mitochondrial function and energy production. One of the genetic causes of this condition is the mutation of MT-TN, a gene that encodes the mitochondrial transfer RNA (tRNA) for asparagine. MT-TN mutations affect the stability and structure of the tRNA, resulting in reduced protein synthesis and complex enzymatic deficiency of the mitochondrial respiratory chain. Our patient cohort manifests with epileptic encephalopathy, ataxia, hypotonia, and bilateral basal ganglia calcification, which differs from previously reported cases. MT-TN mutation deficiency leads to decreased basal and maximal oxygen consumption rates, disrupted spare respiratory capacity, declined mitochondrial membrane potential, and impaired ATP production. Moreover, MT-TN mutations promote mitophagy, a process of selective degradation of damaged mitochondria by autophagy. Excessive mitophagy further leads to mitochondrial biogensis as a compensatory mechanism. In this study, we provided evidence of pathogenicity for two MT-TN mutations, m.5688 T > C and m.G5691A, explored the molecular mechanisms, and summarized the clinical manifestations of MT-TN mutations. Our study expanded the genotype and phenotypic spectrum and provided new insight into mt-tRNA (Asn)-associated mitochondrial encephalopathy.


Assuntos
Encefalopatias , Encefalomiopatias Mitocondriais , Mitofagia , Humanos , Mitofagia/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Encefalopatias/genética , Encefalopatias/metabolismo , RNA de Transferência/genética , RNA Mitocondrial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA