Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 539
Filtrar
1.
Oncol Rep ; 52(5)2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39364763

RESUMO

CellSearch, the only approved epithelial cell adhesion molecule (EpCAM)­dependent capture system approved for clinical use, overlooks circulating tumor cells (CTCs) undergoing epithelial­mesenchymal transition (EMT­CTCs), which is considered a crucial subtype responsible for metastasis. To address this limitation, a novel polymeric microfluidic device 'CTC­chip' designed for the easy introduction of any antibody was developed, enabling EpCAM­independent capture. In this study, antibodies against EpCAM and cell surface vimentin (CSV), identified as cancer­specific EMT markers, were conjugated onto the chip (EpCAM­chip and CSV­chip, respectively), and the capture efficiency was examined using lung cancer (PC9, H441 and A549) and colon cancer (DLD1) cell lines, classified into three types based on EMT markers: Epithelial (PC9), intermediate (H441 and DLD1) and mesenchymal (A549). PC9, H441 and DLD1 cells were effectively captured using the EpCAM­chip (average capture efficiencies: 99.4, 88.8 and 90.8%, respectively) when spiked into blood. However, A549 cells were scarcely captured (13.4%), indicating that EpCAM­dependent capture is not suitable for mesenchymal­type cells. The expression of CSV tended to be higher in cells exhibiting mesenchymal properties and A549 cells were effectively captured with the CSV­chip (72.4 and 88.4% at concentrations of 10 and 100 µg/ml, respectively) when spiked into PBS. When spiked into blood, the average capture efficiencies were 27.7 and 46.8% at concentrations of 10 and 100 µg/ml, respectively. These results suggest that the CSV­chip is useful for detecting mesenchymal­type cells and has potential applications in capturing EMT­CTCs.


Assuntos
Molécula de Adesão da Célula Epitelial , Transição Epitelial-Mesenquimal , Dispositivos Lab-On-A-Chip , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Vimentina , Humanos , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Vimentina/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Células A549 , Separação Celular/métodos , Biomarcadores Tumorais/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/sangue
2.
J Gastric Cancer ; 24(4): 391-405, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39375055

RESUMO

PURPOSE: Trop family proteins, including epithelial cell adhesion molecule (EpCAM) and Trop-2, have garnered attention as potential therapeutic and diagnostic targets for various malignancies. This study aimed to elucidate the clinicopathological significance of these proteins in gastric carcinoma (GC) and to reinforce their potential as biomarkers for patient stratification in targeted therapies. MATERIALS AND METHODS: Immunohistochemical (IHC) analyses of EpCAM and Trop-2 were performed on GC and precancerous lesions, following rigorous orthogonal validation of the antibodies to ensure specificity and sensitivity. RESULTS: Strong membranous staining (3+) for Trop-2 was observed in 49.3% of the GC cases, whereas EpCAM was strongly expressed in almost all cases (93.2%), indicating its widespread expression in GC. A high Trop-2 expression level, characterized by an elevated H-score, was significantly associated with intestinal type by Lauren classification, gastric mucin type, presence of lymph node metastasis, human epidermal growth factor receptor 2-positivity, and Epstein-Barr virus (EBV)-positivity. Patients with a high Trop-2 expression level exhibited poorer survival outcomes on univariate and multivariate analyses. High EpCAM expression levels were prevalent in differentiated histologic type, microsatellite instability-high, and EBV-negative cancer, and were correlated with high densities of CD3 and CD8 T cells and elevated combined positive score for programmed death-ligand 1. CONCLUSIONS: These results highlight the differential expression of Trop-2 and EpCAM and their prognostic implications in GC. The use of meticulously validated antibodies ensured the reliability of our IHC data, thereby offering a robust foundation for future therapeutic strategies targeting Trop family members in GC.


Assuntos
Antígenos de Neoplasias , Biomarcadores Tumorais , Moléculas de Adesão Celular , Molécula de Adesão da Célula Epitelial , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Molécula de Adesão da Célula Epitelial/metabolismo , Molécula de Adesão da Célula Epitelial/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Masculino , Feminino , Pessoa de Meia-Idade , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Idoso , Biomarcadores Tumorais/metabolismo , Adulto , Prognóstico , Idoso de 80 Anos ou mais , Imuno-Histoquímica
3.
Cancer Immunol Immunother ; 73(12): 255, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39358663

RESUMO

BACKGROUND: Lung cancer brain metastasis has a devastating prognosis, necessitating innovative treatment strategies. While chimeric antigen receptor (CAR) T-cell show promise in hematologic malignancies, their efficacy in solid tumors, including brain metastasis, is limited by the immunosuppressive tumor environment. The PD-L1/PD-1 pathway inhibits CAR T-cell activity in the tumor microenvironment, presenting a potential target to enhance therapeutic efficacy. This study aims to evaluate the impact of anti-PD-1 antibodies on CAR T-cell in treating lung cancer brain metastasis. METHODS: We utilized a murine immunocompetent, syngeneic orthotopic cerebral metastasis model for repetitive intracerebral two-photon laser scanning microscopy, enabling in vivo characterization of red fluorescent tumor cells and CAR T-cell at a single-cell level over time. Red fluorescent EpCAM-transduced Lewis lung carcinoma cells (EpCAM/tdtLL/2 cells) were implanted intracranially. Following the formation of brain metastasis, EpCAM-directed CAR T-cell were injected into adjacent brain tissue, and animals received either anti-PD-1 or an isotype control. RESULTS: Compared to controls receiving T-cell lacking a CAR, mice receiving EpCAM-directed CAR T-cell showed higher intratumoral CAR T-cell densities in the beginning after intraparenchymal injection. This finding was accompanied with reduced tumor growth and translated into a survival benefit. Additional anti-PD-1 treatment, however, did not affect intratumoral CAR T-cell persistence nor tumor growth and thereby did not provide an additional therapeutic effect. CONCLUSION: CAR T-cell therapy for brain malignancies appears promising. However, additional anti-PD-1 treatment did not enhance intratumoral CAR T-cell persistence or effector function, highlighting the need for novel strategies to improve CAR T-cell therapy in solid tumors.


Assuntos
Neoplasias Encefálicas , Molécula de Adesão da Célula Epitelial , Imunoterapia Adotiva , Neoplasias Pulmonares , Receptor de Morte Celular Programada 1 , Receptores de Antígenos Quiméricos , Animais , Camundongos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Imunoterapia Adotiva/métodos , Molécula de Adesão da Célula Epitelial/imunologia , Molécula de Adesão da Célula Epitelial/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/terapia , Carcinoma Pulmonar de Lewis/patologia , Feminino , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia
4.
Anal Chem ; 96(37): 14980-14988, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39235216

RESUMO

PD-L1-positive extracellular vesicles (PD-L1+ EVs) play a pivotal role as predictive biomarkers in cancer immunotherapy. These vesicles, originating from immune cells (I-PD-L1+ EVs) and tumor cells (T-PD-L1+ EVs), hold distinct clinical predictive values, emphasizing the importance of deeply differentiating the PD-L1+ EV subtypes for effective liquid biopsy analyses. However, current methods such as ELISA lack the ability to differentiate their cellular sources. In this study, a novel step-wedge microfluidic chip that combines magnetic microsphere separation with single-layer fluorescence counting is developed. This chip integrates magnetic microspheres modified with anti-PD-L1 antibodies and fluorescent nanoparticles targeting EpCAM (tumor cell marker) or CD45 (immunocyte marker), enabling simultaneous quantification and sensitive analysis of PD-L1+ EV subpopulations in oral squamous cell carcinoma (OSCC) patients' saliva without background interference. Analysis results indicate reduced levels of I-PD-L1+ EVs in OSCC patients compared to those in healthy individuals, with varying levels of heterogeneous PD-L1+ EVs observed among different patient groups. During immunotherapy, responders exhibit decreased levels of total PD-L1+ EVs and T-PD-L1+ EVs, accompanied by reduced levels of I-PD-L1+ EVs. Conversely, nonresponders show increased levels of I-PD-L1+ EVs. Utilizing the step-wedge microfluidic chip allows for simultaneous detection of PD-L1+ EV subtypes, facilitating the precise prediction of oral cancer immunotherapy outcomes.


Assuntos
Antígeno B7-H1 , Vesículas Extracelulares , Imunoterapia , Dispositivos Lab-On-A-Chip , Neoplasias Bucais , Humanos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/análise , Neoplasias Bucais/terapia , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Saliva/química , Saliva/metabolismo
5.
Int J Mol Sci ; 25(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39337304

RESUMO

Circulating tumor cells (CTCs) are detected in approximately 30% of metastatic non-small-cell lung cancer (NSCLC) cases using the CellSearch system, which relies on EpCAM immunomagnetic enrichment and Cytokeratin detection. This study evaluated the effectiveness of immunomagnetic enrichment targeting oncofetal chondroitin sulfate (ofCS) using recombinant VAR2CSA proteins (rVAR2) to improve the recovery of different NSCLC cell lines spiked into lysed blood samples. Four NSCLC cell lines-NCI-H1563, A549, NCI-H1792, and NCI-H661-were used to assess capture efficiency. The results demonstrated that the combined use of anti-EpCAM antibody and rVAR2 significantly enhanced the capture efficiency to an average of 88.2% compared with 40.6% when using only anti-EpCAM and 56.6% when using only rVAR2. These findings suggest that a dual-marker approach using anti-EpCAM and rVAR2 can provide a more robust and sensitive method for CTC enrichment in NSCLC, potentially leading to better diagnostic and prognostic outcomes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Molécula de Adesão da Célula Epitelial , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/imunologia , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Linhagem Celular Tumoral , Separação Imunomagnética/métodos , Biomarcadores Tumorais , Proteínas Recombinantes , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/imunologia , Células A549 , Sulfatos de Condroitina/metabolismo , Antígenos de Protozoários
6.
J Biomed Sci ; 31(1): 81, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164686

RESUMO

BACKGROUND: Betulinic acid (BA) has been well investigated for its antiproliferative and mitochondrial pathway-mediated apoptosis-inducing effects on various cancers. However, its poor solubility and off-target activity have limited its utility in clinical trials. Additionally, the immune modulatory role of betulinic acid analogue in the tumor microenvironment (TME) is largely unknown. Here, we designed a potential nanotherapy for colorectal cancer (CRC) with a lead betulinic acid analogue, named as 2c, carrying a 1,2,3-triazole-moiety attached to BA through a linker, found more effective than BA for inhibiting CRC cell lines, and was chosen here for this investigation. Epithelial cell adhesion molecule (EpCAM) is highly overexpressed on the CRC cell membrane. A single-stranded short oligonucleotide sequence, aptamer (Apt), that folds into a 3D-defined architecture can be used as a targeting ligand for its specific binding to a target protein. EpCAM targeting aptamer was designed for site-specific homing of aptamer-conjugated-2c-loaded nanoparticles (Apt-2cNP) at the CRC tumor site to enhance therapeutic potential and reduce off-target toxicity in normal cells. We investigated the in vitro and in vivo therapeutic efficacy and anti-tumorigenic immune response of aptamer conjugated nanotherapy in CRC-TME. METHODS: After the characterization of nanoengineered aptamer conjugated betulinic acid nanotherapy, we evaluated therapeutic efficacy, tumor targeting efficiency, and anti-tumorigenic immune response using cell-based assays and mouse and rat models. RESULTS: We found that Apt-2cNP improved drug bioavailability, enhanced its biological half-life, improved antiproliferative activity, and minimized off-target cytotoxicity. Importantly, in an in vivo TME, Apt-2cNP showed promising signs of anti-tumorigenic immune response (increased mDC/pDC ratio, enhanced M1 macrophage population, and CD8 T-cells). Furthermore, in vivo upregulation of pro-apoptotic while downregulation of anti-apoptotic genes and significant healing efficacy on cancer tissue histopathology suggest that Apt-2cNP had predominantly greater therapeutic potential than the non-aptamer-conjugated nanoparticles and free drug. Moreover, we observed greater tumor accumulation of the radiolabeled Apt-2cNP by live imaging in the CRC rat model. CONCLUSIONS: Enhanced therapeutic efficacy and robust anti-tumorigenic immune response of Apt-2cNP in the CRC-TME are promising indicators of its potential as a prospective therapeutic agent for managing CRC. However, further studies are warranted.


Assuntos
Ácido Betulínico , Neoplasias Colorretais , Molécula de Adesão da Célula Epitelial , Triterpenos Pentacíclicos , Microambiente Tumoral , Neoplasias Colorretais/tratamento farmacológico , Animais , Microambiente Tumoral/efeitos dos fármacos , Camundongos , Triterpenos Pentacíclicos/farmacologia , Molécula de Adesão da Célula Epitelial/metabolismo , Humanos , Nanopartículas/química , Linhagem Celular Tumoral , Ratos
7.
BMC Gastroenterol ; 24(1): 249, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107717

RESUMO

OBJECTIVE: To construct chimeric antigen receptor (CAR)-T cells targeting epithelial cell adhesion molecule (EpCAM) antigen (anti-EpCAM-CAR-T). METHODS: A third-generation CAR-T cell construct used a single-chain variable fragment derived from monoclonal antibody against human EpCAM. Peripheral blood mononuclear cells were extracted from volunteers. The proportion of cluster of differentiation 8 positive (CD8+) and CD4 + T cells was measured using flow cytometry. Western blot was used to detect the expression of EpCAM-CAR. The killing efficiency was detected using the MTT assay and transwell assay, and the secretion of killer cytokines tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) was detected using the ELISA. The inhibitory effect of EpCAM-CAR-T on colorectal cancer in vivo was detected using xenografts. RESULTS: It was found that T cells expanded greatly, and the proportion of CD3+, CD8 + and CD4 + T cells was more than 60%. Furthermore, EpCAM-CAR-T cells had a higher tumour inhibition rate in the EpCAM expression positive group than in the negative group (P < 0.05). The secretion of killer cytokines TNF-α and IFN-γ in the EpCAM expression positive cell group was higher than that in the negative group (P < 0.05). In the experimental group treated with EpCAM-CAR-T cells, the survival rate of nude mice was higher (P < 0.05), and the tumour was smaller than that in the blank and control groups (P < 0.05). The secretion of serum killer cytokines TNF-α and IFN-γ in tumour-bearing nude mice in the experimental group treated with EpCAM-CAR-T cells was higher than that in the blank and control groups (P < 0.05). CONCLUSION: This study successfully constructed EpCAM-CAR cells and found that they can target and recognise EpCAM-positive tumour cells, secrete killer cytokines TNF-α and IFN-γ and better inhibit the growth and metastasis of colorectal cancer in vitro and in vivo than unmodified T cells.


Assuntos
Neoplasias Colorretais , Molécula de Adesão da Célula Epitelial , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Molécula de Adesão da Célula Epitelial/imunologia , Molécula de Adesão da Célula Epitelial/metabolismo , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Humanos , Animais , Receptores de Antígenos Quiméricos/imunologia , Imunoterapia Adotiva/métodos , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Interferon gama/metabolismo , Linhagem Celular Tumoral , Feminino , Camundongos Nus , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia
8.
Anal Chem ; 96(32): 13270-13277, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39093913

RESUMO

Epithelial-mesenchymal transition (EMT) is a complex process that plays a critical role in tumor progression. In this study, we present an EMT sensing panel for the classification of cancer cells at different EMT stages. This sensing panel consists of three types of fluorescent probes based on boronic acid-functionalized carbon-nitride nanosheet (BCN) derivatives. The selective response toward different EMT-associated biomarkers, namely, EpCAM, N-cadherin, and sialic acid (SA), was achieved by conjugating the corresponding antibodies to each BCN derivative, whereas the rare-earth-doping ensures simultaneous sensing of the three biomarkers with fluorescent emission of the three probes at different wavelengths. Sensitive sensing of the three biomarkers was achieved at the protein level with LODs reaching 1.35 ng mL-1 for EpCAM, 1.62 ng mL-1 for N-cadherin, and 1.54 ng mL-1 for SA. The selective response of these biomarkers on the cell surface also facilitated sensitive detection of MCF-7 cells and MDA-MB-231 cells with LODs of 2 cells/mL and 2 cells/mL, respectively. Based on the simultaneous sensing of the three biomarkers on cancer cells that underwent different extents of EMT, precise discrimination and classification of cells at various EMT stages were also achieved with an accuracy of 93.3%. This EMT sensing panel provided a versatile tool for monitoring the EMT evolution process and has the potential to be used for the evaluation of the EMT-targeting therapy and metastasis prediction.


Assuntos
Biomarcadores Tumorais , Caderinas , Transição Epitelial-Mesenquimal , Humanos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Caderinas/análise , Caderinas/metabolismo , Corantes Fluorescentes/química , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial/metabolismo , Células MCF-7 , Ácidos Borônicos/química , Ácido N-Acetilneuramínico/análise , Ácido N-Acetilneuramínico/metabolismo
9.
Anal Chim Acta ; 1319: 342959, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39122286

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the most common form of liver cancer, with cirrhosis being a major risk factor. Traditional blood markers like alpha-fetoprotein (AFP) demonstrate limited efficacy in distinguishing between HCC and cirrhosis, underscoring the need for more effective diagnostic methodologies. In this context, extracellular vesicles (EVs) have emerged as promising candidates; however, their practical diagnostic application is restricted by the current lack of label-free methods to accurately profile their molecular content. To address this gap, our study explores the potential of mid-infrared (mid-IR) spectroscopy, both alone and in combination with plasmonic nanostructures, to detect and characterize circulating EVs. RESULTS: EVs were extracted from HCC and cirrhotic patients. Mid-IR spectroscopy in the Attenuated Total Reflection (ATR) mode was utilized to identify potential signatures for patient classification, highlighting significant changes in the Amide I-II region (1475-1700 cm-1). This signature demonstrated diagnostic performance comparable to AFP and surpassed it when the two markers were combined. Further investigations utilized a plasmonic metasurface suitable for ultrasensitive spectroscopy within this spectral range. This device consists of two sets of parallel rod-shaped gold nanoantennas (NAs); the longer NAs produced an intense near-field amplification in the Amide I-II bands, while the shorter NAs were utilized to provide a sharp reflectivity edge at 1800-2200 cm-1 for EV mass-sensing. A clinically relevant subpopulation of EVs was targeted by conjugating NAs with an antibody specific to Epithelial Cell Adhesion Molecule (EpCAM). This methodology enabled the detection of variations in the quantity of EpCAM-presenting EVs and revealed changes in the Amide I-II lineshape. SIGNIFICANCE: The presented results can positively impact the development of novel laboratory methods for the label-free characterization of EVs, based on the combination between mid-IR spectroscopy and plasmonics. Additionally, data obtained by using HCC and cirrhotic subjects as a model system, suggest that this approach could be adapted for monitoring these conditions.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Espectrofotometria Infravermelho , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/diagnóstico , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/diagnóstico , Espectrofotometria Infravermelho/métodos , Ouro/química , Molécula de Adesão da Célula Epitelial/metabolismo , Nanopartículas Metálicas/química
10.
Reprod Biol Endocrinol ; 22(1): 92, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085882

RESUMO

BACKGROUND: Endometriosis is a gynecological disease characterized by the presence of endometrial tissue in abnormal locations, leading to severe symptoms, inflammation, pain, organ dysfunction, and infertility. Surgical removal of endometriosis lesions is crucial for improving pain and fertility outcomes, with the goal of complete lesion removal. This study aimed to analyze the location and expression patterns of poly (ADP-ribose) polymerase 1 (PARP-1), epithelial cell adhesion molecule (EpCAM), and folate receptor alpha (FRα) in endometriosis lesions and evaluate their potential for targeted imaging. METHODS: Gene expression analysis was performed using the Turku endometriosis database (EndometDB). By immunohistochemistry, we investigated the presence and distribution of PARP-1, EpCAM, and FRα in endometriosis foci and adjacent tissue. We also applied an ad hoc platform for the analysis of images to perform a quantitative immunolocalization analysis. Double immunofluorescence analysis was carried out for PARP-1 and EpCAM, as well as for PARP-1 and FRα, to explore the expression of these combined markers within endometriosis foci and their potential simultaneous utilization in surgical treatment. RESULTS: Gene expression analysis revealed that PARP-1, EpCAM, and FOLR1 (FRα gene) are more highly expressed in endometriotic lesions than in the peritoneum, which served as the control tissue. The results of the immunohistochemical study revealed a significant increase in the expression levels of all three biomarkers inside the endometriosis foci compared to the adjacent tissues. Additionally, the double immunofluorescence analysis consistently demonstrated the presence of PARP-1 in the nucleus and the expression of EpCAM and FRα in the cell membrane and cytoplasm. CONCLUSION: Overall, these three markers demonstrate significant potential for effective imaging of endometriosis. In particular, the results emphasize the importance of PARP-1 expression as a possible indicator for distinguishing endometriotic lesions from adjacent tissue. PARP-1, as a potential biomarker for endometriosis, offers promising avenues for further investigation in terms of both pathophysiology and diagnostic-therapeutic approaches.


Assuntos
Endometriose , Molécula de Adesão da Célula Epitelial , Receptor 1 de Folato , Poli(ADP-Ribose) Polimerase-1 , Endometriose/metabolismo , Endometriose/cirurgia , Endometriose/genética , Endometriose/diagnóstico , Endometriose/patologia , Feminino , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Adulto , Biomarcadores/metabolismo , Imuno-Histoquímica , Endométrio/metabolismo , Endométrio/patologia , Endométrio/cirurgia
11.
Gastroenterology ; 167(5): 903-918, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38971196

RESUMO

BACKGROUND & AIMS: WNT signaling is central to spatial tissue arrangement and regulating stem cell activity, and it represents the hallmark of gastrointestinal cancers. Although its role in driving intestinal tumors is well characterized, WNT's role in gastric tumorigenesis remains elusive. METHODS: We have developed mouse models to control the specific expression of an oncogenic form of ß-catenin (CTNNB1) in combination with MYC activation in Lgr5+ cells of the gastric antrum. We used multiomics approaches applied in vivo and in organoid models to characterize their cooperation in driving gastric tumorigenesis. RESULTS: We report that constitutive ß-catenin stabilization in the stomach has negligible oncogenic effects and requires MYC activation to induce gastric tumor formation. Although physiologically low MYC levels in gastric glands limit ß-catenin transcriptional activity, increased MYC expression unleashes the WNT oncogenic transcriptional program, promoting ß-catenin enhancer invasion without a direct transcriptional cooperation. MYC activation induces a metabolic rewiring that suppresses lysosomal biogenesis through mTOR and ERK activation and MiT/TFE inhibition. This prevents EPCAM degradation by macropinocytosis, promoting ß-catenin chromatin accumulation and activation of WNT oncogenic transcription. CONCLUSION: Our results uncovered a new signaling framework with important implications for the control of gastric epithelial architecture and WNT-dependent oncogenic transformation.


Assuntos
Molécula de Adesão da Célula Epitelial , Lisossomos , Proteínas Proto-Oncogênicas c-myc , Neoplasias Gástricas , Via de Sinalização Wnt , beta Catenina , Animais , Feminino , Humanos , Masculino , Camundongos , beta Catenina/metabolismo , beta Catenina/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Molécula de Adesão da Célula Epitelial/metabolismo , Molécula de Adesão da Célula Epitelial/genética , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Regulação Neoplásica da Expressão Gênica , Lisossomos/metabolismo , Camundongos Transgênicos , Organoides/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica
12.
Nat Commun ; 15(1): 5888, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003254

RESUMO

Archived patient-derived tissue specimens play a central role in understanding disease and developing therapies. To address specificity and sensitivity shortcomings of existing single-cell resolution proteoform analysis tools, we introduce a hybrid microfluidic platform (DropBlot) designed for proteoform analyses in chemically fixed single cells. DropBlot serially integrates droplet-based encapsulation and lysis of single fixed cells, with on-chip microwell-based antigen retrieval, with single-cell western blotting of target antigens. A water-in-oil droplet formulation withstands the harsh chemical (SDS, 6 M urea) and thermal conditions (98 °C, 1-2 hr) required for effective antigen retrieval, and supports analysis of retrieved protein targets by single-cell electrophoresis. We demonstrate protein-target retrieval from unfixed, paraformaldehyde-fixed (PFA), and methanol-fixed cells. Key protein targets (HER2, GAPDH, EpCAM, Vimentin) retrieved from PFA-fixed cells were resolved and immunoreactive. Relevant to biorepositories, DropBlot profiled targets retrieved from human-derived breast tumor specimens archived for six years, offering a workflow for single-cell protein-biomarker analysis of sparing biospecimens.


Assuntos
Western Blotting , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Linhagem Celular Tumoral , Formaldeído/química , Feminino , Receptor ErbB-2/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Fixação de Tecidos/métodos , Proteômica/métodos , Vimentina/metabolismo , Microfluídica/métodos , Microfluídica/instrumentação , Polímeros
13.
J Mater Chem B ; 12(29): 7203-7214, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38952178

RESUMO

Fluorescence-based LB (liquid biopsy) offers a rapid means of detecting cancer non-invasively. However, the widespread issue of sample loss during purification steps will diminish the accuracy of detection results. Therefore, in this study, we introduce a magnetic lanthanide sensor (MLS) designed for sensitive detection of the characteristic protein, epithelial cell adhesion molecule (EpCAM), on epithelial tumor exosomes. By leveraging the inherent multi-peak emission and time-resolved properties of the sole-component lanthanide element, combined with the self-ratiometric strategy, MLS can overcome limitations imposed by manual operation and/or sample complexity, thereby providing more stable and reliable output results. Specifically, terbium-doped NaYF4 nanoparticles (NaYF4:Tb) and deformable aptamers terminated with BHQ1 were sequentially introduced onto superparamagnetic silica-decorated Fe3O4 nanoparticles. Prior to target binding, emission from NaYF4:Tb at 543 nm was partially quenched due to the fluorescence resonance energy transfer (FRET) from NaYF4:Tb to BHQ1. Upon target binding, changes in the secondary structure of aptamers led to the fluorescence intensity increasing since the deconfinement of distance-dependent FRET effect. The characteristic emission of NaYF4:Tb at 543 nm was then utilized as the detection signal (I1), while the less changed emission at 583 nm served as the reference signal (I2), further reporting the self-ratiometric values of I1 and I2 (I1/I2) to illustrate the epithelial cancerous features of exosomes while ignoring possible sample loss. Consequently, over a wide range of exosome concentrations (2.28 × 102-2.28 × 108 particles per mL), the I1/I2 ratio exhibited a linear increase with exosome concentration [Y(I1/I2) = 0.166 lg (Nexosomes) + 3.0269, R2 = 0.9915], achieving a theoretical detection limit as low as 24 particles per mL. Additionally, MLS effectively distinguished epithelial cancer samples from healthy samples, showcasing significant potential for clinical diagnosis.


Assuntos
Exossomos , Exossomos/química , Exossomos/metabolismo , Humanos , Elementos da Série dos Lantanídeos/química , Transferência Ressonante de Energia de Fluorescência , Térbio/química , Molécula de Adesão da Célula Epitelial/metabolismo , Luminescência , Nanopartículas de Magnetita/química , Tamanho da Partícula , Ítrio/química , Técnicas Biossensoriais/métodos , Fluoretos
14.
PeerJ ; 12: e17602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952968

RESUMO

Background: Peritoneal metastasis (PM) is the most prevalent type of metastasis in patients with gastric cancer (GC) and has an extremely poor prognosis. The detection of free cancer cells (FCCs) in the peritoneal cavity has been demonstrated to be one of the worst prognostic factors for GC. However, there is a lack of sensitive detection methods for FCCs in the peritoneal cavity. This study aimed to use a new peritoneal lavage fluid cytology examination to detect FCCs in patients with GC, and to explore its clinical significance on diagnosing of occult peritoneal metastasis (OPM) and prognosis. Methods: Peritoneal lavage fluid from 50 patients with GC was obtained and processed via the isolation by size of epithelial tumor cells (ISET) method. Immunofluorescence and fluorescence in situ hybridization (FISH) were used to identify FCCs expressing chromosome 8 (CEP8), chromosome 17 (CEP17), and epithelial cell adhesion molecule (EpCAM). Results: Using a combination of the ISET platform and immunofluorescence-FISH, the detection of FCCs was higher than that by light microscopy (24.0% vs. 2.0%). Samples were categorized into positive and negative groups, based on the expressions of CEP8, CEP17, and EpCAM. Statistically significant relationships were demonstrated between age (P = 0.029), sex (P = 0.002), lymphatic invasion (P = 0.001), pTNM stage (P = 0.001), and positivity for FCCs. After adjusting for covariates, patients with positive FCCs had lower progression-free survival than patients with negative FCCs. Conclusion: The ISET platform highly enriched nucleated cells from peritoneal lavage fluid, and indicators comprising EpCAM, CEP8, and CEP17 confirmed the diagnosis of FCCs. As a potential detection method, it offers an opportunity for early intervention of OPM and an extension of patient survival.


Assuntos
Hibridização in Situ Fluorescente , Lavagem Peritoneal , Neoplasias Peritoneais , Neoplasias Gástricas , Humanos , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/patologia , Neoplasias Peritoneais/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Gástricas/patologia , Neoplasias Gástricas/diagnóstico , Idoso , Líquido Ascítico/patologia , Líquido Ascítico/citologia , Prognóstico , Molécula de Adesão da Célula Epitelial/metabolismo , Molécula de Adesão da Célula Epitelial/genética , Adulto , Citodiagnóstico/métodos , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Citologia
15.
J Biomed Sci ; 31(1): 72, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010070

RESUMO

BACKGROUND: Epithelial cell adhesion molecule (EpCAM) has been widely studied as a tumor antigen due to its expression in varieties of solid tumors. Moreover, the glycoprotein contributes to critical cancer-associated cellular functionalities via its extracellular (EpEX) and intracellular (EpICD) domains. In colorectal cancer (CRC), EpCAM has been implicated in the Wnt signaling pathway, as EpICD and ß-Catenin are coordinately translocated to the nucleus. Once in the nucleus, EpICD transcriptionally regulates EpCAM target genes that; however, remains unclear whether Wnt signaling is modulated by EpICD activity. METHODS: Patient-derived organoids (PDOs), patient-derived xenografts (PDXs), and various CRC cell lines were used to study the roles of EpCAM and EpICD in Wnt receptor expression. Fluorescence and confocal microscopy were used to analyze tumors isolated from PDX and other xenograft models as well as CRC cell lines. EpCAM signaling was intervened with our humanized form of EpCAM neutralizing antibody, hEpAb2-6. Wnt receptor promoters under luciferase reporters were constructed to examine the effects of EpICD. Luciferase reporter assays were performed to evaluate promoter, γ-secretase and Wnt activity. Functional assays including in vivo tumor formation, organoid formation, spheroid and colony formation experiments were performed to study Wnt related phenomena. The therapeutic potential of EpCAM suppression by hEpAb2-6 was evaluated in xenograft and orthotopic models of human CRC. RESULTS: EpICD interacted with the promoters of Wnt receptors (FZD6 and LRP5/6) thus upregulated their transcriptional activity inducing Wnt signaling. Furthermore, activation of Wnt-pathway-associated kinases in the ß-Catenin destruction complex (GSK3ß and CK1) induced γ-secretase activity to augment EpICD shedding, establishing a positive-feedback loop. Our hEpAb2-6 antibody blocked EpICD-mediated upregulation of Wnt receptor expressions and conferred therapeutic benefits in both PDX and orthotopic models of human CRC. CONCLUSIONS: This study uncovers relevant functions of EpCAM where Wnt receptors are upregulated via the transcriptional co-factor activity of EpICD. The resultant enhancement of Wnt signaling induces γ-secretase activity further stimulating EpICD cleavage and its nuclear translocation. Our humanized anti-EpCAM antibody hEpAb2-6 blocks these mechanisms and may thereby provide therapeutic benefit in CRC.


Assuntos
Neoplasias Colorretais , Molécula de Adesão da Célula Epitelial , Via de Sinalização Wnt , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Molécula de Adesão da Célula Epitelial/genética , Camundongos , Animais , Linhagem Celular Tumoral , Progressão da Doença
16.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928484

RESUMO

Platinum-resistant high-grade serous carcinoma (HGSC) is an incurable disease, so biomarkers that could help with timely treatment adjustments and personalized approach are extensively being sought. Tumor-derived extracellular vesicles (EVs) that can be isolated from ascites and blood of HGSC patients are such promising biomarkers. Epithelial cell adhesion molecule (EpCAM) expression is upregulated in most epithelium-derived tumors; however, studies on prognostic value of EpCAM overexpression in ovarian carcinoma have shown contradictory results. The aim of our study was to evaluate the potential of total and EpCAM-positive EVs as prognostic and predictive biomarkers for advanced HGSC. Flow cytometry was used to determine the concentration of total and EpCAM-positive EVs in paired pretreatment ascites and plasma samples of 37 patients with advanced HGSC who underwent different first-line therapy. We found that higher EpCAM-positive EVs concentration in ascites is associated with shorter progression-free survival (PFS) regardless of treatment strategy. We also found a strong correlation of EpCAM-positive EVs concentration between ascites and plasma. Our findings indicate that EpCAM-positive EVs in ascites of patients with advanced HGSC have the potential to serve as prognostic biomarkers for predicting early recurrence and thereby likelihood of more aggressive tumor biology and development of chemoresistance.


Assuntos
Ascite , Biomarcadores Tumorais , Cistadenocarcinoma Seroso , Molécula de Adesão da Célula Epitelial , Vesículas Extracelulares , Neoplasias Ovarianas , Intervalo Livre de Progressão , Humanos , Molécula de Adesão da Célula Epitelial/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Ascite/metabolismo , Ascite/patologia , Pessoa de Meia-Idade , Idoso , Biomarcadores Tumorais/metabolismo , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/mortalidade , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/mortalidade , Prognóstico , Adulto , Gradação de Tumores
17.
Int Immunopharmacol ; 137: 112424, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38878486

RESUMO

Colorectal cancer is a major global health burden, with limited efficacy of traditional treatment modalities in improving survival rates. However, recently advances in immunotherapy has improved treatment outcomes for patients with this cancer. To address the continuing need for improved treatment efficacy, this study introduced a novel tri-specific antibody, IMT030122, that targets EpCAM, 4-1BB, and CD3. We evaluated the pharmacological efficacy and mechanism of action of IMT030122 in vitro and in vivo. In in vitro studies, IMT030122 exhibited differential binding to antigens and cells expressing EpCAM, 4-1BB, and CD3. Moreover, IMT030122 relied on EpCAM-targeted activation of intracellular CD3 and 4-1BB signaling and mediated T cell cytotoxicity specific to HCT116 colorectal cancer cells. In vivo, IMT030122 demonstrated potent anti-tumor activity, significantly inhibiting the growth of colon cancer HCT116 and MC38-hEpCAM subcutaneous grafts. Further pharmacological analysis revealed that IMT030122 recruited lymphocytes from peripheral blood into colorectal cancer tissue and exerted durable anti-tumor activity, predominantly by promoting the activation, proliferation, and differentiation of CD8T cells. Notably, IMT030122 still exhibited anti-tumor efficacy even in the presence of significantly depleted lymphocytes in colorectal cancer tissue. The potent pharmacological activity and anti-tumor effects of IMT030122 suggest it may enhance treatment efficacy and substantially extend the survival of patients with colorectal cancer in the future.


Assuntos
Complexo CD3 , Neoplasias Colorretais , Molécula de Adesão da Célula Epitelial , Animais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Molécula de Adesão da Célula Epitelial/metabolismo , Complexo CD3/imunologia , Camundongos , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Células HCT116 , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Feminino , Linhagem Celular Tumoral , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Camundongos Endogâmicos BALB C , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Imunoterapia/métodos
18.
Anal Chem ; 96(26): 10800-10808, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38904228

RESUMO

Tumor-derived extracellular vesicles (TEVs) are rich in cellular information and hold great promise as a biomarker for noninvasive cancer diagnosis. However, accurate measurement of TEVs presents challenges due to their low abundance and potential interference from a high number of EVs derived from normal cells. Herein, an aptamer-proximity-ligation-activated rolling circle amplification (RCA) method for EV membrane recognition, coupled with single particle inductively coupled plasma mass spectrometry (sp-ICP-MS) for the quantification of TEVs, is developed. When DNA-labeled ultrasmall gold nanoparticle (AuNP) probes bind to the long chains formed by RCA, they aggregate to form large particles. Notably, small AuNPs scarcely produce pulse signals in sp-ICP-MS, thereby detecting TEVs in a wash-free manner. By leveraging the strong binding affinity of aptamers, dual aptamers for EpCAM and PD-L1 recognition, and the sp-ICP-MS technique, this method offers remarkable sensitivity and selectivity in tracing TEVs. Under optimized conditions, the present method shows a favorable linear relationship between the pulse signal frequency of sp-ICP-MS and TEV concentration within the range of 105-107 particles/mL, along with a detection limit of 1.1 × 104 particles/mL. The pulse signals from sp-ICP-MS combined with machine learning algorithms are used to discriminate cancer patients from healthy donors with 100% accuracy. Due to its simple and fast operation and excellent sensitivity and accuracy, this approach holds significant potential for diverse applications in life sciences and personalized medicine.


Assuntos
Aptâmeros de Nucleotídeos , Vesículas Extracelulares , Ouro , Espectrometria de Massas , Nanopartículas Metálicas , Técnicas de Amplificação de Ácido Nucleico , Humanos , Aptâmeros de Nucleotídeos/química , Vesículas Extracelulares/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Nanopartículas Metálicas/química , Ouro/química , Espectrometria de Massas/métodos , Neoplasias , Molécula de Adesão da Célula Epitelial/metabolismo , Limite de Detecção
19.
Sci Rep ; 14(1): 14273, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902362

RESUMO

Tumor-derived extracellular vesicles (EVs) show great potential as biomarkers for several diseases, including pancreatic cancer, due to their roles in cancer development and progression. However, the challenge of utilizing EVs as biomarkers lies in their inherent heterogeneity in terms of size and concentration, making accurate quantification difficult, which is highly dependent on the isolation and quantification methods used. In our study, we compared three EV isolation techniques and two EV quantification methods. We observed variations in EV concentration, with approximately 1.5-fold differences depending on the quantification method used. Interestingly, all EV isolation techniques consistently yielded similar EV quantities, overall size distribution, and modal sizes. In contrast, we found a notable increase in total EV amounts in samples from pancreatic cancer cell lines, mouse models, and patient plasma, compared to non-cancerous conditions. Moreover, individual tumor-derived EVs exhibited at least a 3-fold increase in several EV biomarkers. Our data, obtained from EVs isolated using various techniques and quantified through different methods, as well as originating from various pancreatic cancer models, suggests that EV profiling holds promise for the identification of unique and cancer-specific biomarkers in pancreatic cancer.


Assuntos
Biomarcadores Tumorais , Molécula de Adesão da Célula Epitelial , Vesículas Extracelulares , Glipicanas , Neoplasias Pancreáticas , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Vesículas Extracelulares/metabolismo , Humanos , Biomarcadores Tumorais/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial/metabolismo , Glipicanas/metabolismo , Integrina alfaV/metabolismo
20.
ACS Appl Mater Interfaces ; 16(23): 29760-29769, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38813974

RESUMO

Multivalent receptor-ligand interactions (RLIs) exhibit excellent affinity for binding when targeting cell membrane receptors with low expression. However, existing strategies only allow for limited control of the valency and spacing of ligands for a certain receptor, lacking recognition patterns for multiple interested receptors with complex spatial distributions. Here, we developed flexible DNA nanoclaws with multivalent aptamers to achieve powerful cell recognition by controlling the spacing of aptamers to match the spatial patterns of receptors. The DNA nanoclaw with spacing-controllable binding sites was constructed via hybrid chain reaction (HCR), enabling dual targeting of HER2 and EpCAM molecules. The results demonstrate that the binding affinity of multivalent DNA nanoclaws to tumor cells is enhanced. We speculate that the flexible structure may conform better to irregularly shaped membrane surfaces, increasing the probability of intermolecular contact. The capture efficiency of circulating tumor cells successfully verified the high affinity and selectivity of this spatial pattern. This strategy will further promote the potential application of DNA frameworks in future disease diagnosis and treatment.


Assuntos
Aptâmeros de Nucleotídeos , DNA , Molécula de Adesão da Célula Epitelial , Receptor ErbB-2 , Humanos , Aptâmeros de Nucleotídeos/química , Molécula de Adesão da Célula Epitelial/metabolismo , Receptor ErbB-2/metabolismo , DNA/química , Linhagem Celular Tumoral , Nanoestruturas/química , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA