Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Drug Des Devel Ther ; 18: 3523-3545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135759

RESUMO

Purpose: Sinomenine (SIN) is commonly used in Traditional Chinese Medicine (TCM) as a respected remedy for rheumatoid arthritis (RA). Nevertheless, the therapeutic mechanism of SIN in RA remains incompletely understood. This study aimed to delve into the molecular mechanism of SIN in the treatment of RA. Methods: The potential targets of SIN were predicted using the TCMSP server, STITCH database, and SwissTarget Prediction. Differentially expressed genes (DEGs) in RA were obtained from the GEO database. Enrichment analyses and molecular docking were conducted to explore the potential mechanism of SIN in the treatment of RA. In vitro and in vivo studies were conducted to validate the intervention effects of SIN on rheumatoid arthritis, as determined through network pharmacology analyses. Results: A total of 39 potential targets associated with the therapeutic effects of SIN in RA were identified. Enrichment analysis revealed that these potential targets are primarily enriched in PI3K-Akt signaling pathway, and the molecular docking suggests that SIN may act on specific proteins in the pathway. Experimental results have shown that exposure to SIN inhibits cytokine secretion, promotes apoptosis, reduces metastasis and invasion, and blocks the activation of the PI3K-Akt signaling pathway in RA fibroblast-like synoviocytes (RA-FLS). Moreover, SIN treatment alleviated arthritis-related symptoms and regulated the differentiation of CD4+ T cells in the spleen of collagen-induced arthritis (CIA) mice. Conclusion: By utilizing network pharmacology, molecular modeling, and in vitro/in vivo validation, this study demonstrates that SIN can alleviate RA by inhibiting the PI3K-Akt signaling pathway. These findings enhance the understanding of the therapeutic mechanisms of SIN in RA, offering a stronger theoretical foundation for its future clinical application.


Assuntos
Artrite Reumatoide , Simulação de Acoplamento Molecular , Morfinanos , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Morfinanos/farmacologia , Morfinanos/química , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Camundongos , Animais , Transdução de Sinais/efeitos dos fármacos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Antirreumáticos/farmacologia , Antirreumáticos/química , Células Cultivadas , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Camundongos Endogâmicos DBA
2.
Neurosci Lett ; 837: 137918, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39096756

RESUMO

Neurons co-expressing kisspeptin, neurokinin B, and dynorphin A (KNDy neurons), located in the arcuate nucleus (ARC) of the hypothalamus, are indicated to be the gonadotropin-releasing hormone (GnRH) pulse generator. Dynorphin A is reported to suppress GnRH pulse generator activity. Nalfurafine is a selective agonist of the κ-opioid receptor (KOR), a receptor for dynorphin A, clinically used as an anti-pruritic drug. This study aimed to evaluate the effects of nalfurafine on GnRH pulse generator activity and luteinizing hormone (LH) pulses using female goats. Nalfurafine (0, 2, 4, 8, or 16 µg/head) was intravenously injected into ovariectomized Shiba goats. The multiple unit activity (MUA) in the ARC area was recorded, and plasma LH concentrations were measured 2 and 48 h before and after injection, respectively. The MUA volley interval during 0-2 h after injection was significantly increased in the nalfurafine 8 and 16 µg groups compared with the vehicle group. In 0-2 h after injection, the number of LH pulses was significantly decreased in the nalfurafine 8 and 16 µg groups, and the mean and baseline LH were significantly decreased in all nalfurafine-treated groups (2, 4, 8, and 16 µg) compared with the vehicle group. These results suggest that nalfurafine inhibits the activity of the GnRH pulse generator in the ARC, thus suppressing pulsatile LH secretion. Therefore, nalfurafine could be used as a reproductive inhibitor in mammals.


Assuntos
Núcleo Arqueado do Hipotálamo , Cabras , Hormônio Liberador de Gonadotropina , Morfinanos , Receptores Opioides kappa , Compostos de Espiro , Animais , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Feminino , Compostos de Espiro/farmacologia , Compostos de Espiro/administração & dosagem , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/agonistas , Morfinanos/farmacologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Hormônio Luteinizante/sangue , Hormônio Luteinizante/metabolismo , Kisspeptinas/metabolismo , Dinorfinas/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurocinina B/metabolismo
3.
J Nanobiotechnology ; 22(1): 383, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951875

RESUMO

The characteristic features of the rheumatoid arthritis (RA) microenvironment are synovial inflammation and hyperplasia. Therefore, there is a growing interest in developing a suitable therapeutic strategy for RA that targets the synovial macrophages and fibroblast-like synoviocytes (FLSs). In this study, we used graphene oxide quantum dots (GOQDs) for loading anti-arthritic sinomenine hydrochloride (SIN). By combining with hyaluronic acid (HA)-inserted hybrid membrane (RFM), we successfully constructed a new nanodrug system named HA@RFM@GP@SIN NPs for target therapy of inflammatory articular lesions. Mechanistic studies showed that this nanomedicine system was effective against RA by facilitating the transition of M1 to M2 macrophages and inhibiting the abnormal proliferation of FLSs in vitro. In vivo therapeutic potential investigation demonstrated its effects on macrophage polarization and synovial hyperplasia, ultimately preventing cartilage destruction and bone erosion in the preclinical models of adjuvant-induced arthritis and collagen-induced arthritis in rats. Metabolomics indicated that the anti-arthritic effects of HA@RFM@GP@SIN NPs were mainly associated with the regulation of steroid hormone biosynthesis, ovarian steroidogenesis, tryptophan metabolism, and tyrosine metabolism. More notably, transcriptomic analyses revealed that HA@RFM@GP@SIN NPs suppressed the cell cycle pathway while inducing the cell apoptosis pathway. Furthermore, protein validation revealed that HA@RFM@GP@SIN NPs disrupted the excessive growth of RAFLS by interfering with the PI3K/Akt/SGK/FoxO signaling cascade, resulting in a decline in cyclin B1 expression and the arrest of the G2 phase. Additionally, considering the favorable biocompatibility and biosafety, these multifunctional nanoparticles offer a promising therapeutic approach for patients with RA.


Assuntos
Artrite Reumatoide , Proliferação de Células , Grafite , Macrófagos , Morfinanos , Pontos Quânticos , Sinoviócitos , Morfinanos/farmacologia , Morfinanos/química , Animais , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Grafite/química , Grafite/farmacologia , Proliferação de Células/efeitos dos fármacos , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Masculino , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Ratos Sprague-Dawley , Camundongos , Humanos , Células RAW 264.7 , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia
4.
Molecules ; 29(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39064909

RESUMO

We recently developed a series of nalfurafine analogs (TK10, TK33, and TK35) that may serve as non-addictive candidate analgesics. These compounds are mixed-action agonists at the kappa and delta opioid receptors (KOR and DOR, respectively) and produce antinociception in a mouse warm-water tail-immersion test while failing to produce typical mu opioid receptor (MOR)-mediated side effects. The warm-water tail-immersion test is an assay of pain-stimulated behavior vulnerable to false-positive analgesic-like effects by drugs that produce motor impairment. Accordingly, this study evaluated TK10, TK33, and TK35 in a recently validated assay of pain-related behavioral depression in mice that are less vulnerable to false-positive effects. For comparison, we also evaluated the effects of the MOR agonist/analgesic hydrocodone (positive control), the neurokinin 1 receptor (NK1R) antagonist aprepitant (negative control), nalfurafine as a selective KOR agonist, SNC80 as a selective DOR agonist, and a nalfurafine/SNC80 mixture. Intraperitoneal injection of dilute lactic acid (IP lactic acid) served as a noxious stimulus to depress vertical and horizontal locomotor activity in male and female ICR mice. IP lactic acid-induced locomotor depression was alleviated by hydrocodone but not by aprepitant, nalfurafine, SNC80, the nalfurafine/SNC80 mixture, or the KOR/DOR agonists. These results suggest that caution is warranted in advancing mixed-action KOR/DOR agonists as candidate analgesics.


Assuntos
Dor , Receptores Opioides delta , Receptores Opioides kappa , Animais , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo , Camundongos , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Masculino , Depressão/tratamento farmacológico , Depressão/etiologia , Morfinanos/farmacologia , Comportamento Animal/efeitos dos fármacos , Analgésicos Opioides/farmacologia , Compostos de Espiro/farmacologia , Compostos de Espiro/química
5.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062919

RESUMO

Sinomenine hydrochloride is an excellent drug with anti-inflammatory, antioxidant, immune-regulatory, and other functions. Atopic dermatitis is an inherited allergic inflammation that causes itchiness, redness, and swelling in the affected area, which can have a significant impact on the life of the patient. There are many therapeutic methods for atopic dermatitis, and sinomenine with immunomodulatory activity might be effective in the treatment of atopic dermatitis. In this study, the atopic dermatitis model was established in experimental mice, and physical experiments were carried out on the mice. In the experiment, sinomenine hydrochloride liposomes-in-hydrogel as a new preparation was selected for delivery. In this case, liposomes were dispersed in the colloidal hydrogel on a mesoscopic scale and could provide specific transfer properties. The results showed that the sinomenine hydrochloride-loaded liposomes-in-hydrogel system could effectively inhibit atopic dermatitis.


Assuntos
Antioxidantes , Dermatite Atópica , Hidrogéis , Lipossomos , Morfinanos , Morfinanos/farmacologia , Morfinanos/química , Morfinanos/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Lipossomos/química , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/administração & dosagem , Hidrogéis/química , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos BALB C
6.
Clin Res Hepatol Gastroenterol ; 48(7): 102411, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992426

RESUMO

BACKGROUND: Sinomenine hydrochloride (SH) has anti-inflammatory and immunosuppressive effects, and its effectiveness in inflammatory diseases, such as rheumatoid arthritis, has been demonstrated. However, whether SH has a therapeutic effect on dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in mice and its mechanism of action have not been clarified. This study aimed to investigate the therapeutic effects and mechanism of action of SH on UC. METHODS: Twenty-four mice were randomly divided into control, model, SH low-dose (SH-L, 20mg/kg), and SH high-dose (SH-H, 60mg/kg) groups with six mice in each group. Disease activity index (DAI), colonic mucosal damage index, and colonic histopathology scores were calculated. The expression levels of related proteins, genes, and downstream inflammatory factors in the Toll-like receptor 2/NF-κB (TLR2/NF-κB) signaling pathway were quantified. RESULTS: SH inhibited weight loss, decreased DAI and histopathological scores, decreased the expression levels of TLR2, MyD88, P-P65, P65 proteins, and TLR2 genes, and also suppressed the expression of inflammatory factors TNF-α, IL-1 ß, and IL-6 in the peripheral blood of mice. CONCLUSION: The therapeutic effect of SH on DSS-induced UC in mice may be related to the inhibition of the TLR2/NF-κB signaling pathway.


Assuntos
Sulfato de Dextrana , Morfinanos , NF-kappa B , Transdução de Sinais , Receptor 2 Toll-Like , Animais , Morfinanos/farmacologia , Morfinanos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Camundongos , Masculino , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Modelos Animais de Doenças , Distribuição Aleatória , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/patologia
7.
Sci Rep ; 14(1): 12786, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834626

RESUMO

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease marked by inflammatory cell infiltration and joint damage. The Chinese government has approved the prescription medication sinomenine (SIN), an effective anti-inflammation drug, for treating RA. This study evaluated the possible anti-inflammatory actions of SIN in RA based on bioinformatics analysis and experiments. Six microarray datasets were acquired from the gene expression omnibus (GEO) database. We used R software to identify differentially expressed genes (DEGs) and perform function evaluations. The CIBERSORT was used to calculate the abundance of 22 infiltrating immune cells. The weighted gene co-expression network analysis (WGCNA) was used to discover genes associated with M1 macrophages. Four public datasets were used to predict the genes of SIN. Following that, function enrichment analysis for hub genes was performed. The cytoHubba and least absolute shrinkage and selection operator (LASSO) were employed to select hub genes, and their diagnostic effectiveness was predicted using the receiver operator characteristic (ROC) curve. Molecular docking was undertaken to confirm the affinity between the SIN and hub gene. Furthermore, the therapeutic efficacy of SIN was validated in LPS-induced RAW264.7 cells line using Western blot and Enzyme-linked immunosorbent assay (ELISA). The matrix metalloproteinase 9 (MMP9) was identified as the hub M1 macrophages-related biomarker in RA using bioinformatic analysis and molecular docking. Our study indicated that MMP9 took part in IL-17 and TNF signaling pathways. Furthermore, we found that SIN suppresses the MMP9 protein overexpression and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the LPS-induced RAW264.7 cell line. In conclusion, our work sheds new light on the pathophysiology of RA and identifies MMP9 as a possible RA key gene. In conclusion, the above findings demonstrate that SIN, from an emerging research perspective, might be a potential cost-effective anti-inflammatory medication for treating RA.


Assuntos
Artrite Reumatoide , Biologia Computacional , Citocinas , Metaloproteinase 9 da Matriz , Morfinanos , Morfinanos/farmacologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Camundongos , Animais , Células RAW 264.7 , Biologia Computacional/métodos , Citocinas/metabolismo , Humanos , Simulação de Acoplamento Molecular , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Anti-Inflamatórios/farmacologia
8.
Immun Inflamm Dis ; 12(6): e1271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38888355

RESUMO

INTRODUCTION: Ischemia-reperfusion (I/R) injury, resulting from blood flow interruption and its subsequent restoration, is a prevalent complication in liver surgery. The liver, as a crucial organ for carbohydrate and lipid metabolism, exhibits decreased tolerance to hepatic I/R in patients with diabetes mellitus (DM), resulting in a significant increase in hepatic dysfunction following surgery. This may be attributed to elevated oxidative stress and inflammation. Our prior research established sinomenine's (SIN) protective role against hepatic I/R injury. Nevertheless, the impact of SIN on hepatic I/R injury in DM rats remains unexplored. OBJECTIVE AND METHODS: This study aimed to investigate the therapeutic potential of SIN in hepatic I/R injury in DM rats and elucidate its mechanism. Diabetic and hepatic I/R injury models were established in rats through high-fat/sugar diet, streptozotocin injection, and hepatic blood flow occlusion. Liver function, oxidative stress, inflammatory reaction, histopathology, and Nrf-2/HO-1 signaling pathway were evaluated by using UV spectrophotometry, biochemical assays, enzyme-linked immunosorbent assay, hematoxylin-eosin staining, and Western blot analysis. RESULTS: High-dose SIN (300 mg/kg) significantly attenuated hepatic I/R injury in DM rats, reducing serum activities of ALT and AST, decreasing the AST/ALT ratio, enhancing tissue contents of SOD and GSH-Px, suppressing the levels of TNF-α and IL-6, improving the liver histopathology, and activating Nrf-2/HO-1 signaling by promoting Nrf-2 trans-location from cytoplasm to nucleus. Low-dose SIN (100 mg/kg) was ineffective. CONCLUSIONS: This study demonstrates that high-dose sinomenine's mitigates hepatic I/R-induced inflammation and oxidative stress in diabetes mellitus (DM) rats via Nrf-2/HO-1 activation, suggesting its potential as a preventive strategy for hepatic I/R injury in DM patients.


Assuntos
Diabetes Mellitus Experimental , Fígado , Morfinanos , Estresse Oxidativo , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Estresse Oxidativo/efeitos dos fármacos , Morfinanos/farmacologia , Morfinanos/administração & dosagem , Morfinanos/uso terapêutico , Ratos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Inflamação/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Glia ; 72(10): 1801-1820, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38899723

RESUMO

The kappa opioid receptor has been identified as a promising therapeutic target for promoting remyelination. In the current study, we evaluated the ability of nalfurafine to promote oligodendrocyte progenitor cell (OPC) differentiation and myelination in vitro, and its efficacy in an extended, cuprizone-induced demyelination model. Primary mouse (C57BL/6J) OPC-containing cultures were treated with nalfurafine (0.6-200 nM), clemastine (0.01-100 µM), T3 (30 ng/mL), or vehicle for 5 days. Using immunocytochemistry and confocal microscopy, we found that nalfurafine treatment increased OPC differentiation, oligodendrocyte (OL) morphological complexity, and myelination of nanofibers in vitro. Adult male mice (C57BL/6J) were given a diet containing 0.2% cuprizone and administered rapamycin (10 mg/kg) once daily for 12 weeks followed by 6 weeks of treatment with nalfurafine (0.01 or 0.1 mg/kg), clemastine (10 mg/kg), or vehicle. We quantified the number of OLs using immunofluorescence, gross myelination using black gold staining, and myelin thickness using electron microscopy. Cuprizone + rapamycin treatment produced extensive demyelination and was accompanied by a loss of mature OLs, which was partially reversed by therapeutic administration of nalfurafine. We also assessed these mice for functional behavioral changes in open-field, horizontal bar, and mouse motor skill sequence tests (complex wheel running). Cuprizone + rapamycin treatment resulted in hyperlocomotion, poorer horizontal bar scores, and less distance traveled on the running wheels. Partial recovery was observed on both the horizontal bar and complex running wheel tests over time, which was facilitated by nalfurafine treatment. Taken together, these data highlight the potential of nalfurafine as a remyelination-promoting therapeutic.


Assuntos
Cuprizona , Doenças Desmielinizantes , Camundongos Endogâmicos C57BL , Morfinanos , Bainha de Mielina , Sirolimo , Compostos de Espiro , Animais , Morfinanos/farmacologia , Masculino , Compostos de Espiro/farmacologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/tratamento farmacológico , Camundongos , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Bainha de Mielina/metabolismo , Sirolimo/farmacologia , Cuprizona/toxicidade , Células Cultivadas , Modelos Animais de Doenças , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos
10.
BMC Pulm Med ; 24(1): 229, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730387

RESUMO

BACKGROUND: Since COVID-19 became a global epidemic disease in 2019, pulmonary fibrosis (PF) has become more prevalent among persons with severe infections, with IPF being the most prevalent form. In traditional Chinese medicine, various disorders are treated using Sinomenine (SIN). The SIN's strategy for PF defense is unclear. METHODS: Bleomycin (BLM) was used to induce PF, after which inflammatory factors, lung histological alterations, and the TGF-/Smad signaling pathway were assessed. By administering various dosages of SIN and the TGF- receptor inhibitor SB-431,542 to human embryonic lung fibroblasts (HFL-1) and A549 cells, we were able to examine proliferation and migration as well as the signaling molecules implicated in Epithelial-Mesenchymal Transition (EMT) and Extra-Cellular Matrix (ECM). RESULTS: In vivo, SIN reduced the pathological changes in the lung tissue induced by BLM, reduced the abnormal expression of inflammatory cytokines, and improved the weight and survival rate of mice. In vitro, SIN inhibited the migration and proliferation by inhibiting TGF-ß1/Smad3, PI3K/Akt, and NF-κB pathways, prevented the myofibroblasts (FMT) of HFL-1, reversed the EMT of A549 cells, restored the balance of matrix metalloenzymes, and reduced the expression of ECM proteins. CONCLUSION: SIN attenuated PF by down-regulating TGF-ß/Smad3, PI3K/Akt, and NF-κB signaling pathways, being a potential effective drug in the treatment of PF.


Assuntos
Morfinanos , Proteínas Proto-Oncogênicas c-akt , Fibrose Pulmonar , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Células A549 , Bleomicina , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Morfinanos/farmacologia , Morfinanos/uso terapêutico , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
11.
Inhal Toxicol ; 36(4): 217-227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38713814

RESUMO

OBJECTIVE: The present work concentrated on validating whether sinomenine alleviates bleomycin (BLM)-induced pulmonary fibrosis, inflammation, and oxidative stress. METHODS: A rat model of pulmonary fibrosis was constructed through intratracheal injection with 5 mg/kg BLM, and the effects of 30 mg/kg sinomenine on pulmonary inflammation, fibrosis, apoptosis, and 4-hydroxynonenal density were evaluated by hematoxylin and eosin staining, Masson's trichrome staining, TUNEL staining, and immunohistochemistry. Hydroxyproline content and concentrations of inflammatory cytokines and oxidative stress markers were detected using corresponding kits. MRC-5 cells were treated with 10 ng/ml PDGF, and the effects of 1 mM sinomenine on cell proliferation were assessed by EdU assays. The mRNA expression of inflammatory cytokines and the protein levels of collagens, fibrosis markers, and key markers involved in the TLR4/NLRP3/TGFß signaling were tested with RT-qPCR and immunoblotting analysis. RESULTS: Sinomenine attenuated pulmonary fibrosis and inflammation while reducing hydroxyproline content and the protein expression of collagens and fibrosis markers in BLM-induced pulmonary fibrosis rats. Sinomenine reduced apoptosis in lung samples of BLM-challenged rats by increasing Bcl-2 and reducing Bax and cleaved caspase-3 protein expression. In addition, sinomenine alleviated inflammatory response and oxidative stress in rats with pulmonary fibrosis induced by BLM. Moreover, sinomenine inhibited the TLR4/NLRP3/TGFß signaling pathway in lung tissues of BLM-stimulated rats. Furthermore, TLR4 inhibitor, TAK-242, attenuated PDGF-induced fibroblast proliferation and collagen synthesis in MRC-5 cells. CONCLUSION: Sinomenine attenuates BLM-caused pulmonary fibrosis, inflammation, and oxidative stress by inhibiting the TLR4/NLRP3/TGFß signaling, indicating that sinomenine might become a therapeutic candidate to treat pulmonary fibrosis.


Assuntos
Bleomicina , Morfinanos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Fibrose Pulmonar , Transdução de Sinais , Receptor 4 Toll-Like , Fator de Crescimento Transformador beta , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Morfinanos/farmacologia , Morfinanos/uso terapêutico , Bleomicina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Ratos Sprague-Dawley , Linhagem Celular , Ratos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo
12.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731416

RESUMO

The synthesis of stereochemically pure oximes, amines, saturated and unsaturated cyanomethyl compounds, and methylaminomethyl compounds at the C9 position in 3-hydroxy-N-phenethyl-5-phenylmorphans provided µ-opioid receptor (MOR) agonists with varied efficacy and potency. One of the most interesting compounds, (2-((1S,5R,9R)-5-(3-hydroxyphenyl)-2-phenethyl-2-azabicyclo[3.3.1]nonan-9-yl)acetonitrile), was found to be a potent partial MOR agonist (EC50 = 2.5 nM, %Emax = 89.6%), as determined in the forskolin-induced cAMP accumulation assay. Others ranged in potency and efficacy at the MOR, from nanomolar potency with a C9 cyanomethyl compound (EC50 = 0.85 nM) to its totally inactive diastereomer, and three compounds exhibited weak MOR antagonist activity (the primary amine 3, the secondary amine 8, and the cyanomethyl compound 41). Many of the compounds were fully efficacious; their efficacy and potency were affected by both the stereochemistry of the molecule and the specific C9 substituent. Most of the MOR agonists were selective in their receptor interactions, and only a few had δ-opioid receptor (DOR) or κ-opioid receptor (KOR) agonist activity. Only one compound, a C9-methylaminomethyl-substituted phenylmorphan, was moderately potent and fully efficacious as a KOR agonist (KOR EC50 = 18 nM (% Emax = 103%)).


Assuntos
Aminas , Oximas , Oximas/química , Oximas/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade , Aminas/química , Aminas/farmacologia , Receptores Opioides mu/metabolismo , Receptores Opioides mu/agonistas , Humanos , Animais , Estrutura Molecular , Células CHO , Morfinanos/química , Morfinanos/farmacologia
13.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1947-1955, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812207

RESUMO

This study aims to decipher the mechanism of sinomenine in inhibiting platelet-derived growth factor/platelet-derived growth factor receptor(PDGF/PDGFR) signaling pathway in rheumatoid arthritis-fibroblast-like synoviocyte(RA-FLS) migration induced by neutrophil extracellular traps(NETs). RA-FLS was isolated from the synovial tissue of 3 RA patients and cultured. NETs were extracted from the peripheral venous blood of 4 RA patients and 4 healthy control(HC). RA-FLS was classified into control group, HC-NETs group, RA-NETs group, RA-NETs+sinomenine group and RA-NETs+sinomenine+CP-673451 group. RNA-sequencing(RNA-seq) was conducted to identify the differentially expressed genes between HC-NETs and RA-NETs groups. Sangerbox was used to perform the Gene Ontology(GO) function and the Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment. Cytoscape was employed to build the protein-protein interaction(PPI) network. AutoDock Vina and PyMOL were used for molecular docking of sinomenine with PDGFß and PDGFRß. The cell proliferation and migration were determined by the cell counting kit-8(CCK-8) and cell scratch assay, respectively. Western blot was employed to determine the protein level of PDGFRß. Real-time quantitative polymerase chain reaction(RT-qPCR) was carried out to determine the mRNA levels of matrix metalloproteinases(MMPs). The results revealed that neutrophils in RA patients were more likely to produce NETs. Compared with HC-NETs group, RA-NETs group showed up-regulated expression of PDGFß and PDGFRß. Compared with control group, RA-NETs group showed increased cell proliferation and migration and up-regulated protein level of PDGFRß and mRNA levels of PDGFß, PDGFRß, MMP1, MMP3, and MMP9(P<0.05). Compared with RA-NETs group, RA-NETs+sinomenine group presented decreased cell proliferation and migration and down-regulated protein and mRNA level of PDGFRß and mRNA levels of MMP1, MMP3, and MMP9(P<0.05). Compared with RA-NETs+sinomenine group, the proliferation ability of RA-NETs+sinomenine+CP-673451 group decreased(P<0.05). The findings prove that sinomenine reduces the RA-NETs-induced RA-FLS migration by inhibiting PDGF/PDGFR signaling pathway, thus mitigating RA.


Assuntos
Artrite Reumatoide , Movimento Celular , Morfinanos , Fator de Crescimento Derivado de Plaquetas , Transdução de Sinais , Sinoviócitos , Humanos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Morfinanos/farmacologia , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Masculino , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo
14.
J Med Chem ; 67(11): 9552-9574, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38814086

RESUMO

Despite the availability of numerous pain medications, the current array of Food and Drug Administration-approved options falls short in adequately addressing pain states for numerous patients and consequently worsens the opioid crisis. Thus, it is imperative for basic research to develop novel and nonaddictive pain medications. Toward addressing this clinical goal, nalfurafine (NLF) was chosen as a lead and its structure-activity relationship (SAR) systematically studied through design, syntheses, and in vivo characterization of 24 analogues. Two analogues, 21 and 23, showed longer durations of action than NLF in a warm-water tail immersion assay, produced in vivo effects primarily mediated by KOR and DOR, penetrated the blood-brain barrier, and did not function as reinforcers. Additionally, 21 produced fewer sedative effects than NLF. Taken together, these results aid the understanding of NLF SAR and provide insights for future endeavors in developing novel nonaddictive therapeutics to treat pain.


Assuntos
Morfinanos , Compostos de Espiro , Relação Estrutura-Atividade , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Compostos de Espiro/síntese química , Animais , Morfinanos/farmacologia , Morfinanos/química , Morfinanos/síntese química , Morfinanos/uso terapêutico , Camundongos , Masculino , Humanos , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Manejo da Dor/métodos , Dor/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/síntese química , Analgésicos/uso terapêutico
15.
Drug Des Devel Ther ; 18: 1247-1262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645988

RESUMO

Purpose: Sinomenine hydrochloride (SH) is used to treat chronic inflammatory diseases such as rheumatoid arthritis and may also be efficacious against Immunoglobulin A nephropathy (IgAN). However, no trial has investigated the molecular mechanism of SH on IgAN. Therefore, this study aims to investigate the effect and mechanism of SH on IgAN. Methods: The pathological changes and IgA and C3 depositions in the kidney of an IgAN rat model were detected by periodic acid-Schiff (PAS) and direct immunofluorescence staining. After extracting T and B cells using immunomagnetic beads, we assessed their purity, cell cycle phase, and apoptosis stage through flow cytometry. Furthermore, we quantified cell cycle-related and apoptosis-associated proteins by Western blotting. Results: SH reduced IgA and C3 depositions in stage 4 IgAN, thereby decreasing inflammatory cellular infiltration and mesangial injury in an IgAN model induced using heteroproteins. Furthermore, SH arrested the cell cycle of lymphocytes T and B from the spleen of IgAN rats. Regarding the mechanism, our results demonstrated that SH regulated the Cyclin D1 and Cyclin E1 protein levels for arresting the cell cycle and it also regulated Bax and Bcl-2 protein levels, thus increasing Cleaved caspase-3 protein levels in Jurkat T and Ramos B cells. Conclusion: SH exerts a dual regulation on the cell cycle and apoptosis of T and B cells by controlling cell cycle-related and apoptosis-associated proteins; it also reduces inflammatory cellular infiltration and mesangial proliferation. These are the major mechanisms of SH in IgAN.


Assuntos
Apoptose , Linfócitos B , Proliferação de Células , Glomerulonefrite por IGA , Morfinanos , Linfócitos T , Morfinanos/farmacologia , Morfinanos/química , Glomerulonefrite por IGA/tratamento farmacológico , Glomerulonefrite por IGA/patologia , Animais , Apoptose/efeitos dos fármacos , Ratos , Proliferação de Células/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Masculino , Relação Dose-Resposta a Droga , Modelos Animais de Doenças , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Humanos , Células Cultivadas
16.
J Ethnopharmacol ; 329: 118140, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565409

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qingfu Juanbi Tang (QFJBT), a novel and improved Chinese herbal formulation, has surged in recent years for its potential in the therapy of rheumatoid arthritis (RA). Anti-arthritic effects and underlying molecular mechanisms of QFJBT have increasingly become a focal point in research. AIM OF THE STUDY: This study utilized network pharmacology, molecular docking, and experimental validation to elucidate effective ingredients and anti-arthritic mechanisms of QFJBT. MATERIALS AND METHODS: Targets associated with QFJBT and RA were identified from relevant databases and standardized using the Uniprot for gene nomenclature. A "QFJBT-ingredient-target network" and a "Venn diagram of QFJBT and RA targets" were created from the data. The overlap in the Venn diagram highlighted potential targets of QFJBT in the treatment of RA. These targets were subjected to PPI network, GO, and KEGG pathway analysis. The findings were subsequently confirmed through molecular docking and pharmacological experiments to propose the mechanism of action of QFJBT. RESULTS: The study identified 236 active ingredients in QFJBT, with 120 predicted to be effective against RA. Molecular docking showed high binding affinity of key targets (JUN, PTGS2, and TNF-α) with bioactive compounds (rhein, sinomenine, calycosin, and paeoniflorin) of QFJBT. Pharmacodynamic evaluation demonstrated the effects of QFJBT at the dose of 4.56 g/kg in ameliorating symptoms of AIA rats and in reducing levels of JUN, PTGS2, and TNF-α in synovial tissues. In vitro studies further exhibited that rhein, paeoniflorin, sinomenine, calycosin, and QFJBT-containing serum significantly inhibited abnormal proliferation of RA fibroblast-like synoviocytes. Interestingly, rhein and paeoniflorin specifically decreased p-JUN/JUN expression and TNF-α release, respectively, while sinomenine and calycosin selectively increased PTGS2 expression. Consistently, QFJBT-containing serum demonstrated similar effects as those active ingredients identified in QFJBT did. CONCLUSIONS: QFJBT, QFJBT-containing serum, and its active ingredients (rhein, paeoniflorin, sinomenine, and calycosin) suppress inflammatory responses in RA. Anti-arthritic effects of QFJBT and its active ingredients are likely linked to their modulatory impact on identified hub targets.


Assuntos
Antirreumáticos , Artrite Reumatoide , Ciclo-Oxigenase 2 , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Ratos , Masculino , Ciclo-Oxigenase 2/metabolismo , Farmacologia em Rede , Ratos Sprague-Dawley , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Morfinanos/farmacologia , Morfinanos/uso terapêutico , Morfinanos/química , Artrite Experimental/tratamento farmacológico , Humanos , Descoberta de Drogas/métodos
17.
Inflammopharmacology ; 32(3): 2007-2022, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573363

RESUMO

BACKGROUND: Dextran Sulfate Sodium (DSS) induces ulcerative colitis (UC), a type of inflammatory bowel disease (IBD) that leads to inflammation, swelling, and ulcers in the large intestine. The aim of this experimental study is to examine how sinomenine, a plant-derived alkaloid, can prevent or reduce the damage caused by DSS in the colon and rectum of rats. MATERIAL AND METHODS: Induction of ulcerative colitis (UC) in rats was achieved by orally administering a 2% Dextran Sulfate Sodium (DSS) solution, while the rats concurrently received oral administrations of sinomenine and sulfasalazine. The food, water intake was estimated. The body weight, disease activity index (DAI), colon length and spleen index estimated. Antioxidant, cytokines, inflammatory parameters and mRNA expression were estimated. The composition of gut microbiota was analyzed at both the phylum and genus levels in the fecal samples obtained from all groups of rats. RESULTS: Sinomenine treatment enhanced the body weight, colon length and reduced the DAI, spleen index. Sinomenine treatment remarkably suppressed the level of NO, MPO, ICAM-1, and VCAM-1 along with alteration of antioxidant parameters such as SOD, CAT, GPx, GR and MDA. Sinomenine treatment also decreased the cytokines like TNF-α, IL-1, IL-1ß, IL-6, IL-10, IL-17, IL-18 in the serum and colon tissue; inflammatory parameters viz., PAF, COX-2, PGE2, iNOS, NF-κB; matrix metalloproteinases level such as MMP-1 and MMP-2. Sinomenine significantly (P < 0.001) enhanced the level of HO-1 and Nrf2. Sinomenine altered the mRNA expression of RIP1, RIP3, DRP3, NLRP3, IL-1ß, caspase-1 and IL-18. Sinomenine remarkably altered the relative abundance of gut microbiota like firmicutes, Bacteroidetes, F/B ratio, Verrucomicrobia, and Actinobacteria. CONCLUSION: The results clearly indicate that sinomenine demonstrated a protective effect against DSS-induced inflammation, potentially through the modulation of inflammatory pathways and gut microbiota.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Morfinanos , Fator 2 Relacionado a NF-E2 , Animais , Morfinanos/farmacologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Ratos , Fator 2 Relacionado a NF-E2/metabolismo , Masculino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Antioxidantes/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/administração & dosagem , Ratos Wistar , Anti-Inflamatórios/farmacologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia
18.
J Biochem ; 175(4): 337-355, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38382631

RESUMO

Morphinan-based opioids, derived from natural alkaloids like morphine, codeine and thebaine, have long been pivotal in managing severe pain. However, their clinical utility is marred by significant side effects and high addiction potential. This review traces the evolution of the morphinan scaffold in light of advancements in biochemistry and molecular biology, which have expanded our understanding of opioid receptor pharmacology. We explore the development of semi-synthetic and synthetic morphinans, their receptor selectivity and the emergence of biased agonism as a strategy to dissociate analgesic properties from undesirable effects. By examining the molecular intricacies of opioid receptors and their signaling pathways, we highlight how receptor-type selectivity and signaling bias have informed the design of novel analgesics. This synthesis of historical and contemporary perspectives provides an overview of the morphinan landscape, underscoring the ongoing efforts to mitigate the problems facing opioids through smarter drug design. We also highlight that most morphinan derivatives show a preference for the G protein pathway, although detailed experimental comparisons are still necessary. This fact underscores the utility of the morphinan skeleton in future opioid drug discovery.


Assuntos
Morfinanos , Morfinanos/química , Morfinanos/metabolismo , Morfinanos/farmacologia , Morfina/farmacologia , Analgésicos/farmacologia , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Analgésicos Opioides/química , Biologia Molecular
19.
Pharmacology ; 109(2): 76-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38290489

RESUMO

BACKGROUND: Cancer is a major cause of death worldwide. Although modern medicine has made strides in treatment, a complete cure for cancer remains elusive. SUMMARY: Utilization of medicinal plants in traditional medicine for the treatment of multiple diseases, including cancer, is a well-established practice. Sinomenine is an alkaloid extracted from a medicinal plant and has a diverse range of biological properties, including anti-oxidative, anti-inflammatory, and antibacterial effects. Sinomenine exhibits inhibitory effects on various types of tumor cells, including breast, lung, and liver cancers. The anticancer properties of sinomenine are believed to involve stimulation of apoptosis and autophagy as well as suppression of cell proliferation, invasion, and metastasis. KEY MESSAGE: This review summarizes the current research on sinomenine's potential as an anticancer agent, which may contribute to the discovery of more effective cancer treatments.


Assuntos
Antineoplásicos , Morfinanos , Neoplasias , Plantas Medicinais , Anti-Inflamatórios , Morfinanos/farmacologia , Morfinanos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico
20.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276618

RESUMO

Sinomenine, an isoquinoline alkaloid extracted from the roots and stems of Sinomenium acutum, has been extensively studied for its derivatives as bioactive agents. This review concentrates on the research advancements in the biological activities and action mechanisms of sinomenine-related compounds until November 2023. The findings indicate a broad spectrum of pharmacological effects, including antitumor, anti-inflammation, neuroprotection, and immunosuppressive properties. These compounds are notably effective against breast, lung, liver, and prostate cancers, exhibiting IC50 values of approximately 121.4 nM against PC-3 and DU-145 cells, primarily through the PI3K/Akt/mTOR, NF-κB, MAPK, and JAK/STAT signaling pathways. Additionally, they manifest anti-inflammatory and analgesic effects predominantly via the NF-κB, MAPK, and Nrf2 signaling pathways. Utilized in treating rheumatic arthritis, these alkaloids also play a significant role in cardiovascular and cerebrovascular protection, as well as organ protection through the NF-κB, Nrf2, MAPK, and PI3K/Akt/mTOR signaling pathways. This review concludes with perspectives and insights on this topic, highlighting the potential of sinomenine-related compounds in clinical applications and the development of medications derived from natural products.


Assuntos
Alcaloides , Morfinanos , Masculino , Humanos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt , Fator 2 Relacionado a NF-E2 , Fosfatidilinositol 3-Quinases , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Morfinanos/farmacologia , Serina-Treonina Quinases TOR , Alcaloides/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA