Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
1.
Mol Cell ; 84(14): 2596-2597, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39059368

RESUMO

In a recent publication in Cell, Woo et al.1 report that stimulator of interferon genes (STING) links inflammation with glutamate-driven excitotoxicity to induce ferroptosis, identifying a mechanism of inflammation-induced neurodegeneration and also a novel candidate therapeutic target for multiple sclerosis.


Assuntos
Ferroptose , Proteínas de Membrana , Esclerose Múltipla , Neuroproteção , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Animais , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Molécula 1 de Interação Estromal/metabolismo , Molécula 1 de Interação Estromal/genética , Ácido Glutâmico/metabolismo , Inflamação , Transdução de Sinais
2.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062821

RESUMO

Sensing the lowering of endoplasmic reticulum (ER) calcium (Ca2+), STIM1 mediates a ubiquitous Ca2+ influx process called the store-operated Ca2+ entry (SOCE). Dysregulated STIM1 function or abnormal SOCE is strongly associated with autoimmune disorders, atherosclerosis, and various forms of cancers. Therefore, uncovering the molecular intricacies of post-translational modifications, such as oxidation, on STIM1 function is of paramount importance. In a recent proteomic screening, we identified three protein disulfide isomerases (PDIs)-Prolyl 4-hydroxylase subunit beta (P4HB), protein disulfide-isomerase A3 (PDIA3), and thioredoxin domain-containing protein 5 (TXNDC5)-as the ER-luminal interactors of STIM1. Here, we demonstrated that these PDIs dynamically associate with STIM1 and STIM2. The mutation of the two conserved cysteine residues of STIM1 (STIM1-2CA) decreased its Ca2+ affinity both in cellulo and in situ. Knockdown of PDIA3 or P4HB increased the Ca2+ affinity of wild-type STIM1 while showing no impact on the STIM1-2CA mutant, indicating that PDIA3 and P4HB regulate STIM1's Ca2+ affinity by acting on ER-luminal cysteine residues. This modulation of STIM1's Ca2+ sensitivity was further confirmed by Ca2+ imaging experiments, which showed that knockdown of these two PDIs does not affect STIM1-mediated SOCE upon full store depletion but leads to enhanced SOCE amplitudes upon partial store depletion. Thus, P4HB and PDIA3 dynamically modulate STIM1 activation by fine-tuning its Ca2+ binding affinity, adjusting the level of activated STIM1 in response to physiological cues. The coordination between STIM1-mediated Ca2+ signaling and redox responses reported herein may have implications for cell physiology and pathology.


Assuntos
Cálcio , Proteínas de Neoplasias , Oxirredução , Pró-Colágeno-Prolina Dioxigenase , Isomerases de Dissulfetos de Proteínas , Molécula 1 de Interação Estromal , Molécula 1 de Interação Estromal/metabolismo , Molécula 1 de Interação Estromal/genética , Humanos , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Cálcio/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Pró-Colágeno-Prolina Dioxigenase/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Retículo Endoplasmático/metabolismo , Células HEK293 , Ligação Proteica , Sinalização do Cálcio , Molécula 2 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/genética
3.
Hypertension ; 81(9): 1895-1909, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38989583

RESUMO

BACKGROUND: STIM1 (stromal interaction molecule 1) regulates store-operated calcium entry and is involved in pulmonary artery vasoconstriction and pulmonary artery smooth muscle cell proliferation, leading to pulmonary arterial hypertension (PAH). METHODS: Bioinformatics analysis and a 2-stage matched case-control study were conducted to screen for noncoding variants that may potentially affect STIM1 transcriptional regulation in 242 patients with idiopathic PAH and 414 healthy controls. Luciferase reporter assay, real-time quantitative polymerase chain reaction, western blot, 5-ethynyl-2'-deoxyuridine (EdU) assay, and intracellular Ca2+ measurement were performed to study the mechanistic roles of those STIM1 noncoding variants in PAH. RESULTS: Five noncoding variants (rs3794050, rs7934581, rs3750996, rs1561876, and rs3750994) were identified and genotyped using Sanger sequencing. Rs3794050, rs7934581, and rs1561876 were associated with idiopathic PAH (recessive model, all P<0.05). Bioinformatics analysis showed that these 3 noncoding variants possibly affect the enhancer function of STIM1 or the microRNA (miRNA) binding to STIM1. Functional validation performed in HEK293 and pulmonary artery smooth muscle cells demonstrated that the noncoding variant rs1561876-G (STIM1 mutant) had significantly stronger transcriptional activity than the wild-type counterpart, rs1561876-A, by affecting the transcriptional regulatory function of both hsa-miRNA-3140-5p and hsa-miRNA-4766-5p. rs1561876-G enhanced intracellular Ca2+ signaling in human pulmonary artery smooth muscle cells secondary to calcium-sensing receptor activation and promoted proliferation of pulmonary artery smooth muscle cells under both normoxia and hypoxia conditions, suggesting a possible contribution to PAH development. CONCLUSIONS: The potential clinical implications of the 3 noncoding variants of STIM1, rs3794050, rs7934581, and rs1561876, are 2-fold, as they may help predict the risk and prognosis of idiopathic PAH and guide investigations on novel therapeutic pathway(s).


Assuntos
Artéria Pulmonar , Molécula 1 de Interação Estromal , Humanos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Masculino , Feminino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Adulto , Proteínas de Neoplasias/genética , Miócitos de Músculo Liso/metabolismo , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/fisiopatologia , Predisposição Genética para Doença , Músculo Liso Vascular/metabolismo , Regulação da Expressão Gênica , Proliferação de Células/genética , Polimorfismo de Nucleotídeo Único
4.
Eur J Pharmacol ; 979: 176832, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39038639

RESUMO

The contractile function of vascular smooth muscle cells (VSMCs) typically undergoes significant changes with advancing age, leading to severe vascular aging-related diseases. The precise role and mechanism of stromal interaction molecule-1 (STIM1) in age-mediated Ca2+ signaling and vasocontraction remain unclear. The connection between STIM1 and age-related vascular dysfunction was investigated using a multi-myograph system, immunohistochemical analysis, protein blotting, and SA-ß-gal staining. Results showed that vasoconstrictor responses in the thoracic aorta, intrarenal artery, and coronary artery decreased with age. STIM1 knockdown in the intrarenal and coronary arteries reduced vascular tone in young mice, while no change was observed in the thoracic aorta. A significant reduction in vascular tone occurred in the STIM1 knockout group with nifedipine. In the thoracic aorta, vasoconstriction significantly decreased with age following the use of nifedipine and thapsigargin and almost disappeared after STIM1 knockdown. The proportion of senescent VSMCs increased significantly in aged mice and further increased in sm-STIM1 KO aged mice. Moreover, the expression of senescence markers p21, p16, and IL-6 significantly increased with age, with p21 expression further increased in the STIM1 knockdown aged group, but not p16 or IL-6. These findings indicate that different arteries exhibit distinct organ-specific features and that STIM1 downregulation may contribute to age-related vasoconstrictive dysfunction through activation of the p21 pathway.


Assuntos
Envelhecimento , Vasos Coronários , Regulação para Baixo , Molécula 1 de Interação Estromal , Vasoconstrição , Animais , Molécula 1 de Interação Estromal/metabolismo , Molécula 1 de Interação Estromal/genética , Vasoconstrição/efeitos dos fármacos , Camundongos , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Envelhecimento/metabolismo , Masculino , Camundongos Knockout , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Artéria Renal/metabolismo , Senescência Celular/efeitos dos fármacos , Interleucina-6/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Aorta/metabolismo , Aorta/efeitos dos fármacos
5.
Clin Immunol ; 265: 110306, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38977117

RESUMO

Store-operated calcium entry (SOCE) plays a crucial role in maintaining cellular calcium homeostasis. This mechanism involves proteins, such as stromal interaction molecule 1 (STIM1) and ORAI1. Mutations in the genes encoding these proteins, especially STIM1, can lead to various diseases, including CRAC channelopathies associated with severe combined immunodeficiency. Herein, we describe a novel homozygous mutation, NM_003156 c.792-3C > G, in STIM1 in a patient with a clinical profile of CRAC channelopathy, including immune system deficiencies and muscle weakness. Functional analyses revealed three distinct spliced forms in the patient cells: wild-type, exon 7 skipping, and intronic retention. Calcium influx analysis revealed impaired SOCE in the patient cells, indicating a loss of STIM1 function. We developed an antisense oligonucleotide treatment that improves STIM1 splicing and highlighted its potential as a therapeutic approach. Our findings provide insights into the complex effects of STIM1 mutations and shed light on the multifaceted clinical presentation of the patient.


Assuntos
Cálcio , Mutação , Proteínas de Neoplasias , Molécula 1 de Interação Estromal , Humanos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Cálcio/metabolismo , Canalopatias/genética , Masculino , Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Feminino , Imunodeficiência Combinada Severa/genética , Proteína ORAI1/genética , Proteína ORAI1/metabolismo
6.
Neurotoxicology ; 103: 134-145, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38901802

RESUMO

Methamphetamine (METH) is a widely abused amphetamine-type psychoactive drug that causes serious health problems. Previous studies have demonstrated that METH can induce neuron autophagy and apoptosis in vivo and in vitro. However, the molecular mechanisms underlying METH-induced neuron autophagy and apoptosis remain poorly understood. Stromal interacting molecule 1 (STIM1) was hypothesized to be involved in METH-induced neuron autophagy and apoptosis. Therefore, the expression of STIM1 protein was measured and the effect of blocking STIM1 expression with siRNA was investigated in cultured neuronal cells, and the hippocampus and striatum of mice exposed to METH. Furthermore, intracellular calcium concentration and endoplasmic reticulum (ER) stress-related proteins were determined in vitro and in vivo in cells treated with METH. The results suggested that STIM1 mediates METH-induced neuron autophagy by activating the p-Akt/p-mTOR pathway. METH exposure also resulted in increased expression of Orai1, which was reversed after STIM1 silencing. Moreover, the disruption of intracellular calcium homeostasis induced ER stress and up-regulated the expression of pro-apoptotic protein CCAAT/enhancer-binding protein homologous protein (CHOP), resulting in classic mitochondria apoptosis. METH exposure can cause neuronal autophagy and apoptosis by increasing the expression of STIM1 protein; thus, STIM1 may be a potential gene target for therapeutics in METH-caused neurotoxicity.


Assuntos
Apoptose , Autofagia , Estresse do Retículo Endoplasmático , Metanfetamina , Neurônios , Molécula 1 de Interação Estromal , Metanfetamina/toxicidade , Animais , Molécula 1 de Interação Estromal/metabolismo , Molécula 1 de Interação Estromal/genética , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Estimulantes do Sistema Nervoso Central/toxicidade , Cálcio/metabolismo , Células Cultivadas , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-38918943

RESUMO

INTRODUCTION: This study explores the immunogenetic associations of human leukocyte antigens (HLA) and the calcium release-activated calcium modulator 1 (ORAI1) and stromal interaction molecule 1 (STIM1) genes in HIV-1‒positive patients with HIV-related skin disorders. METHODS: This study assessed the distribution of variants of HLA class II alleles and expression levels of ORAI1 and STIM1 genes in the blood between HIV-1‒positive patients with HIV-related skin disorders and the control group with no HIV within the Latvian population. RESULTS: The research group comprised 115 HIV-1‒positive patients with HIV-related skin disorders, and the control group included 80 healthy individuals. Risk alleles (HLA- DQB1*02:01-0301 and HLA-DQA1*01:01-0501) and protective alleles (HLA-DRB1*07-13, DRB1*01-13, DRB1*04-11, and HLA-DQA1*05:01-0501) showed statistical significance in the groups. In 38 out of 115 patients, higher expression levels of ORAI1 and STIM1 genes were detected in the blood at the beginning of treatment. A significantly higher level of the microribonucleic acid (mRNA) ORAI1 gene was also found in the control group. CONCLUSIONS: The results demonstrate that HLA class II alleles are associated with a trend toward risk/protection concerning HIV-related skin disorders in HIV-1‒positive patients. It was also shown that a low level of ORAI1 mRNA and the risk allele HLA-DQB1*0201-0301 were simultaneously present in the research group.


Assuntos
Infecções por HIV , Proteína ORAI1 , Polimorfismo Genético , Molécula 1 de Interação Estromal , Humanos , Proteína ORAI1/genética , Masculino , Letônia , Feminino , Molécula 1 de Interação Estromal/genética , Adulto , Infecções por HIV/genética , Pessoa de Meia-Idade , Dermatopatias/genética , Estudos de Casos e Controles , Proteínas de Neoplasias/genética , Predisposição Genética para Doença
8.
J Biol Chem ; 300(7): 107422, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815866

RESUMO

Infiltration of monocyte-derived cells to sites of infection and injury is greater in males than in females, due in part, to increased chemotaxis, the process of directed cell movement toward a chemical signal. The mechanisms governing sexual dimorphism in chemotaxis are not known. We hypothesized a role for the store-operated calcium entry (SOCE) pathway in regulating chemotaxis by modulating leading and trailing edge membrane dynamics. We measured the chemotactic response of bone marrow-derived macrophages migrating toward complement component 5a (C5a). Chemotactic ability was dependent on sex and inflammatory phenotype (M0, M1, and M2), and correlated with SOCE. Notably, females exhibited a significantly lower magnitude of SOCE than males. When we knocked out the SOCE gene, stromal interaction molecule 1 (STIM1), it eliminated SOCE and equalized chemotaxis across both sexes. Analysis of membrane dynamics at the leading and trailing edges showed that STIM1 influences chemotaxis by facilitating retraction of the trailing edge. Using BTP2 to pharmacologically inhibit SOCE mirrored the effects of STIM1 knockout, demonstrating a central role of STIM/Orai-mediated calcium signaling. Importantly, by monitoring the recruitment of adoptively transferred monocytes in an in vivo model of peritonitis, we show that increased infiltration of male monocytes during infection is dependent on STIM1. These data support a model in which STIM1-dependent SOCE is necessary and sufficient for mediating the sex difference in monocyte recruitment and macrophage chemotactic ability by regulating trailing edge dynamics.


Assuntos
Cálcio , Quimiotaxia , Macrófagos , Monócitos , Molécula 1 de Interação Estromal , Animais , Feminino , Masculino , Camundongos , Cálcio/metabolismo , Sinalização do Cálcio , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Caracteres Sexuais , Molécula 1 de Interação Estromal/metabolismo , Molécula 1 de Interação Estromal/genética
9.
Proc Natl Acad Sci U S A ; 121(21): e2318874121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753510

RESUMO

The single-pass transmembrane protein Stromal Interaction Molecule 1 (STIM1), located in the endoplasmic reticulum (ER) membrane, possesses two main functions: It senses the ER-Ca2+ concentration and directly binds to the store-operated Ca2+ channel Orai1 for its activation when Ca2+ recedes. At high resting ER-Ca2+ concentration, the ER-luminal STIM1 domain is kept monomeric but undergoes di/multimerization once stores are depleted. Luminal STIM1 multimerization is essential to unleash the STIM C-terminal binding site for Orai1 channels. However, structural basis of the luminal association sites has so far been elusive. Here, we employed molecular dynamics (MD) simulations and identified two essential di/multimerization segments, the α7 and the adjacent region near the α9-helix in the sterile alpha motif (SAM) domain. Based on MD results, we targeted the two STIM1 SAM domains by engineering point mutations. These mutations interfered with higher-order multimerization of ER-luminal fragments in biochemical assays and puncta formation in live-cell experiments upon Ca2+ store depletion. The STIM1 multimerization impeded mutants significantly reduced Ca2+ entry via Orai1, decreasing the Ca2+ oscillation frequency as well as store-operated Ca2+ entry. Combination of the ER-luminal STIM1 multimerization mutations with gain of function mutations and coexpression of Orai1 partially ameliorated functional defects. Our data point to a hydrophobicity-driven binding within the ER-luminal STIM1 multimer that needs to switch between resting monomeric and activated multimeric state. Altogether, these data reveal that interactions between SAM domains of STIM1 monomers are critical for multimerization and activation of the protein.


Assuntos
Proteínas de Neoplasias , Multimerização Proteica , Molécula 1 de Interação Estromal , Humanos , Sítios de Ligação , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/química , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/química , Ligação Proteica , Domínios Proteicos , Molécula 1 de Interação Estromal/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/química
10.
Sci Rep ; 14(1): 11243, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755179

RESUMO

Immune thrombocytopenia (ITP) is an autoimmune disease caused by T-cell dysfunction. Recently, several studies have shown that a disturbed Th17/Treg balance contributes to the development of ITP. MicroRNAs (miRNAs) are small noncoding RNA moleculesthat posttranscriptionally regulate gene expression. Emerging evidences have demonstrated that miRNAs play an important role in regulating the Th17/Treg balance. In the present study, we found that miR-641 was upregulated in ITP patients. In primary T cells, overexpression of miR-641 could cause downregulation of its target genes STIM1 and SATB1, thus inducing a Th17 (upregulated)/Treg (downregulated) imbalance. Inhibition of miR-641 by a miR-641 sponge in primary T cells of ITP patients or by antagomiR-641 in an ITP murine model could cause upregulation of STIM1 and SATB1, thus restoring Th17/Treg homeostasis. These results suggested that the miR-641-STIM/SATB1 axis plays an important role in regulating the Th17/Treg balance in ITP.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , MicroRNAs , Púrpura Trombocitopênica Idiopática , Molécula 1 de Interação Estromal , Linfócitos T Reguladores , Células Th17 , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais de Doenças , Regulação da Expressão Gênica , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Púrpura Trombocitopênica Idiopática/imunologia , Púrpura Trombocitopênica Idiopática/genética , Púrpura Trombocitopênica Idiopática/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th17/imunologia , Células Th17/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L150-L159, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38771147

RESUMO

Alteration in the normal mechanical forces of breathing can contribute to changes in contractility and remodeling characteristic of airway diseases, but the mechanisms that mediate these effects in airway cells are still under investigation. Airway smooth muscle (ASM) cells contribute to both contractility and extracellular matrix (ECM) remodeling. In this study, we explored ASM mechanisms activated by mechanical stretch, focusing on mechanosensitive piezo channels and the key Ca2+ regulatory protein stromal interaction molecule 1 (STIM1). Expression of Ca2+ regulatory proteins, including STIM1, Orai1, and caveolin-1, mechanosensitive ion channels Piezo-1 and Piezo-2, and NLRP3 inflammasomes were upregulated by 10% static stretch superimposed on 5% cyclic stretch. These effects were blunted by STIM1 siRNA. Histamine-induced [Ca2+]i responses and inflammasome activation were similarly blunted by STIM1 knockdown. These data show that the effects of mechanical stretch in human ASM cells are mediated through STIM1, which activates multiple pathways, including Piezo channels and the inflammasome, leading to potential downstream changes in contractility and ECM remodeling.NEW & NOTEWORTHY Mechanical forces on the airway can contribute to altered contractility and remodeling in airway diseases, but the mechanisms are not clearly understood. Using human airway smooth muscle cells exposed to cyclic forces with static stretch to mimic breathing and static pressure, we found that the effects of stretch are mediated through STIM1, resulting in the activation of multiple pathways, including Piezo channels and the inflammasome, with potential downstream influences on contractility and remodeling.


Assuntos
Miócitos de Músculo Liso , Molécula 1 de Interação Estromal , Humanos , Molécula 1 de Interação Estromal/metabolismo , Molécula 1 de Interação Estromal/genética , Miócitos de Músculo Liso/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Inflamassomos/metabolismo , Estresse Mecânico , Mecanotransdução Celular , Músculo Liso/metabolismo , Canais Iônicos/metabolismo , Caveolina 1/metabolismo , Caveolina 1/genética , Transdução de Sinais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Cálcio/metabolismo , Células Cultivadas , Contração Muscular/fisiologia , Remodelação das Vias Aéreas/fisiologia , Proteína ORAI1/metabolismo , Proteína ORAI1/genética
12.
J Clin Immunol ; 44(4): 94, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578569

RESUMO

PURPOSE: Deficiency of stromal interaction molecule 1 (STIM1) results in combined immunodeficiency accompanied by extra-immunological findings like enamel defects and myopathy. We here studied a patient with a STIM1 loss-of-function mutation who presented with severe lymphoproliferation. We sought to explore the efficacy of the mTOR inhibitor rapamycin in controlling disease manifestations and reversing aberrant T-cell subsets and functions, which has never been used previously in this disorder. METHODS: Clinical findings of the patient were collected over time. We performed immunological evaluations before and after initiation of rapamycin treatment, including detailed lymphocyte subset analyses, alterations in frequencies of circulating T follicular helper (cTFH) and regulatory T (Treg) cells and their subtypes as well as T cell activation and proliferation capacities. RESULTS: A novel homozygous exon 2 deletion in STIM1 was detected in a 3-year-old girl with severe lymphoproliferation, recurrent infections, myopathy, iris hypoplasia, and enamel hypoplasia. Lymphoproliferation was associated with severe T-cell infiltrates. The deletion resulted in a complete loss of protein expression, associated with a lack of store-operated calcium entry response, defective T-cell activation, proliferation, and cytokine production. Interestingly, patient blood contained fewer cTFH and increased circulating follicular regulatory (cTFR) cells. Abnormal skewing towards TH2-like responses in certain T-cell subpopulations like cTFH, non-cTFH memory T-helper, and Treg cells was associated with increased eosinophil numbers and serum IgE levels. Treatment with rapamycin controlled lymphoproliferation, improved T-cell activation and proliferation capacities, reversed T-cell responses, and repressed high IgE levels and eosinophilia. CONCLUSIONS: This study enhances our understanding of STIM1 deficiency by uncovering additional abnormal T-cell responses, and reveals for the first time the potential therapeutic utility of rapamycin for this disorder.


Assuntos
Doenças Musculares , Sirolimo , Feminino , Humanos , Pré-Escolar , Molécula 1 de Interação Estromal/genética , Subpopulações de Linfócitos T , Imunoglobulina E , Proteínas de Neoplasias
13.
Ann Clin Lab Sci ; 54(1): 17-25, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38514055

RESUMO

OBJECTIVE: Diabetic cardiomyopathy (DCM) is the most common cardiovascular complication of type 2 diabetes mellitus (T2DM). Patients affected with DCM face a notably higher risk of progressing to congestive heart failure compared to other populations. Myocardial hypertrophy, a clearly confirmed pathological change in DCM, plays an important role in the development of DCM, with abnormal Ca2+ homeostasis serving as the key signal to induce myocardial hypertrophy. Therefore, investigating the mechanism of Ca2+ transport is of great significance for the prevention and treatment of myocardial hypertrophy in T2DM. METHODS: The rats included in the experiment were divided into wild type (WT) group and T2DM group. The T2DM rat model was established by feeding the rats with high-fat and high-sugar diets for three months combined with low dose of streptozotocin (100mg/kg). Afterwards, primary rat cardiomyocytes were isolated and cultured, and cardiomyocyte hypertrophy was induced through high-glucose treatment. Subsequently, mechanistic investigations were carried out through transfection with si-STIM1 and oe-STIM1. Western blot (WB) was used to detect the expression of the STIM1, Orai1 and p-CaMKII. qRT-PCR was used to detect mRNA levels of myocardial hypertrophy marker proteins. Cell surface area was detected using TRITC-Phalloidin staining, and intracellular Ca2+ concentration in cardiomyocytes was measured using Fluo-4 fluorescence staining. RESULTS: Through animal experiments, an upregulation of Orai1 and STIM1 was revealed in the rat model of myocardial hypertrophy induced by T2DM. Meanwhile, through cell experiments, it was found that in high glucose (HG)-induced hypertrophic cardiomyocytes, the expression of STIM1, Orai1, and p-CaMKII was upregulated, along with increased levels of store-operated Ca2+ entry (SOCE) and abnormal Ca2+ homeostasis. However, when STIM1 was downregulated in HG-induced cardiomyocytes, SOCE levels decreased and p-CaMKII was downregulated, resulting in an improvement in myocardial hypertrophy. To further elucidate the mechanism of action involving SOCE and CaMKII in T2DM-induced myocardial hypertrophy, high-glucose cardiomyocytes were respectively treated with BTP2 (SOCE blocker) and KN-93 (CaMKII inhibitor), and the results showed that STIM1 can mediate SOCE, thereby affecting the phosphorylation level of CaMKII and improving cardiomyocyte hypertrophy. CONCLUSION: STIM1/Orai1-mediated SOCE regulates p-CaMKII levels, thereby inducing myocardial hypertrophy in T2DM.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cálcio , Cardiomegalia , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Glucose , Proteína ORAI1 , Molécula 1 de Interação Estromal , Animais , Ratos , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Glucose/metabolismo , Glucose/farmacologia , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Regulação para Cima , Cardiomiopatias Diabéticas/complicações , Ratos Sprague-Dawley , Masculino
14.
Cell Calcium ; 119: 102871, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537434

RESUMO

The stromal interaction molecules (STIMs) are the sarcoplasmic reticulum (SR) Ca2+ sensors that trigger store-operated Ca2+ entry (SOCE) in a variety of cell types. While STIM1 isoform has been the focus of the research in cardiac pathophysiology, the function of the homolog STIM2 remains unknown. Using Ca2+ imaging and patch-clamp techniques, we showed that knockdown (KD) of STIM2 by siRNAs increased SOCE and the ISOC current in neonatal rat ventricular cardiomyocytes (NRVMs). Within this cardiomyocyte model, we identified the transcript expression of Stim2.1 and Stim2.2 splice variants, with predominance for Stim2.2. Using conventional and super-resolution confocal microscopy (STED), we found that exogenous STIM2.1 and STIM2.2 formed pre-clusters with a reticular organization at rest. Following SR Ca2+ store depletion, some STIM2.1 and STIM2.2 clusters were translocated to SR-plasma membrane (PM) junctions and co-localized with Orai1. The overexpression strategy revealed that STIM2.1 suppressed Orai1-mediated SOCE and the ISOC current while STIM2.2 enhanced SOCE. STIM2.2-enhanced SOCE was also dependent on TRPC1 and TRPC4. Even if STIM2 KD or splice variants overexpression did not affect cytosolic Ca2+ cycling, we observed, using Rhod-2/AM Ca2+ imaging, that Orai1 inhibition or STIM2.1 overexpression abolished the mitochondrial Ca2+ (mCa2+) uptake, as opposed to STIM2 KD. We also found that STIM2 was present in the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) by interacting with the inositol trisphosphate receptors (IP3Rs), voltage-dependent anion channel (VDAC), mitochondrial Ca2+ uniporter (MCU), and mitofusin-2 (MNF2). Our results suggested that, in NRVMs, STIM2.1 constitutes the predominant functional variant that negatively regulates Orai1-generated SOCE. It participates in the control of mCa2+ uptake capacity possibly via the STIM2-IP3Rs-VDAC-MCU and MNF2 complex.


Assuntos
Cálcio , Miócitos Cardíacos , Molécula 1 de Interação Estromal , Animais , Ratos , Transporte Biológico , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Homeostase , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
15.
J Clin Invest ; 134(7)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300705

RESUMO

Stromal interaction molecule 1 (STIM1) is a Ca2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle, where it is best known for its role in store-operated Ca2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focused on a gain-of-function mutation that occurs in humans and mice (STIM1+/D84G mice), in which muscles exhibited constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca2+ transients, SR Ca2+ content, or excitation-contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1+/D84G muscle disrupted nuclear-cytosolic coupling, causing severe derangement in nuclear architecture, DNA damage, and altered lamina A-associated gene expression. Functionally, we found that D84G STIM1 reduced the transfer of Ca2+ from the cytosol to the nucleus in myoblasts, resulting in a reduction of [Ca2+]N. Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca2+ signaling to nuclear stability in skeletal muscle.


Assuntos
Debilidade Muscular , Membrana Nuclear , Molécula 1 de Interação Estromal , Animais , Humanos , Camundongos , Cálcio/metabolismo , Sinalização do Cálcio , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteína ORAI1/genética , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
16.
Toxicol Lett ; 393: 69-77, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281554

RESUMO

Lead (Pb) is a non-biodegradable environmental pollutant that can lead to neurotoxicity by inducing neuroinflammation. Microglial activation plays a key role in neuroinflammation, and microglial migration is one of its main features. However, whether Pb affects microglial migration has not yet been elucidated. Herein, the effect of Pb on microglial migration was investigated using BV-2 microglial cells and primary microglial cells. The results showed that cell activation markers (TNF-α and CD206) in BV-2 cells were increased after Pb treatment. The migration ability of microglia was inhibited by Pb. Both store-operated calcium entry (SOCE) and the Ca2+ release-activated Ca2+ (CRAC) current were downregulated by microglia treatment with Pb in a dose-dependent manner. However, there was no statistical difference in the protein levels of stromal interaction molecule (STIM) 1, STIM2, or Ca2+ release-activated Ca2+ channel protein (Orai) 1 in microglia. The external Ca2+ influx and cell migration ability were restored to a certain extent after overexpression of either STIM1 or its CRAC activation domain in microglia. These results indicated that Pb inhibits microglial migration by downregulation of SOCE and impairment of the function of STIM1.


Assuntos
Sinalização do Cálcio , Microglia , Humanos , Cálcio/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Doenças Neuroinflamatórias , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Proteína ORAI1/farmacologia , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Movimento Celular
17.
Nucleic Acids Res ; 52(5): 2389-2415, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38224453

RESUMO

DNA damage represents a challenge for cells, as this damage must be eliminated to preserve cell viability and the transmission of genetic information. To reduce or eliminate unscheduled chemical modifications in genomic DNA, an extensive signaling network, known as the DNA damage response (DDR) pathway, ensures this repair. In this work, and by means of a proteomic analysis aimed at studying the STIM1 protein interactome, we have found that STIM1 is closely related to the protection from endogenous DNA damage, replicative stress, as well as to the response to interstrand crosslinks (ICLs). Here we show that STIM1 has a nuclear localization signal that mediates its translocation to the nucleus, and that this translocation and the association of STIM1 to chromatin increases in response to mitomycin-C (MMC), an ICL-inducing agent. Consequently, STIM1-deficient cell lines show higher levels of basal DNA damage, replicative stress, and increased sensitivity to MMC. We show that STIM1 normalizes FANCD2 protein levels in the nucleus, which explains the increased sensitivity of STIM1-KO cells to MMC. This study not only unveils a previously unknown nuclear function for the endoplasmic reticulum protein STIM1 but also expands our understanding of the genes involved in DNA repair.


Assuntos
Núcleo Celular , Dano ao DNA , Molécula 1 de Interação Estromal , Cromatina/genética , Reparo do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Mitomicina/farmacologia , Proteômica , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Humanos , Núcleo Celular/metabolismo , Proteínas de Neoplasias/metabolismo
18.
J Hypertens ; 42(1): 118-128, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37711097

RESUMO

BACKGROUND: The stroke-prone spontaneously hypertensive rat (SHRSP) is a genetic model for cerebral stroke. Although a recent study on a congenic SHRSP suggested that a nonsense mutation in stromal interaction molecule 1 ( Stim1 ) encoding a major component of store-operated Ca 2+ entry was a causal variant for stroke in SHRSP, this was not conclusive because the congenic region including Stim1 in that rat was too wide. On the other hand, we demonstrated that the Wistar-Kyoto (WKY)-derived congenic fragment adjacent to Stim1 exacerbated stroke susceptibility in a congenic SHRSP called SPwch1.71. In the present study, we directly examined the effects of the Stim1 genotype on stroke susceptibility using SHRSP in which wild-type Stim1 was knocked in (called Stim1 -KI SHRSP). The combined effects of Stim1 and the congenic fragment of SPwch1.71 were also investigated. METHODS: Stroke susceptibility was assessed by the stroke symptom-free and survival periods based on observations of behavioral symptoms and reductions in body weight. RESULTS: Stim1 -KI SHRSP was more resistant to, while SPwch1.71 was more susceptible to stroke than the original SHRSP. Introgression of the wild-type Stim1 of Stim1 -KI SHRSP into SPwch1.71 by the generation of F1 rats ameliorated stroke susceptibility in SPwch1.71. Gene expression, whole-genome sequencing, and biochemical analyses identified Art2b , Folr1 , and Pde2a as possible candidate genes accelerating stroke in SPwch1.71. CONCLUSION: The substitution of SHRSP-type Stim1 to wild-type Stim1 ameliorated stroke susceptibility in both SHRSP and SPwch1.71, indicating that the nonsense mutation in Stim1 is causally related to stroke susceptibility in SHRSP.


Assuntos
Hipertensão , Acidente Vascular Cerebral , Humanos , Ratos , Animais , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Hipertensão/complicações , Hipertensão/genética , Hipertensão/metabolismo , Cromossomos Humanos Par 1/metabolismo , Molécula 1 de Interação Estromal/genética , Códon sem Sentido , Genótipo , Acidente Vascular Cerebral/etiologia
19.
Nat Commun ; 14(1): 6921, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903816

RESUMO

Ca2+ signal-generation through inter-membrane junctional coupling between endoplasmic reticulum (ER) STIM proteins and plasma membrane (PM) Orai channels, remains a vital but undefined mechanism. We identify two unusual overlapping Phe-His aromatic pairs within the STIM1 apical helix, one of which (F394-H398) mediates important control over Orai1-STIM1 coupling. In resting STIM1, this locus is deeply clamped within the folded STIM1-CC1 helices, likely near to the ER surface. The clamped environment in holo-STIM1 is critical-positive charge replacing Phe-394 constitutively unclamps STIM1, mimicking store-depletion, negative charge irreversibly locks the clamped-state. In store-activated, unclamped STIM1, Phe-394 mediates binding to the Orai1 channel, but His-398 is indispensable for transducing STIM1-binding into Orai1 channel-gating, and is spatially aligned with Phe-394 in the exposed Sα2 helical apex. Thus, the Phe-His locus traverses between ER and PM surfaces and is decisive in the two critical STIM1 functions-unclamping to activate STIM1, and conformational-coupling to gate the Orai1 channel.


Assuntos
Sinalização do Cálcio , Cálcio , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Sinalização do Cálcio/fisiologia
20.
J Biol Chem ; 299(11): 105310, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778728

RESUMO

T-cell receptor stimulation triggers cytosolic Ca2+ signaling by inositol-1,4,5-trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum (ER) and Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC) channels gated by ER-located stromal-interacting molecules (STIM1/2). Physiologically, cytosolic Ca2+ signaling manifests as regenerative Ca2+ oscillations, which are critical for nuclear factor of activated T-cells-mediated transcription. In most cells, Ca2+ oscillations are thought to originate from IP3 receptor-mediated Ca2+ release, with CRAC channels indirectly sustaining them through ER refilling. Here, experimental and computational evidence support a multiple-oscillator mechanism in Jurkat T-cells whereby both IP3 receptor and CRAC channel activities oscillate and directly fuel antigen-evoked Ca2+ oscillations, with the CRAC channel being the major contributor. KO of either STIM1 or STIM2 significantly reduces CRAC channel activity. As such, STIM1 and STIM2 synergize for optimal Ca2+ oscillations and activation of nuclear factor of activated T-cells 1 and are essential for ER refilling. The loss of both STIM proteins abrogates CRAC channel activity, drastically reduces ER Ca2+ content, severely hampers cell proliferation and enhances cell death. These results clarify the mechanism and the contribution of STIM proteins to Ca2+ oscillations in T-cells.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Sinalização do Cálcio , Humanos , Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Sinalização do Cálcio/genética , Células Jurkat , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/genética , Molécula 2 de Interação Estromal/metabolismo , Técnicas de Inativação de Genes , Modelos Biológicos , Isoformas de Proteínas , Transporte Proteico/genética , Proliferação de Células/genética , Sobrevivência Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA