Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.252
Filtrar
1.
Stem Cell Res Ther ; 15(1): 132, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702808

RESUMO

BACKGROUND: Induced pluripotent stem cells (iPSCs)-derived kidney organoids are a promising model for studying disease mechanisms and renal development. Despite several protocols having been developed, further improvements are needed to overcome existing limitations and enable a wider application of this model. One of the approaches to improve the differentiation of renal organoids in vitro is to include in the system cell types important for kidney organogenesis in vivo, such as macrophages. Another approach could be to improve cell survival. Mesodermal lineage differentiation is the common initial step of the reported protocols. The glycogen synthase kinase-3 (GSK-3) activity inhibitor, CHIR99021 (CHIR), is applied to induce mesodermal differentiation. It has been reported that CHIR simultaneously induces iPSCs apoptosis that can compromise cell differentiation. We thought to interfere with CHIR-induced apoptosis of iPSCs using rapamycin. METHODS: Differentiation of kidney organoids from human iPSCs was performed. Cell survival and autophagy were analyzed using Cell counting kit 8 (CCK8) kit and Autophagy detection kit. Cells were treated with rapamycin or co-cultured with human monocytes isolated from peripheral blood or iPSCs-macrophages using a transwell co-culture system. Monocyte-derived extracellular vesicles (EVs) were isolated using polyethylene glycol precipitation. Expression of apoptotic markers cleaved Caspase 3, Poly [ADP-ribose] polymerase 1 (PARP-1) and markers of differentiation T-Box Transcription Factor 6 (TBX6), odd-skipped related 1 (OSR1), Nephrin, E-Cadherin, Paired box gene 2 (Pax2) and GATA Binding Protein 3 (Gata3) was assessed by RT-PCR and western blotting. Organoids were imaged by 3D-confocal microscopy. RESULTS: We observed that CHIR induced apoptosis of iPSCs during the initial stage of renal organoid differentiation. Underlying mechanisms implied the accumulation of reactive oxygen species and decreased autophagy. Activation of autophagy by rapamacin and by an indirect co-culture of differentiating iPSCs with iPSCs-macrophages and human peripheral blood monocytes prevented apoptosis induced by CHIR. Furthermore, monocytes (but not rapamycin) strongly promoted expression of renal differentiation markers and organoids development via released extracellular vesicles. CONCLUSION: Our data suggest that co-culturing of iPSCs with human monocytes strongly improves differentiation of kidney organoids. An underlying mechanism of monocytic action implies, but not limited to, an increased autophagy in CHIR-treated iPSCs. Our findings enhance the utility of kidney organoid models.


Assuntos
Apoptose , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Rim , Monócitos , Organoides , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Organoides/citologia , Organoides/metabolismo , Organoides/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Rim/citologia , Rim/metabolismo , Monócitos/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Sirolimo/farmacologia , Autofagia/efeitos dos fármacos , Técnicas de Cocultura/métodos , Macrófagos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos
2.
Stem Cell Res Ther ; 15(1): 127, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693589

RESUMO

BACKGROUND: Endometria are one of the important components of the uterus, which is located in the peritoneal cavity. Endometrial injury usually leads to intrauterine adhesions (IUA), accompanied by inflammation and cell death. We previously reported that both the endometrial ferroptosis was increased and monocytes/macrophages were involved in endometrial injury of IUA. Large peritoneal macrophages (LPMs) are recently reported to migrate into the injured tissues and phagocytose dead cells to repair the tissues. We previously demonstrated that mesenchymal stromal cells (MSCs) had made excellent progress in the repair of endometrial injury. However, it is unclear whether MSCs regulate the LPM efferocytosis against ferroptotic monocytes/macrophages in the injured endometria. METHODS: Here, endometrial injury in IUA mouse model was conducted by uterine curettage and LPS injection surgery and the samples were collected at different times to detect the changes of LPMs and ferroptotic monocytes/macrophages. We conducted LPMs depletion assay in vivo and LPMs and Erastin-induced ferroptotic THP-1 cells coculture systems in vitro to detect the LPM efferocytosis against ferroptotic monocytes/macrophages. The IUA model was treated with MSCs, and their effects on LPMs and endometrial repair were analyzed. Flow cytometry, western blotting, quantitative real-time PCR, immunohistochemical analysis, ELISA, and RNA-sequencing were performed. RESULTS: We found that LPMs migrated to the injured uteri in response to the damage in early phase (3 h), and sustained to a later stage (7 days). Astonishingly, we found that ferroptotic monocytes/macrophages were significantly increased in the injured uteri since 12 h after injury. Moreover, LPMs cocultured with Erastin-induced ferroptotic THP-1 cells in vitro, efferocytosis of LPMs against ferroptotic monocytes/macrophages was emerged. The mRNA expression profiles revealed that LPM efferocytosis against ferroptotic monocytes/macrophages was an induction of glycolysis program and depended on the PPARγ-HK2 pathway. Importantly, we validated that MSCs promoted the efferocytic capability and migration of LPMs to the injured uteri via secreting stanniocalcin-1 (STC-1). CONCLUSION: The data collectively demonstrated first the roles of LPMs via removal of ferroptotic monocytes/macrophages and provided a novel mechanism of MSCs in repairing the endometrial injury.


Assuntos
Macrófagos Peritoneais , Células-Tronco Mesenquimais , Monócitos , Feminino , Animais , Camundongos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Monócitos/metabolismo , Monócitos/citologia , Humanos , Macrófagos Peritoneais/metabolismo , Endométrio/lesões , Endométrio/metabolismo , Endométrio/citologia , Endométrio/patologia , Fagocitose , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Eferocitose
3.
Immunol Cell Biol ; 102(5): 381-395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629182

RESUMO

Resident macrophages of various mammalian organs are characterized by several distinctive features in their gene expression profile and phenotype, including involvement in the regulation of organ functions, as well as reduced sensitivity to proinflammatory activation factors. The reasons for the formation of such a specific phenotype remain the subject of intensive research. Some papers emphasize the role of the origin of organ macrophages. Other studies indicate that monocytes that develop in the red bone marrow are also able to form resident macrophages with a phenotype characteristic of a particular organ, but this requires appropriate microenvironmental conditions. In this article, we studied the possibility of differentiation of monocyte-derived macrophages into cells with a Kupffer-like phenotype under the influence of the main stromal components of Kupffer cells macrophage niche: Ito cells, liver sinusoid endotheliocytes and hepatocyte growth factor (HGF). It was found that Kupffer cells are characterized by several features, including increased expression of transcription factors Spic and Id3, as well as MUP family genes, Clusterin and Ngp genes. In addition, Kupffer cells were characterized by a higher proliferative activity. The expression of marker genes of Kupffer cells (i.e. Id3, Spic, Marco and Timd4) increased in monocyte-derived macrophages during coculture with Ito cells, liver sinusoid endothelial cells, macrophage colony-stimulating factor and HGF cells only by 3 days. However, the expression level of these genes was always higher in Kupffer cells. In addition, a complete coincidence of the expressed gene profile in monocyte-derived macrophages and Kupffer cells did not occur even after 3 days of culturing.


Assuntos
Diferenciação Celular , Microambiente Celular , Células de Kupffer , Macrófagos , Fenótipo , Células de Kupffer/metabolismo , Células de Kupffer/citologia , Macrófagos/metabolismo , Animais , Monócitos/metabolismo , Monócitos/citologia , Fator de Crescimento de Hepatócito/metabolismo , Células Endoteliais/metabolismo , Técnicas de Cocultura , Humanos , Proliferação de Células , Células Cultivadas , Fígado/citologia , Fígado/metabolismo , Camundongos
4.
Nature ; 628(8008): 604-611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538784

RESUMO

The immune system has a critical role in orchestrating tissue healing. As a result, regenerative strategies that control immune components have proved effective1,2. This is particularly relevant when immune dysregulation that results from conditions such as diabetes or advanced age impairs tissue healing following injury2,3. Nociceptive sensory neurons have a crucial role as immunoregulators and exert both protective and harmful effects depending on the context4-12. However, how neuro-immune interactions affect tissue repair and regeneration following acute injury is unclear. Here we show that ablation of the NaV1.8 nociceptor impairs skin wound repair and muscle regeneration after acute tissue injury. Nociceptor endings grow into injured skin and muscle tissues and signal to immune cells through the neuropeptide calcitonin gene-related peptide (CGRP) during the healing process. CGRP acts via receptor activity-modifying protein 1 (RAMP1) on neutrophils, monocytes and macrophages to inhibit recruitment, accelerate death, enhance efferocytosis and polarize macrophages towards a pro-repair phenotype. The effects of CGRP on neutrophils and macrophages are mediated via thrombospondin-1 release and its subsequent autocrine and/or paracrine effects. In mice without nociceptors and diabetic mice with peripheral neuropathies, delivery of an engineered version of CGRP accelerated wound healing and promoted muscle regeneration. Harnessing neuro-immune interactions has potential to treat non-healing tissues in which dysregulated neuro-immune interactions impair tissue healing.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Macrófagos , Neutrófilos , Nociceptores , Cicatrização , Animais , Camundongos , Comunicação Autócrina , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Eferocitose , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Músculo Esquelético , Canal de Sódio Disparado por Voltagem NAV1.8/deficiência , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Nociceptores/metabolismo , Comunicação Parácrina , Doenças do Sistema Nervoso Periférico/complicações , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Regeneração/efeitos dos fármacos , Pele , Trombospondina 1/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia , Humanos , Masculino , Feminino
5.
Clin Chem Lab Med ; 62(6): 1133-1137, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38369513

RESUMO

OBJECTIVES: Monocyte distribution width (MDW) is a new biomarker used as an early indicator of sepsis (ESId). It is often aids in the identification of patients who may develop sepsis. This study aims to establish the MDW reference interval (RI) within the healthy population of blood donors using EDTA-K2 as anticoagulant. Many hospitals use this biomarker as a means of identifying patients who present to the hospital with sepsis. METHODS: A total of 274 samples obtained from healthy donors were analyzed. MDW measurements were taken within 2 h post-extraction. The RI was estimated using various statistical methodologies, including the recommended CLSI EP28-A3c guideline, non-parametric and robust methods, along with the Harrell-Davis bootstrap method applied to the entire sample. RESULTS: The RI estimated through non-parametric method was 14.77 CI90 % (14.36-14.97)-21.13 CI90 % (20.89-21.68); RI using the robust method was 15.64-19.05 and RI using the Harrell-Davis bootstrap method was 14.73 CI90 % (14.53-14.92)-21.14 CI90 % (20.88-21.40). CONCLUSIONS: Based on clinical applicability, we recommend utilizing the RI derived from the non-parametric method, aligning with the CLSI recommendations. Furthermore, we consider that our results can be taken as a reference in other laboratories that serve a population similar to our study cohort.


Assuntos
Doadores de Sangue , Monócitos , Humanos , Valores de Referência , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Monócitos/citologia , Adulto Jovem , Sepse/sangue , Sepse/diagnóstico , Biomarcadores/sangue , Adolescente , Idoso
6.
J Virol ; 98(3): e0156323, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323811

RESUMO

Macrophages are important target cells for diverse viruses and thus represent a valuable system for studying virus biology. Isolation of primary human macrophages is done by culture of dissociated tissues or from differentiated blood monocytes, but these methods are both time consuming and result in low numbers of recovered macrophages. Here, we explore whether macrophages derived from human induced pluripotent stem cells (iPSCs)-which proliferate indefinitely and potentially provide unlimited starting material-could serve as a faithful model system for studying virus biology. Human iPSC-derived monocytes were differentiated into macrophages and then infected with HIV-1, dengue virus, or influenza virus as model human viruses. We show that iPSC-derived macrophages support the replication of these viruses with kinetics and phenotypes similar to human blood monocyte-derived macrophages. These iPSC-derived macrophages were virtually indistinguishable from human blood monocyte-derived macrophages based on surface marker expression (flow cytometry), transcriptomics (RNA sequencing), and chromatin accessibility profiling. iPSC lines were additionally generated from non-human primate (chimpanzee) fibroblasts. When challenged with dengue virus, human and chimpanzee iPSC-derived macrophages show differential susceptibility to infection, thus providing a valuable resource for studying the species-tropism of viruses. We also show that blood- and iPSC-derived macrophages both restrict influenza virus at a late stage of the virus lifecycle. Collectively, our results substantiate iPSC-derived macrophages as an alternative to blood monocyte-derived macrophages for the study of virus biology. IMPORTANCE: Macrophages have complex relationships with viruses: while macrophages aid in the removal of pathogenic viruses from the body, macrophages are also manipulated by some viruses to serve as vessels for viral replication, dissemination, and long-term persistence. Here, we show that iPSC-derived macrophages are an excellent model that can be exploited in virology.


Assuntos
Vírus da Dengue , HIV-1 , Células-Tronco Pluripotentes Induzidas , Macrófagos , Modelos Biológicos , Orthomyxoviridae , Virologia , Animais , Humanos , Diferenciação Celular/genética , HIV-1/crescimento & desenvolvimento , HIV-1/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/virologia , Orthomyxoviridae/crescimento & desenvolvimento , Orthomyxoviridae/fisiologia , Pan troglodytes , Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/fisiologia , Fibroblastos/citologia , Monócitos/citologia , Replicação Viral , Citometria de Fluxo , Perfilação da Expressão Gênica , Montagem e Desmontagem da Cromatina , Tropismo Viral , Virologia/métodos , Biomarcadores/análise , Biomarcadores/metabolismo
7.
J Virol ; 98(2): e0188823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289104

RESUMO

Human cytomegalovirus (HCMV) utilizes peripheral blood monocytes as a means to systemically disseminate throughout the host. Following viral entry, HCMV stimulates non-canonical Akt signaling leading to the activation of mTORC1 and the subsequent translation of select antiapoptotic proteins within infected monocytes. However, the full extent to which the HCMV-initiated Akt/mTORC1 signaling axis reshapes the monocyte translatome is unclear. We found HCMV entry alone was able to stimulate widescale changes to mRNA translation levels and that inhibition of mTOR, a component of mTORC1, dramatically attenuated HCMV-induced protein synthesis. Although monocytes treated with normal myeloid growth factors also exhibited increased levels of translation, mTOR inhibition had no effect, suggesting HCMV activation of mTOR stimulates the acquisition of a unique translatome within infected monocytes. Indeed, polyribosomal profiling of HCMV-infected monocytes identified distinct prosurvival transcripts that were preferentially loaded with ribosomes when compared to growth factor-treated cells. Sirtuin 1 (SIRT1), a deacetylase that exerts prosurvival effects through regulation of the PI3K/Akt pathway, was found to be highly enriched following HCMV infection in an mTOR-dependent manner. Importantly, SIRT1 inhibition led to the death of HCMV-infected monocytes while having minimal effect on uninfected cells. SIRT1 also supported a positive feedback loop to sustain Akt/mTORC1 signaling following viral entry. Taken together, HCMV profoundly reshapes mRNA translation in an mTOR-dependent manner to enhance the synthesis of select factors necessary for the survival of infected monocytes.IMPORTANCEHuman cytomegalovirus (HCMV) infection is a significant cause of morbidity and mortality among the immunonaïve and immunocompromised. Peripheral blood monocytes are a major cell type responsible for disseminating the virus from the initial site of infection. In order for monocytes to mediate viral spread within the host, HCMV must subvert the naturally short lifespan of these cells. In this study, we performed polysomal profiling analysis, which demonstrated HCMV to globally redirect mRNA translation toward the synthesis of cellular prosurvival factors within infected monocytes. Specifically, HCMV entry into monocytes induced the translation of cellular SIRT1 to generate an antiapoptotic state. Defining the precise mechanisms through which HCMV stimulates survival will provide insight into novel anti-HCMV drugs able to target infected monocytes.


Assuntos
Citomegalovirus , Interações entre Hospedeiro e Microrganismos , Alvo Mecanístico do Complexo 1 de Rapamicina , Monócitos , Biossíntese de Proteínas , RNA Mensageiro , Humanos , Apoptose , Sobrevivência Celular/genética , Citomegalovirus/crescimento & desenvolvimento , Citomegalovirus/patogenicidade , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/patologia , Infecções por Citomegalovirus/transmissão , Infecções por Citomegalovirus/virologia , Retroalimentação Fisiológica , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Monócitos/virologia , Fosfatidilinositol 3-Quinases/metabolismo , Polirribossomos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Sirtuína 1/biossíntese , Sirtuína 1/genética , Sirtuína 1/metabolismo , Internalização do Vírus
8.
Methods Mol Biol ; 2713: 11-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639113

RESUMO

Macrophages are vital to the physiological function of most tissues, but also contribute to disease through a multitude of pathological roles. They are thus highly plastic and heterogeneous. It is now well recognized that macrophages develop from several distinct progenitors from embryogenesis onwards and extending throughout life. Tissue-resident macrophages largely originate from embryonic sources and in many cases self-maintain independently without monocyte input. However, in certain tissues, monocyte-derived macrophages replace these over time or as a result of tissue injury and inflammation. This additional layer of heterogeneity has introduced many questions regarding the influence of origin on fate and function of macrophages in health and disease. To comprehensively address these questions, appropriate methods of tracing macrophage ontogeny are required. This chapter explores why ontogeny is of vital importance in macrophage biology and how to delineate macrophage populations by origin through genetic fate mapping. First, we summarize the current view of macrophage ontogeny and briefly discuss how origin may influence macrophage function in homeostasis and pathology. We go on to make the case for genetic fate mapping as the gold standard and briefly review different fate-mapping models. We then put forward our recommendations for fate-mapping strategies best suited to answer specific research questions and finally discuss the strengths and limitations of currently available models.


Assuntos
Linhagem da Célula , Marcadores Genéticos , Macrófagos , Macrófagos/citologia , Monócitos/citologia , Células-Tronco Hematopoéticas/citologia , Animais , Camundongos , Diferenciação Celular
9.
Hum Vaccin Immunother ; 19(2): 2246542, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37614152

RESUMO

A good safety and immunogenicity profile was reported in Phase I and II clinical trials of inactivated SARS-CoV-2 vaccines. Here, we report two cases associated with vaccine-associated adverse events, including one patient with fever and another with anaphylactic shock resulting from inactivated SARS-CoV-2 vaccination. Cell sub-types and the importance of genetic characteristics were assessed using single-cell mRNA sequencing and machine learning. Overall, the patient with fever showed a significant increase in the numbers of cytotoxic CD8 T cells and MKI67high CD8 T cells. A potential concurrent infection with the Epstein-Barr virus enhanced interferon type I responses to vaccination against the virus. STAT1, E2F1, YBX1, and E2F7 played a key role in the transcription regulation of MKI67high CD8 T cells. In contrast, the patient with allergic shock displayed predominant increases in the numbers of S100A9high monocytes, activated CD4 T cells, and PPBPhigh megakaryocytes. The decision tree showed that LYZ and S100A8 in S100A9high monocytes contributed to the degranulation of neutrophils and activation of neutrophils involved in allergic shock. PPBP and PF4 were major contributors to platelet degranulation. These findings highlight the diversity of adverse reactions following inactivated SARS-CoV-2 vaccination and show the emerging role of cellular subtypes and central genes in vaccine-associated adverse reactions.


The identification of cell sub-types may help in the diagnosis of COVID-19 vaccine-related adverse events.COVID-19 vaccination-related acute pulmonary edema may induce a higher risk of thrombosis.The long-term fever after vaccination may attribute to the excessive type I interferon responses.


Assuntos
Vacinas contra COVID-19 , Humanos , Masculino , Feminino , Adulto , Vacinas contra COVID-19/efeitos adversos , Febre/imunologia , Febre/patologia , Edema Pulmonar/imunologia , Edema Pulmonar/patologia , Linfócitos T CD8-Positivos/citologia , Proliferação de Células , Megacariócitos/patologia , Análise da Expressão Gênica de Célula Única , Linfócitos B/citologia , Monócitos/citologia , Anafilaxia/imunologia , Anafilaxia/patologia
10.
Viruses ; 15(7)2023 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-37515245

RESUMO

IMPORTANCE: Planning for future resurgences in SARS-CoV-2 infection is necessary for providers who care for immunocompromised patients. OBJECTIVE: to determine factors associated with COVID-19 disease severity in immunosuppressed children. DESIGN: a case series of children with solid organ transplants diagnosed with SARS-CoV-2 infection between 15 March 2020 and 31 March 2023. SETTING: a single pediatric transplant center. PARTICIPANTS: all children with a composite transplant (liver, pancreas, intestine), isolated intestine transplant (IT), isolated liver transplant LT), or simultaneous liver kidney transplant (SLK) with a positive PCR for SARS-CoV-2. EXPOSURE: SARS-CoV-2 infection. MAIN OUTCOME AND MEASURES: We hypothesized that children on the most immunosuppression, defined by the number of immunosuppressive medications and usage of steroids, would have the most severe disease course and that differential white blood cell count in the months preceding infection would be associated with likelihood of having severe disease. The hypothesis being tested was formulated during data collection. The primary study outcome measurement was disease severity defined using WHO criteria. RESULTS: 77 children (50 LT, 24 intestine, 3 SLK) were infected with SARS-CoV-2, 57.4 months from transplant (IQR 19.7-87.2). 17% were ≤1 year post transplant at infection. 55% were male, 58% were symptomatic and ~29% had severe disease. A high absolute lymphocyte count at diagnosis decreased the odds of having severe COVID-19 disease (OR 0.29; CI 0.11-0.60; p = 0.004). Conversely, patients with a high absolute monocyte count in the three months preceding infection had increased odds of having severe disease (OR 30.49; CI 1.68-1027.77; p = 0.033). Steroid use, higher tacrolimus level, and number of immunosuppressive medications at infection did not increase the odds of having severe disease. CONCLUSIONS AND RELEVANCE: The significance of a high monocyte count as predictor of severe disease potentially confirms the importance of monocytic inflammasome-driven inflammation in COVID-19 pathogenesis. Our data do not support reducing immunosuppression in the setting of infection. Our observations may have important ramifications in resource management as vaccine- and infection-induced immunity wanes.


Assuntos
COVID-19 , Imunossupressores , Transplante de Órgãos , Esteroides , Humanos , Criança , COVID-19/diagnóstico , COVID-19/epidemiologia , Gravidade do Paciente , Masculino , Feminino , Pré-Escolar , Imunossupressores/uso terapêutico , Esteroides/uso terapêutico , Contagem de Linfócitos , Monócitos/citologia , Rejeição de Enxerto
11.
Nature ; 618(7966): 698-707, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37344646

RESUMO

Embryo-derived tissue-resident macrophages are the first representatives of the haematopoietic lineage to emerge in metazoans. In mammals, resident macrophages originate from early yolk sac progenitors and are specified into tissue-specific subsets during organogenesis-establishing stable spatial and functional relationships with specialized tissue cells-and persist in adults. Resident macrophages are an integral part of tissues together with specialized cells: for instance, microglia reside with neurons in brain, osteoclasts reside with osteoblasts in bone, and fat-associated macrophages reside with white adipocytes in adipose tissue. This ancillary cell type, which is developmentally and functionally distinct from haematopoietic stem cell and monocyte-derived macrophages, senses and integrates local and systemic information to provide specialized tissue cells with the growth factors, nutrient recycling and waste removal that are critical for tissue growth, homeostasis and repair. Resident macrophages contribute to organogenesis, promote tissue regeneration following damage and contribute to tissue metabolism and defence against infectious disease. A correlate is that genetic or environment-driven resident macrophage dysfunction is a cause of degenerative, metabolic and possibly inflammatory and tumoural diseases. In this Review, we aim to provide a conceptual outline of our current understanding of macrophage physiology and its importance in human diseases, which may inform and serve the design of future studies.


Assuntos
Doença , Macrófagos , Animais , Humanos , Diferenciação Celular , Linhagem da Célula , Células-Tronco Hematopoéticas/citologia , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/fisiologia , Microglia/citologia , Monócitos/citologia , Especificidade de Órgãos
12.
Small ; 19(11): e2205429, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36638251

RESUMO

Fluorescent nanodiamonds (FNDs) with negative nitrogen-vacancy (NV- ) defect centers are great probes for biosensing applications, with potential to act as biomarkers for cell differentiation. To explore this concept, uptake of FNDs (≈120 nm) by THP-1 monocytes and monocyte-derived M0-macrophages is studied. The time course analysis of FND uptake by monocytes confirms differing FND-cell interactions and a positive time-dependence. No effect on cell viability, proliferation, and differentiation potential into macrophages is observed, while cells saturated with FNDs, unload the FNDs completely by 25 cell divisions and subsequently take up a second dose effectively. FND uptake variations by THP-1 cells at early exposure-times indicate differing phagocytic capability. The cell fraction that exhibits relatively enhanced FND uptake is associated to a macrophage phenotype which derives from spontaneous monocyte differentiation. In accordance, chemical-differentiation of the THP-1 cells into M0-macrophages triggers increased and homogeneous FND uptake, depleting the fraction of cells that were non-responsive to FNDs. These observations imply that FND uptake allows for distinction between the two cell subtypes based on phagocytic capacity. Overall, FNDs demonstrate effective cell labeling of monocytes and macrophages, and are promising candidates for sensing biological processes that involve cell differentiation.


Assuntos
Técnicas Biossensoriais , Corantes Fluorescentes , Macrófagos , Monócitos , Nanodiamantes , Fagocitose , Nanodiamantes/química , Nanodiamantes/toxicidade , Nitrogênio/química , Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Humanos , Linhagem Celular , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fagocitose/efeitos dos fármacos
13.
FASEB J ; 36(12): e22622, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36421039

RESUMO

Diabetes shortens the life expectancy by more than a decade, and the excess mortality in diabetes is correlated with the incidence of kidney disease. Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease. Macrophage accumulation predicts the severity of kidney injury in human biopsies and experimental models of DKD. However, the mechanism underlying macrophage recruitment in diabetes glomeruli is unclear. Elevated plasma growth hormone (GH) levels in type I diabetes and acromegalic individuals impaired glomerular biology. In this study, we examined whether GH-stimulated podocytes contribute to macrophage accumulation. RNA-seq analysis revealed elevated TNF-α signaling in GH-treated human podocytes. Conditioned media from GH-treated podocytes (GH-CM) induced differentiation of monocytes to macrophages. On the other hand, neutralization of GH-CM with the TNF-α antibody diminished GH-CM's action on monocytes. The treatment of mice with GH resulted in increased macrophage recruitment, podocyte injury, and proteinuria. Furthermore, we noticed the activation of TNF-α signaling, macrophage accumulation, and fibrosis in DKD patients' kidney biopsies. Our findings suggest that podocytes could secrete TNF-α and contribute to macrophage migration, resulting in DKD-related renal inflammation. Inhibition of either GH action or TNF-α expression in podocytes could be a novel therapeutic approach for DKD treatment.


Assuntos
Nefropatias Diabéticas , Monócitos , Podócitos , Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Monócitos/citologia , Podócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Diferenciação Celular
14.
Nature ; 609(7925): 166-173, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35948634

RESUMO

During infection, inflammatory monocytes are thought to be key for bacterial eradication, but this is hard to reconcile with the large numbers of neutrophils that are recruited for each monocyte that migrates to the afflicted tissue, and the much more robust microbicidal functions of the neutrophils. However, unlike neutrophils, monocytes have the capacity to convert to situationally specific macrophages that may have critical functions beyond infection control1,2. Here, using a foreign body coated with Staphylococcus aureus and imaging over time from cutaneous infection to wound resolution, we show that monocytes and neutrophils are recruited in similar numbers with low-dose infection but not with high-dose infection, and form a localization pattern in which monocytes surround the infection site, whereas neutrophils infiltrate it. Monocytes did not contribute to bacterial clearance but converted to macrophages that persisted for weeks after infection, regulating hypodermal adipocyte expansion and production of the adipokine hormone leptin. In infected monocyte-deficient mice there was increased persistent hypodermis thickening and an elevated leptin level, which drove overgrowth of dysfunctional blood vasculature and delayed healing, with a thickened scar. Ghrelin, which opposes leptin function3, was produced locally by monocytes, and reduced vascular overgrowth and improved healing post-infection. In sum, we find that monocytes function as a cellular rheostat by regulating leptin levels and revascularization during wound repair.


Assuntos
Leptina , Monócitos , Neovascularização Fisiológica , Infecções Estafilocócicas , Staphylococcus aureus , Cicatrização , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Cicatriz , Grelina/metabolismo , Leptina/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Monócitos/citologia , Monócitos/metabolismo , Neutrófilos/citologia , Neutrófilos/imunologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/fisiologia
15.
J Biol Chem ; 298(8): 102153, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35718062

RESUMO

The generation of bispecific antibodies (bsAbs) targeting two different antigens opens a new level of specificity and, compared to mAbs, improved clinical efficacy in cancer therapy. Currently, the different strategies for development of bsAbs primarily focus on IgG isotypes. Nevertheless, in comparison to IgG isotypes, IgE has been shown to offer superior tumor control in preclinical models. Therefore, in order to combine the promising potential of IgE molecules with increased target selectivity of bsAbs, we developed dual tumor-associated antigen-targeting bispecific human IgE antibodies. As proof of principle, we used two different pairing approaches - knobs-into-holes and leucine zipper-mediated pairing. Our data show that both strategies were highly efficient in driving bispecific IgE formation, with no undesired pairings observed. Bispecific IgE antibodies also showed a dose-dependent binding to their target antigens, and cell bridging experiments demonstrated simultaneous binding of two different antigens. As antibodies mediate a major part of their effector functions through interaction with Fc receptors (FcRs) expressed on immune cells, we confirmed FcεR binding by inducing in vitro mast cell degranulation and demonstrating in vitro and in vivo monocyte-mediated cytotoxicity against target antigen-expressing Chinese hamster ovary cells. Moreover, we demonstrated that the IgE bsAb construct was significantly more efficient in mediating antibody-dependent cell toxicity than its IgG1 counterpart. In conclusion, we describe the successful development of first bispecific IgE antibodies with superior antibody-dependent cell toxicity-mediated cell killing in comparison to IgG bispecific antibodies. These findings highlight the relevance of IgE-based bispecific antibodies for clinical application.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos Imunológicos , Imunoglobulina E , Monócitos , Animais , Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Células CHO , Cricetinae , Cricetulus , Humanos , Imunoglobulina E/farmacologia , Monócitos/citologia
16.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628558

RESUMO

Platelets (PLT) bind to a significant percentage of circulating monocytes and this immunomodulatory interaction is increased in several inflammatory and autoimmune conditions. The therapeutic blockage of IL-6 with Tocilizumab (TCZ) alters PLT and the phenotype and function of monocytes in rheumatoid arthritis (RA). However, the relationship between monocyte−PLT conjugates (CD14+PLT+) and clinical and immunological variables and the regulation of this interaction by IL-6 blockage are still unknown. Here, we compared the presence of monocyte−PLT conjugates (CD14+PLT+) and membrane CD162 expression using flow cytometry, and, by ELISA, the markers of PLT activation (sCD62P and sCD40L) in healthy donors (HD) and patients with long-standing RA before TCZ (baseline). We found higher percentages and absolute counts of CD14+PLT+, and higher plasmatic levels of sCD62P and sCD40L but lower CD162 expression on monocytes from RA patients than those from HD. Additionally, the levels of CD14+PLT+ inversely correlated with inflammatory parameters. Interestingly, 95% of patients with lower percentages of CD14+PLT+ and only 63% of patients with higher percentages of CD14+PLT+ achieved a EULAR-defined response at four weeks (p = 0.036). After TCZ, the percentage of CD14+PLT+ increased in 92% of RA patients who achieved 12 w-remission (p < 0.001). Our results suggest that the binding of PLTs has a modulatory effect, accentuated by the increased binding of PLTs to monocytes in response to the therapeutic blockage of IL-6.


Assuntos
Anticorpos Monoclonais Humanizados , Artrite Reumatoide , Plaquetas , Monócitos , Anticorpos Monoclonais Humanizados/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Plaquetas/citologia , Citometria de Fluxo , Humanos , Interleucina-6/antagonistas & inibidores , Monócitos/citologia
17.
Nature ; 607(7919): 578-584, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35636458

RESUMO

The nervous and immune systems are intricately linked1. Although psychological stress is known to modulate immune function, mechanistic pathways linking stress networks in the brain to peripheral leukocytes remain poorly understood2. Here we show that distinct brain regions shape leukocyte distribution and function throughout the body during acute stress in mice. Using optogenetics and chemogenetics, we demonstrate that motor circuits induce rapid neutrophil mobilization from the bone marrow to peripheral tissues through skeletal-muscle-derived neutrophil-attracting chemokines. Conversely, the paraventricular hypothalamus controls monocyte and lymphocyte egress from secondary lymphoid organs and blood to the bone marrow through direct, cell-intrinsic glucocorticoid signalling. These stress-induced, counter-directional, population-wide leukocyte shifts are associated with altered disease susceptibility. On the one hand, acute stress changes innate immunity by reprogramming neutrophils and directing their recruitment to sites of injury. On the other hand, corticotropin-releasing hormone neuron-mediated leukocyte shifts protect against the acquisition of autoimmunity, but impair immunity to SARS-CoV-2 and influenza infection. Collectively, these data show that distinct brain regions differentially and rapidly tailor the leukocyte landscape during psychological stress, therefore calibrating the ability of the immune system to respond to physical threats.


Assuntos
Encéfalo , Medo , Leucócitos , Neurônios Motores , Vias Neurais , Estresse Psicológico , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Encéfalo/citologia , Encéfalo/fisiologia , COVID-19/imunologia , Quimiocinas/imunologia , Suscetibilidade a Doenças , Medo/fisiologia , Glucocorticoides/metabolismo , Humanos , Leucócitos/citologia , Leucócitos/imunologia , Linfócitos/citologia , Linfócitos/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Camundongos , Monócitos/citologia , Monócitos/imunologia , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Neutrófilos/citologia , Neutrófilos/imunologia , Optogenética , Infecções por Orthomyxoviridae/imunologia , Núcleo Hipotalâmico Paraventricular/fisiologia , SARS-CoV-2/imunologia , Estresse Psicológico/imunologia , Estresse Psicológico/fisiopatologia
18.
Front Immunol ; 13: 826047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401562

RESUMO

Opening of the endothelial barrier and targeted infiltration of leukocytes into the affected tissue are hallmarks of the inflammatory response. The molecular mechanisms regulating these processes are still widely elusive. In this study, we elucidate a novel regulatory network, in which miR-125a acts as a central hub that regulates and synchronizes both endothelial barrier permeability and monocyte migration. We found that inflammatory stimulation of endothelial cells induces miR-125a expression, which consecutively inhibits a regulatory network consisting of the two adhesion molecules VE-Cadherin (CDH5) and Claudin-5 (CLDN5), two regulatory tyrosine phosphatases (PTPN1, PPP1CA) and the transcription factor ETS1 eventually leading to the opening of the endothelial barrier. Moreover, under the influence of miR-125a, endothelial expression of the chemokine CCL2, the most predominant ligand for the monocytic chemokine receptor CCR2, was strongly enhanced. In monocytes, on the other hand, we detected markedly repressed expression levels of miR-125a upon inflammatory stimulation. This induced a forced expression of its direct target gene CCR2, entailing a strongly enhanced monocyte chemotaxis. Collectively, cell-type-specific differential expression of miR-125a forms a synergistic functional network controlling monocyte trafficking across the endothelial barrier towards the site of inflammation. In addition to the known mechanism of miRNAs being shuttled between cells via extracellular vesicles, our study uncovers a novel dimension of miRNA function: One miRNA, although disparately regulated in the cells involved, directs a biologic process in a synergistic and mutually reinforcing manner. These findings provide important new insights into the regulation of the inflammatory cascade and may be of great use for future clinical applications.


Assuntos
MicroRNAs , Monócitos , Células Endoteliais/citologia , Humanos , Inflamação/metabolismo , MicroRNAs/genética , Monócitos/citologia , Permeabilidade
19.
Front Immunol ; 13: 842535, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185933

RESUMO

Myeloid-derived suppressor cells (MDSCs) are generated under biological stress such as cancer, inflammatory tissue damage, and viral infection. In recent years, with occurrence of global infectious diseases, new discovery on MDSCs functions has been significantly expanded during viral infection and COVID-19. For a successful viral infection, pathogens viruses develop immune evasion strategies to avoid immune recognition. Numerous viruses induce the differentiation and expansion of MDSCs in order to suppress host immune responses including natural killer cells, antigen presenting cells, and T-cells. Moreover, MDSCs play an important role in regulation of immunopathogenesis by balancing viral infection and tissue damage. In this review article, we describe the overview of immunomodulation and genetic regulation of MDSCs during viral infection in the animal model and human studies. In addition, we include up-to-date review of role of MDSCs in SARS-CoV-2 infection and COVID-19. Finally, we discuss potential therapeutics targeting MDSCs.


Assuntos
Imunomodulação/imunologia , Macrófagos/imunologia , Células Supressoras Mieloides/imunologia , Neutrófilos/imunologia , SARS-CoV-2/imunologia , Animais , COVID-19/imunologia , Modelos Animais de Doenças , Humanos , Evasão da Resposta Imune/imunologia , Macrófagos/citologia , Monócitos/citologia , Monócitos/imunologia , Células Supressoras Mieloides/citologia
20.
BMC Res Notes ; 15(1): 31, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35144666

RESUMO

OBJECTIVE: The endothelial cells overexpress the adhesion molecules in the leukocyte diapedesis pathway, developing vessel subendothelial molecular events. In this study, miR-194 and miR-27a were predicted and investigated on the expression of adhesion molecules in HUVEC cells. The SELE, SELP, and JAM-B adhesion molecules involved in the leukocyte tethering were predicted on the GO-enriched gene network. Following transfection of PEI-miRNA particles into HUVEC cells, the SELE, SELP, and JAM-B gene expression levels were evaluated by real-time qPCR. Furthermore, the monocyte-endothelial adhesion was performed using adhesion assay kit. RESULTS: In agreement with the prediction results, the cellular data showed that miR-27a and miR-194 decrease significantly the SELP and JAM-B expression levels in HUVECs (P < 0.05). Moreover, both the miRNAs suppressed the monocyte adhesion to endothelial cells. Since the miR-27a inhibited significantly the monocyte-endothelial adhesion (P = 0.0001) through the suppression of SELP and JAM-B thus it might relate to the leukocyte diapedesis pathway.


Assuntos
Adesão Celular , Células Endoteliais da Veia Umbilical Humana/citologia , MicroRNAs , Monócitos , Moléculas de Adesão Celular/genética , Células Cultivadas , Humanos , MicroRNAs/genética , Monócitos/citologia , Selectina-P
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA