Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.920
Filtrar
1.
Environ Monit Assess ; 196(6): 545, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38740605

RESUMO

In Tunisia, urban air pollution is becoming a bigger problem. This study used a combined strategy of biomonitoring with lichens and satellite mapping with Sentinel-5 satellite data processed in Google Earth Engine (GEE) to assess the air quality over metropolitan Tunis. Lichen diversity was surveyed across the green spaces of the Faculty of Science of Tunisia sites, revealing 15 species with a predominance of pollution-tolerant genera. The Index of Atmospheric Purity (IAP) calculated from the lichen data indicated poor air quality. Spatial patterns of pollutants sulfur dioxide (SO2), ozone (O3), nitrogen dioxide (NO2), carbon monoxide (CO), and aerosol index across Greater Tunis were analyzed from Sentinel-5 datasets on the GEE platform. The higher values of these indices in the research area indicate that it may be impacted by industrial activity and highlight the considerable role that vehicle traffic plays in air pollution. The results of the IAP, IBL, and the combined ground-based biomonitoring and satellite mapping techniques confirm poor air quality and an environment affected by atmospheric pollutants which will enable proactive air quality management strategies to be put in place in Tunisia's rapidly expanding cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Líquens , Ozônio , Dióxido de Enxofre , Líquens/química , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Tunísia , Ozônio/análise , Dióxido de Enxofre/análise , Dióxido de Nitrogênio/análise , Cidades , Imagens de Satélites , Monóxido de Carbono/análise
2.
Chemosphere ; 358: 142198, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697566

RESUMO

In the electrical industry, there are many hazardous gases that pollute the environment and even jeopardize human health, so timely detection and effective control of these hazardous gases is of great significance. In this work, the gas-sensitive properties of Pd-modified g-C3N4 interface for each hazardous gas molecule were investigated from a microscopic viewpoint, taking the hazardous gases (CO, NOx) that may be generated in the power industry as the detection target. Then, the performance of Pd-modifiedg-C3N4 was evaluated for practical applications as a gas sensor material. Novelly, an unconventional means was designed to briefly predict the effect of humidity on the adsorption properties of this sensor material. The final results found that Pd-modified g-C3N4 is most suitable as a potential gas-sensitizing material for NO2 gas sensors, followed by CO. Interestingly, Pd-modified g-C3N4 is less suitable as a potential gas-sensitizing material for NO gas sensors, but has the potential to be used as a NO cleaner (adsorbent). Unconventional simulation explorations of humidity effects show that in practical applications Pd-modified g-C3N4 remains a promising material for gas sensing in specific humidity environments. This work reveals the origin of the excellent properties of Pd-modified g-C3N4 as a gas sensor material and provides new ideas for the detection and treatment of these three hazardous gases.


Assuntos
Poluentes Atmosféricos , Paládio , Poluentes Atmosféricos/análise , Paládio/química , Adsorção , Água/química , Monitoramento Ambiental/métodos , Gases/análise , Umidade , Monóxido de Carbono/análise , Nitrilas/química , Nitrilas/análise
3.
J Environ Manage ; 359: 121017, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718602

RESUMO

Energy transition currently brings focus on fuel cell micro-combined heat and power (mCHP) systems for residential uses. The two main technologies already commercialized are the Proton Exchange Membrane Fuel Cells (PEMFCs) and Solid Oxide Fuel Cells (SOFCs). The pollutant emissions of one system of each technology have been tested with a portable probe both in laboratory and field-test configurations. In this paper, the nitrogen oxides (NOx), sulphur dioxide (SO2), and carbon monoxide (CO) emission levels are compared to other combustion technologies such as a recent Euro 6 diesel automotive vehicle, a classical gas condensing boiler, and a gas absorption heat pump. At last, a method of converting the concentration of pollutants (in ppm) measured by the sensors into pollutant intensity per unit of energy (in mg/kWh) is documented and reported. This allows for comparing the pollutant emissions levels with relevant literature, especially other studies conducted with other measuring sensors. Both tested residential fuel cell technologies fed by natural gas can be considered clean regarding SO2 and NOx emissions. The CO emissions can be considered quite low for the tested SOFC and even nil for the tested PEMFC. The biggest issue of natural gas fuel cell technologies still lies in the carbon dioxide (CO2) emissions associated with the fossil fuel they consume. The gas absorption heat pump however shows worse NOx and CO levels than the classical gas condensing boiler. At last, this study illustrates that the high level of hybridization between a fuel cell and a gas boiler may be responsible for unexpected ON/OFF cycling behaviours and therefore prevent both sub-systems from operating as optimally and reliably as they would have as standalone units.


Assuntos
Poluentes Atmosféricos , Óxidos de Nitrogênio , Poluentes Atmosféricos/análise , Óxidos de Nitrogênio/análise , Monóxido de Carbono/análise , Dióxido de Enxofre/análise , Benchmarking , Emissões de Veículos/análise , Monitoramento Ambiental/métodos
4.
Environ Monit Assess ; 196(6): 521, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714584

RESUMO

The transport sector is considered the largest contributor of air pollutants in urban areas, mainly on-road vehicles, affecting the environment and human health. Bahía Blanca is a medium-sized Latin American city, with high levels of traffic in the downtown area during peak hours. In this regard, it is necessary to analyze air pollution using an air quality model considering that there are no air pollutant measurements in the central area. Furthermore, this type of study has not been carried out in the region and since the city is expected to grow, it is necessary to evaluate the current situation in order to make effective future decisions. In this sense, the AERMOD model (US-EPA version) and the RLINE source type were used in this work. This study analyzes the variations of pollutant concentrations coming from mobile sources in Bahía Blanca's downtown area, particularly carbon monoxide (CO) and nitrogen oxides (NOx) during the period Jul-2020 to Jun-2022. It is interesting to note the results show the maximum concentration values detected are not directly associated with maximum levels of vehicle flow or emission rates, which highlights the importance of meteorological parameters in the modeling. In addition, alternative scenarios are proposed and analyzed from a sustainable approach. Regarding the scenario analysis, it can be concluded that diesel vehicles have a large influence on NOx emissions. Moreover, restrictions as strict as those proposed for a Low Emission Zone would be less applicable in the city than alternative temporary measures that modify traffic at peak hours.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monóxido de Carbono , Cidades , Monitoramento Ambiental , Emissões de Veículos , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Emissões de Veículos/análise , Monóxido de Carbono/análise , Óxidos de Nitrogênio/análise , América Latina , Modelos Teóricos , Material Particulado/análise
5.
Waste Manag ; 182: 250-258, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38677142

RESUMO

Carbon monoxide (CO) formation has been observed during composting of various fractions of organic waste. It was reported that this production can be biotic, associated with the activity of microorganisms. However, there are no sources considering the microbial communities producing CO production in compost. This preliminary research aimed to isolate and identify microorganisms potentially responsible for the CO production in compost collected from two areas of the biowaste pile: with low (118 ppm) and high CO concentration (785 ppm). Study proved that all isolates were bacterial strains with the majority of rod-shaped Gram-positive bacteria. Both places can be inhabited by the same bacterial strains, e.g. Bacillus licheniformis and Paenibacillus lactis. The most common were Bacillus (B. licheniformis, B. haynesii, B. paralicheniformis, and B. thermolactis). After incubation of isolates in sealed bioreactors for 4 days, the highest CO levels in the headspace were recorded for B. paralicheniformis (>1000 ppm), B. licheniformis (>800 ppm), and G. thermodenitrificans (∼600 ppm). High CO concentrations were accompanied by low O2 (<6%) and high CO2 levels (>8%). It is recommended to analyze the expression of the gene encoding CODH to confirm or exclude the ability of the identified strains to convert CO2 to CO.


Assuntos
Monóxido de Carbono , Compostagem , Monóxido de Carbono/metabolismo , Monóxido de Carbono/análise , Microbiologia do Solo , Bacillus/metabolismo , Bacillus/genética , Bacillus/isolamento & purificação , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação
6.
ACS Sens ; 9(4): 1682-1705, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38593007

RESUMO

Gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), are a class of gaseous, endogenous signaling molecules that interact with one another in the regulation of critical cardiovascular, immune, and neurological processes. The development of analytical sensing mechanisms for gasotransmitters, especially multianalyte mechanisms, holds vast importance and constitutes a growing area of study. This review provides an overview of electrochemical sensing mechanisms with an emphasis on opportunities in multianalyte sensing. Electrochemical methods demonstrate good sensitivity, adequate selectivity, and the most well-developed potential for the multianalyte detection of gasotransmitters. Future research will likely address challenges with sensor stability and biocompatibility (i.e., sensor lifetime and cytotoxicity), sensor miniaturization, and multianalyte detection in biological settings.


Assuntos
Monóxido de Carbono , Técnicas Eletroquímicas , Gasotransmissores , Sulfeto de Hidrogênio , Óxido Nítrico , Gasotransmissores/análise , Técnicas Eletroquímicas/métodos , Monóxido de Carbono/análise , Óxido Nítrico/análise , Sulfeto de Hidrogênio/análise , Humanos , Técnicas Biossensoriais/métodos , Animais
7.
Meat Sci ; 213: 109466, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38489920

RESUMO

Limited studies have determined the effects of modified atmospheric packaging (MAP) on atypical dark-cutting beef surface color. The objective was to compare the impacts of using vacuum packaging, carbon monoxide (CO-MAP), and HiOx-MAP (high­oxygen) on the retail color of normal-pH and atypical dark-cutting beef aged 14 d. Atypical dark-cutting beef (pH 5.63) had numerically greater (P > 0.05) pH than normal-pH beef (pH 5.56). Atypical dark-cutting steaks were darker in color (lower L* values; P < 0.05) than normal-pH steaks. Atypical dark-cutting steaks had greater (P < 0.05) oxygen consumption, lower (P < 0.05) relative oxygenation, and less inter-muscle bundle space (P < 0.05) than normal-pH steaks. There were no differences (P > 0.05) in redness between normal-pH and atypical dark-cutting steaks when packaged in HiOx-MAP. Although a minimal increase in pH was observed in atypical dark-cutting beef, steaks in CO-MAP had lower redness than normal-pH steaks.


Assuntos
Cor , Embalagem de Alimentos , Oxigênio , Carne Vermelha , Animais , Bovinos , Embalagem de Alimentos/métodos , Carne Vermelha/análise , Concentração de Íons de Hidrogênio , Vácuo , Monóxido de Carbono/análise , Atmosfera , Músculo Esquelético/química , Consumo de Oxigênio
8.
Biometrics ; 80(1)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38477485

RESUMO

Environmental epidemiologic studies routinely utilize aggregate health outcomes to estimate effects of short-term (eg, daily) exposures that are available at increasingly fine spatial resolutions. However, areal averages are typically used to derive population-level exposure, which cannot capture the spatial variation and individual heterogeneity in exposures that may occur within the spatial and temporal unit of interest (eg, within a day or ZIP code). We propose a general modeling approach to incorporate within-unit exposure heterogeneity in health analyses via exposure quantile functions. Furthermore, by viewing the exposure quantile function as a functional covariate, our approach provides additional flexibility in characterizing associations at different quantile levels. We apply the proposed approach to an analysis of air pollution and emergency department (ED) visits in Atlanta over 4 years. The analysis utilizes daily ZIP code-level distributions of personal exposures to 4 traffic-related ambient air pollutants simulated from the Stochastic Human Exposure and Dose Simulator. Our analyses find that effects of carbon monoxide on respiratory and cardiovascular disease ED visits are more pronounced with changes in lower quantiles of the population's exposure. Software for implement is provided in the R package nbRegQF.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Exposição Ambiental , Poluição do Ar/análise , Monóxido de Carbono/análise
9.
Wilderness Environ Med ; 35(2): 129-137, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38384121

RESUMO

INTRODUCTION: While the use of camping stoves in poorly ventilated areas is discouraged, the need to address dehydration challenges in harsh arctic conditions has led to their unconventional use inside snow caves for snow melting, subjecting occupants to unknown carbon monoxide (CO) levels. This study, located at sea level in northeastern Greenland, aimed to assess CO levels and dynamics during short cooking sessions in newly constructed emergency snow caves. METHODS: In 5 snow caves, constructed according to the same design principles by 4 different individuals, a single MSR Whisperlite multifuel burner, primed with ethanol and burning white gas, was used to melt snow. CO concentrations were monitored every minute until all the snow in a 5-L pot was converted to water and CO levels returned to below 10 ppm. RESULTS: A total of 16 experiments conducted showed that the priming phase generated the highest CO peaks, with a maximum of 120 ppm. Time-weighted averages ranged from 14 ppm to 67 ppm, with trial durations of 15 to 21 min. A single trial with a dirty burner resulted in up to a 10-fold increase in CO levels. CONCLUSIONS: While single, short cooking sessions of less than 10 min burn time in newly constructed snow caves may be tolerated under specific conditions, the study highlighted substantial variation between caves and the importance of using clean burners, emphasizing the need for further research to gain a comprehensive understanding of CO exposure dynamics in snow caves.


Assuntos
Monóxido de Carbono , Culinária , Neve , Humanos , Monóxido de Carbono/análise , Culinária/métodos , Groenlândia , Poluição do Ar em Ambientes Fechados/análise
10.
Environ Pollut ; 346: 123587, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367695

RESUMO

The turbocharged Miller cycle strategy is studied to improve the power density of diesel engines and reduce emissions. A thermodynamic model and a 1D simulation model of turbocharged diesel engine are established. Results show that the introduction of the Miller cycle reduces the thermal efficiency under naturally aspirated conditions because of the low effective compression ratio, whereas it increases the thermal efficiency under a turbocharged condition owing to the energy recovered by the turbocharger. Under restricted combustion pressure and fixed intake mass, the thermal efficiency first increases and then decreases with increasing Miller cycle ratio, and the peaks occur at approximately 30%-50%. The gain of isochoric combustion ratio overlaps the loss of effective compression ratio due to the Miller cycle on the lower side, whereas it reverses on the higher side. With maximum and equal intake mass, the maximum power initially increases and subsequently decreases with increasing Miller cycle ratio, reaching a peak at 40%. Under a fixed isochoric combustion ratio, the thermal efficiency first increases and then decreases with increasing intake mass, and the optimum intake mass corresponding to the highest thermal efficiency decreases with increasing Miller cycle ratio. The lower the restricted combustion pressure is, the higher the gain in power and thermal efficiency by the Miller cycle strategy. Based on the calculation of the 1D model validated using a practical engine, the power can be increased from 41.6 kW/L to 100 kW/L while the brake thermal efficiency can be increased from 34.98% into 38.55% by increasing the Miller cycle ratio from 19% to 30% and the combustion pressure from 17.7 MPa to 35 MPa. With the application of the supercharged Miller cycle, when the Miller cycle ratio is 30% and the power intensity is increased from 60 kW/L to 100 kW/L, NOx decreases by 32.4%, CO decreases by 28%, showing a tendency to decrease and then stabilize, and HC increases by 5.3%. When the power is 80 kW/L and the Miller cycle ratio is increased from 10% to 30%, NOx decreases by 8.6%, CO decreases by 2%, and HC increases by 0.04%.


Assuntos
Gasolina , Emissões de Veículos , Termodinâmica , Biocombustíveis , Monóxido de Carbono/análise
11.
Environ Sci Pollut Res Int ; 31(14): 21709-21720, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38393567

RESUMO

Continued improvements in living standards and the economic well-being in the megacities have led to a huge surge in vehicular density. The worst environmental outcome of the same has been persistent unsafe urban air quality, thanks to vehicular emission. Further, the existing inspection and maintenance programs, conceived to check such emission remain largely ineffective, particularly in developing countries. This is due to the absence of a thorough assessment of the vehicle's compliance with the in-use emission norms generated through reliable field investigation data. To address this gap, the present comprehensive study collected real-time tailpipe emission data from 2040 cars in Delhi, India. Exhaust emission parameters, namely, CO (carbon monoxide), HC (hydrocarbon), and SE (smoke emission), were recorded from both petrol and diesel-driven cars of private ownership, in collaboration with the emission compliance test centers. The performance of cars was assessed in terms of their compliance with the in-use BS (Bharat Stage) emission norms. The one-of-its-kind study reported the petrol cars to be highly compliant toward the BS IV norm while faring even better toward BS II for both CO and HC emissions (80-90%). The conformance to the HC norm was found to be typically better than that for CO (85-90% versus 75-80%). For the diesel-driven cars, BS III compliance levels were reported relatively better compared to BS IV (90% in the case of the former against 80% in the latter's case). Further, the study puts forward a clear indication that the in-use emission norm and maintenance status of cars have a direct and negative relationship with tailpipe emission parameters. Cars of both overseas and domestic origin have almost equal degrees of compliance with the emission norms (over 80% in any case). The study recommends the incorporation of these two critical vehicular variables, i.e., maintenance status and in-use emission standard in the emission certification policy.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Automóveis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Emissões de Veículos/análise , Monóxido de Carbono/análise , Gasolina/análise
12.
Environ Monit Assess ; 196(3): 291, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383898

RESUMO

This study conducts a spatio-temporal analysis of tropospheric nitrogen dioxide (NO2) and total carbon monoxide (CO) concentrations in the Punjab and Haryana regions of India and Pakistan, using datasets from the Sentinel 5-Precursor (S5P) satellite. These regions, marked by diverse economic growth factors including population expansion, power generation, transportation, and agricultural practices, face similar challenges in atmospheric pollution, particularly evident in major urban centers like Delhi and Lahore, identified as pollution hotspots. The study also spotlights pollution associated with power plants. In urban areas, tropospheric NO2 levels are predominantly elevated due to vehicular emissions, whereas residential activities mainly contribute to CO pollution. However, precisely attributing urban CO sources is complex due to its longer atmospheric residence time and intricate circulation patterns. Notably, the burning of rice crop residue in November significantly exacerbates winter pollution episodes and smog, showing a more pronounced correlation with total CO than with tropospheric NO2 levels. The temporal analysis indicates that the months from October to December witness peak pollution, contrasted with the relatively cleaner period during the monsoon months of July to September. The severe pollution in the OND quarter is attributed to factors such as variations in boundary layer height and depletion of OH radicals. Furthermore, the study highlights the positive impact of the COVID-19 lockdown on air quality, with a significant decrease in NO2 concentrations during April, 2020 (Delhi: 59%, Lahore: 58%). However, the reduction in total CO columns was less significant. The study also correlates lockdown stringency with tropospheric NO2 columns (R2: 0.37 for Delhi, 0.25 for Lahore, 0.22 for Rawalpindi/Islamabad), acknowledging the influence of various meteorological and atmospheric variables. The research highlights the significant impact of crop residue burning on winter pollution levels, particularly on total CO concentrations. The study also shows the notable effect of the COVID-19 lockdown on air quality, significantly reducing NO2 levels. Additionally, it explores the correlation between lockdown stringency and tropospheric NO2 columns, considering various meteorological factors.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Humanos , Monóxido de Carbono/análise , COVID-19/epidemiologia , Dióxido de Nitrogênio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Controle de Doenças Transmissíveis , Poluição do Ar/análise , Material Particulado/análise
13.
Eur Rev Med Pharmacol Sci ; 28(2): 789-796, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38305621

RESUMO

OBJECTIVE: Environmental pollution is an emerging global public health problem across the world and causes serious threats to ecosystems, human health, and the planet. This study is designed to explore the impact of environmental pollution particulate matter PM2.5, PM10, carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) on cognitive functions in students from schools located in or away from air-polluted areas. SUBJECTS AND METHODS: In this study, two schools were selected: one was located near a traffic-polluted area (school #1), and the second was in an area away from the traffic-polluted area (school #2). In this study, a total of 300 students were recruited: 150 (75 male and 75 female) students from school #1 located in a traffic-polluted area, and 150 students (75 male and 75 female) from school #2 located away from a traffic polluted area. The overall average age of students was 13.53±1.20 years. The students were selected based on age, gender, health status, height, weight, BMI, ethnicity, and homogenous socio-economic and educational status. The pollutants PM2.5, PM10, CO, NO2, O3, and SO2 were recorded in the surrounding environment. The overall mean concentration of environmental pollutants in school #1 was 35.00±0.65 and in school #2 was 29.95±0.32. The levels of airborne particles were measured, and the cognitive functions were recorded using the Cambridge Neuropsychological Test Automated Battery (CANTAB). The students performed the cognitive functions tasks, including the attention switching task (AST), choice reaction time (CRT), and motor screening task (MOT). RESULTS: The results revealed that the AST-Mean 928.34±182.23 vs. 483.79±146.73 (p=0.001), AST-mean congruent 889.12±197.12 vs. 473.30±120.11 (p=0.001), AST-mean in-congruent 988.98±201.27  vs. 483.87±144.57 (p=0.001), CRT-Mean 721.36±251.72  vs. 418.17±89.71 (p=0.001), and MOT-Mean 995.07±394.37 vs. 526.03±57.83 (p=0.001) were significantly delayed among the students who studied in school located in the traffic polluted area compared to students who studied in school which was located away from the traffic-polluted area. CONCLUSIONS: Environmental pollution was significantly higher in motor vehicle-congested areas. Cognitive functions were impaired among the students who were studying in a school located in a polluted area. The results further revealed that the students studying in schools located in environmentally polluted areas have attention, thinking, and decision-making abilities related to cognitive function impairment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Ozônio , Humanos , Masculino , Feminino , Criança , Adolescente , Monóxido de Carbono/efeitos adversos , Monóxido de Carbono/análise , Dióxido de Enxofre/efeitos adversos , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Ozônio/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Ecossistema , Material Particulado/efeitos adversos , Material Particulado/análise , Cognição
14.
Environ Sci Pollut Res Int ; 31(6): 8608-8632, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180670

RESUMO

Recent global challenges encompass profound environmental pollution and the depletion of finite fuel resources. In this study, the biodiesel used in the mixture was derived from Azolla pinnata microalgae oil through a trans-esterification reaction chosen for its high oil concentration. During the initial phase of the experiment, varying volumes of biodiesel (5%, 10%, and 15%) and n-heptane (5%, 10%, and 15%) were introduced to diesel to form a ternary fuel blend. The experimental outcome shows that an n-heptane and biodiesel mixture of 10% by volume would produce the best results. Next, experiments were carried out by incorporating 10, 40, and 80 ppm titanium oxide (TiO2) nanoparticles (NPs) in a recommended ternary fuel blend. The experimental investigation showed that D80A10H10TNP40 (diesel 80% + biodiesel 10% + n-heptane 10% + TiO2 40 ppm) caused a 7.21% increase in brake thermal efficiency (BTE) with a decrease in brake specific fuel consumption (BSFC) and brake specific energy consumption (BSEC) by 9.58% and 10%, respectively, compared to (diesel 80% + biodiesel 20%) D80A20. D80A10H10TNP40 exhibits lower emissions, with a significant reduction of 11.29% and 20.96% in carbon monoxide (CO) and unburnt hydrocarbons (UBHC), respectively. Nitrogen oxide (NOX) and smoke emissions were reduced by 3.3% and 11.13%, respectively, compared to D80A10H10. Furthermore, D80A10H10TNP40 demonstrated enhanced combustion properties, comprising a significant rise of 4.39% in-cylinder pressure (CP), 35.29% in heat release rate (HRR), and 25.05% in the rate of pressure rise (RPR). The findings of this investigation indicate that D80A10H10TNP40 exhibits enhanced efficiency, emission, and combustion properties compared to the D80A20 fuel.


Assuntos
Heptanos , Microalgas , Nanopartículas , Gasolina , Biocombustíveis , Emissões de Veículos , Óxido Nítrico , Monóxido de Carbono/análise
15.
Environ Sci Pollut Res Int ; 31(6): 9811-9830, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198083

RESUMO

The number of cars is increasing every year and the environmental aspects of transport are becoming a hot topic. The spatial and temporal patterns of motor vehicle carbon monoxide (CO) emissions are still unclear due to the unbalanced economic development and heterogeneous geographic conditions of China. With the objective of realizing a reduction in motor vehicle CO emissions, his study explores the transport carbon emission reduction pathways of China from motor vehicle CO emission. Firstly, the entropy method is adopted to comprehensively evaluate the CO emissions from motor vehicles in each province; secondly, the development of a Geographically and Temporally Weighted Regression (GTWR) model facilitates the examination of the spatiotemporal dynamics pertaining to the influencing factors of motor vehicle CO emissions within each province.; finally, the characteristics of motor vehicle CO emissions in ETS pilot areas and non-ETS pilot areas are compared. The results show that: (1) After the completion of the six ETS pilot areas in 2011, the CO emission from motor vehicles is reduced by 18% compared with 2010.(2)The entropy method shows that the largest CO emissions from motor vehicles are from Beijing, Shanghai, Guangdong and other provinces with high economic levels.(3) The results of the GTWR model show that the positive effects of economic level, population size, road mileage intensity and motor vehicle intensity on motor vehicle CO emissions are decreasing year by year. The negative effect of metro line intensity on CO emission decreases year by year. This study can help decision makers to identify the high emission areas, understand the influencing factors, and formulate emission reduction measures to achieve the purpose of carbon emission reduction in transport.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Emissões de Veículos/análise , Monóxido de Carbono/análise , Poluentes Atmosféricos/análise , China , Veículos Automotores
16.
J Environ Qual ; 53(2): 162-173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38297166

RESUMO

High emissions of aerosols and trace gases during nighttime can cause serious air quality, climate, and health issues, particularly in extremely polluted cities. In this paper, an effort has been made to examine the variations in aerosols and trace gases over a sub-Saharan city of Ilorin (Nigeria) during nighttime. We have used Aerosol Robotic Network data of aerosol optical depth (AOD) at 500 nm, Angstrom exponent (AE) (440/870), and precipitable water (WVC). Both AE and WVC showed a decreasing trend of -0.0012% and -0.0010% per year, respectively. We also analyzed nighttime data of carbon monoxide (CO), methane (CH4 ), and ozone (O3 ) from Atmospheric Infrared Sounder and aerosol subtypes from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation). AOD, AE, and WVC average values are found to be 0.64 ± 0.33, 0.74 ± 0.24, and 3.40 ± 0.97, respectively. As a result of northeasterly winds carrying Saharan dust during the dry season, the greatest value of AOD (1.29) was observed in February. Desert dust aerosols (37.63%) were the most prevalent type, followed by mixed aerosols (44.15%). Winds at a height of 1500 m above ground level were likely transporting Saharan dust to Ilorin. CALIPSO images revealed that Ilorin's atmosphere contained dust, polluted continental, clean maritime, and polluted dust on high AOD days. The National Oceanic and Atmospheric Administration's vertical sounding profiles showed that the presence of high AOD values was caused by the inversion layer trapping aerosol pollution. Average nighttime concentrations of CO, O3 , and CH4 were measured to be 127 ± 18, 29.7 ± 2.1, and 1822.6 ± 12.7 ppbv, respectively. The wavelet coherence spectra exhibited significant quasi-biannual and quasi-annual oscillations at statistically significant levels.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Nigéria , Poeira/análise , Estações do Ano , Aerossóis/análise , Monóxido de Carbono/análise , Monitoramento Ambiental/métodos
17.
J Community Health ; 49(1): 1-7, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37284918

RESUMO

Carbon monoxide (CO) is a leading cause of poisoning. CO detectors are a known-effective prevention strategy, however, little is known about use of detectors or knowledge of risk. This study assessed awareness of CO poisoning risk, detector laws, and detector use among a statewide sample. Data collected from the Survey of the Health of Wisconsin (SHOW) included a CO Monitoring module added to the in-home interview for 466 participants representing unique households across Wisconsin in 2018-2019. Univariate and multivariable logistic regression models examined associations between demographic characteristics, awareness of CO laws and detector use. Less than half of households had a verified CO detector. Under 46% were aware of the detector law. Those aware had 2.82 greater odds of having a detector in the home compared to those unaware of the law. Lack of CO law awareness may lead to less frequent detector use and result in higher risk of CO poisoning. This highlights the need for CO risk and detector education to decrease poisonings.


Assuntos
Intoxicação por Monóxido de Carbono , Monóxido de Carbono , Humanos , Monóxido de Carbono/análise , Intoxicação por Monóxido de Carbono/prevenção & controle , Inquéritos Epidemiológicos , Saúde Pública , Wisconsin , Publicações Periódicas como Assunto
18.
Women Birth ; 37(1): 118-127, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932159

RESUMO

PROBLEM: Over 25000 Australian women smoke during pregnancy each year, with risks to mother and baby including miscarriage, pre-eclampsia, placental issues, premature birth, and stillbirth. BACKGROUND: Carbon Monoxide testing has been introduced in antenatal care settings to help identify smokers and motivate them to quit. AIM: This integrative systematic review aims to take a holistic look at Carbon Monoxide (CO) testing to understand how effective and acceptable this practice is in antenatal care. METHODS: PubMed, Scopus and CINAHL were searched for literature relating to pregnant women where CO testing has been used to identify smoking as part of a smoking cessation initiative. The search results were then screened and reviewed independently by two authors. A total of 15 studies were deemed relevant and proceeded to quality appraisal using the Crowe Critical Appraisal Tool. A Narrative Synthesis method was used to present the findings. DISCUSSION: Synthesis resulted in four themes: smoking identification and referral to cessation support, smoking cessation, midwifery usability of CO testing and women's perception of CO testing. Whilst carbon monoxide testing increased the identification and referral to cessation support for pregnant smokers, it did not make an overall difference to smoking cessation rates. Midwives frequently report having too little time to conduct carbon monoxide testing. Findings suggest that women accept the test, but their opinions are under-represented in the existing evidence. Midwives and women report concern for the midwife/woman relationship if testing is not conducted well. CONCLUSION: Whilst carbon monoxide testing can identify smoking, it does not appear to motivate pregnant smokers to quit.


Assuntos
Abandono do Hábito de Fumar , Feminino , Gravidez , Humanos , Abandono do Hábito de Fumar/métodos , Monóxido de Carbono/análise , Austrália , Placenta/química , Fumar , Cuidado Pré-Natal/métodos
19.
Nicotine Tob Res ; 26(6): 655-662, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38157415

RESUMO

INTRODUCTION: The prevalence of waterpipe tobacco smoking is increasing globally. Biomarkers of waterpipe tobacco smoke (WTS) exposure are less studied. AIMS AND METHODS: To identify the types of biomarkers of WTS exposure and estimate changes in biomarker concentrations pre- to post-WTS exposure. PubMed, Embase, Web of Science, CINAHL Plus, PsycINFO, and Cochrane Library were searched for studies up to April 24, 2023. The types of biomarkers were identified. Random-effects models were used to estimate changes in biomarker concentrations pre- to post-WTS exposure. RESULTS: Seventy-three studies involving 3755 participants exposed to WTS (49% male, mean age: 24.8 years) and 11 types of biomarkers of WTS exposure were identified. The biomarkers included tobacco alkaloids, expired carbon monoxide (eCO), carboxyhemoglobin (COHb), tobacco-specific nitrosamines, volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), heavy metals, unmetabolized VOCs, unmetabolized PAHs, furan metabolites, and heterocyclic aromatic amines. Compared with pre-WTS exposure, eCO (breath; mean difference [MD] 27.00 ppm; 95% confidence interval [CI]: 20.91 to 33.08), COHb (blood; MD 4.30%; 95%CI: 2.57 to 6.03), COHb (breath; MD 7.14%; 95%CI: 4.96 to 9.31), nicotine (blood; MD 8.23 ng/mL; 95%CI: 6.27 to 10.19), and cotinine (urine; MD 110.40 ng/mL; 95%CI: 46.26 to 174.54) significantly increased post-WTS exposure. CONCLUSIONS: Biomarkers of WTS exposure were systematically identified. The similarity between the biomarkers of WTS exposure and those of cigarette smoke and higher concentrations of some biomarkers post-WTS exposure underscore the need for further research on applying biomarkers in surveillance, interventions, and regulations to mitigate the harms of waterpipe tobacco smoking. IMPLICATIONS: This study provides the first comprehensive overview of biomarkers investigated and available for assessing WTS exposure and their concentration changes in the human body. Researchers can use biomarkers such as eCO, COHb, nicotine, and cotinine to measure the health risks associated with WTS exposure and objectively evaluate the effectiveness of public health interventions aimed at reducing waterpipe tobacco smoking. Public health policymaking can also be informed through increased biomarker concentrations following WTS exposure, to implement regulations and public health education campaigns on limiting or preventing waterpipe tobacco smoking.


Assuntos
Biomarcadores , Monóxido de Carbono , Tabaco para Cachimbos de Água , Fumar Cachimbo de Água , Humanos , Monóxido de Carbono/análise , Masculino , Poluição por Fumaça de Tabaco/efeitos adversos , Poluição por Fumaça de Tabaco/análise , Compostos Orgânicos Voláteis/análise , Feminino , Adulto , Adulto Jovem , Carboxihemoglobina/análise , Carboxihemoglobina/metabolismo
20.
Environ Res ; 246: 118060, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157966

RESUMO

In this study, Sulphated/AlMCM-41 (S/AlMCM-41) catalysts were synthesized and used to produce biodiesel from CFMO. Different percentages of S/AlMCM-41 catalysts were prepared and characterized by X-ray diffraction, BET studies, TPD, and SEM-EDS analysis. Sulphur incorporation to the MCM framework though reduced the surface area, and pore volume of the catalyst, sufficient acidity were produced in the catalyst surface. The existence of functional groups and the composition of the biodiesel obtained was analysed by FTIR and GC-MS. S/AlMCM-41 (80%) catalyst presented a high catalytic activity with maximum biodiesel conversion % when compared to other variants. The bio-ester produced from CFMO with S/AlMCM-41 (80%) catalyst possessed the higher calorific value of 50 MJ/kg and flashpoint of 153 °C and other properties analogous to the standard biodiesel. The engine performance was examined for biodiesel blends with neat diesel, where biodiesel blends performed better than neat diesel. The exhaust gas emission studies also highlighted that the obtained biodiesel showed emission characteristics similar to the standard biodiesel, whereas marginally higher emission for CO and CO2 of about 2.2 and 7.9% was reported.


Assuntos
Biocombustíveis , Gasolina , Animais , Galinhas , Plumas , Monóxido de Carbono/análise , Emissões de Veículos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA