Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.682
Filtrar
1.
Hum Brain Mapp ; 45(7): e26700, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726799

RESUMO

The post-movement beta rebound has been studied extensively using magnetoencephalography (MEG) and is reliably modulated by various task parameters as well as illness. Our recent study showed that rebounds, which we generalise as "post-task responses" (PTRs), are a ubiquitous phenomenon in the brain, occurring across the cortex in theta, alpha, and beta bands. Currently, it is unknown whether PTRs following working memory are driven by transient bursts, which are moments of short-lived high amplitude activity, similar to those that drive the post-movement beta rebound. Here, we use three-state univariate hidden Markov models (HMMs), which can identify bursts without a priori knowledge of frequency content or response timings, to compare bursts that drive PTRs in working memory and visuomotor MEG datasets. Our results show that PTRs across working memory and visuomotor tasks are driven by pan-spectral transient bursts. These bursts have very similar spectral content variation over the cortex, correlating strongly between the two tasks in the alpha (R2 = .89) and beta (R2 = .53) bands. Bursts also have similar variation in duration over the cortex (e.g., long duration bursts occur in the motor cortex for both tasks), strongly correlating over cortical regions between tasks (R2 = .56), with a mean over all regions of around 300 ms in both datasets. Finally, we demonstrate the ability of HMMs to isolate signals of interest in MEG data, such that the HMM probability timecourse correlates more strongly with reaction times than frequency filtered power envelopes from the same brain regions. Overall, we show that induced PTRs across different tasks are driven by bursts with similar characteristics, which can be identified using HMMs. Given the similarity between bursts across tasks, we suggest that PTRs across the cortex may be driven by a common underlying neural phenomenon.


Assuntos
Magnetoencefalografia , Memória de Curto Prazo , Humanos , Memória de Curto Prazo/fisiologia , Adulto , Masculino , Feminino , Adulto Jovem , Cadeias de Markov , Desempenho Psicomotor/fisiologia , Córtex Cerebral/fisiologia , Movimento/fisiologia , Ritmo beta/fisiologia
2.
Curr Biol ; 34(9): R346-R348, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714161

RESUMO

Animals including humans often react to sounds by involuntarily moving their face and body. A new study shows that facial movements provide a simple and reliable readout of a mouse's hearing ability that is more sensitive than traditional measurements.


Assuntos
Face , Animais , Camundongos , Face/fisiologia , Percepção Auditiva/fisiologia , Audição/fisiologia , Som , Movimento/fisiologia , Humanos
3.
Sci Rep ; 14(1): 10421, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38710897

RESUMO

Humans move their hands toward precise positions, a skill supported by the coordination of multiple joint movements, even in the presence of inherent redundancy. However, it remains unclear how the central nervous system learns the relationship between redundant joint movements and hand positions when starting from scratch. To address this question, a virtual-arm reaching task was performed in which participants were required to move a cursor corresponding to the hand of a virtual arm to a target. The joint angles of the virtual arm were determined by the heights of the participants' fingers. The results demonstrated that the participants moved the cursor to the target straighter and faster in the late phase than they did in the initial phase of learning. This improvement was accompanied by a reduction in the amount of angular changes in the virtual limb joint, predominantly characterized by an increased reliance on the virtual shoulder joint as opposed to the virtual wrist joint. These findings suggest that the central nervous system selects a combination of multijoint movements that minimize motor effort while learning novel upper-limb kinematics.


Assuntos
Braço , Aprendizagem , Movimento , Humanos , Fenômenos Biomecânicos , Braço/fisiologia , Masculino , Aprendizagem/fisiologia , Feminino , Movimento/fisiologia , Adulto , Adulto Jovem , Desempenho Psicomotor/fisiologia , Articulação do Punho/fisiologia
4.
Nat Commun ; 15(1): 4084, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744847

RESUMO

Animals can quickly adapt learned movements to external perturbations, and their existing motor repertoire likely influences their ease of adaptation. Long-term learning causes lasting changes in neural connectivity, which shapes the activity patterns that can be produced during adaptation. Here, we examined how a neural population's existing activity patterns, acquired through de novo learning, affect subsequent adaptation by modeling motor cortical neural population dynamics with recurrent neural networks. We trained networks on different motor repertoires comprising varying numbers of movements, which they acquired following various learning experiences. Networks with multiple movements had more constrained and robust dynamics, which were associated with more defined neural 'structure'-organization in the available population activity patterns. This structure facilitated adaptation, but only when the changes imposed by the perturbation were congruent with the organization of the inputs and the structure in neural activity acquired during de novo learning. These results highlight trade-offs in skill acquisition and demonstrate how different learning experiences can shape the geometrical properties of neural population activity and subsequent adaptation.


Assuntos
Adaptação Fisiológica , Aprendizagem , Modelos Neurológicos , Córtex Motor , Aprendizagem/fisiologia , Adaptação Fisiológica/fisiologia , Córtex Motor/fisiologia , Animais , Redes Neurais de Computação , Neurônios/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-38722725

RESUMO

Utilization of hand-tracking cameras, such as Leap, for hand rehabilitation and functional assessments is an innovative approach to providing affordable alternatives for people with disabilities. However, prior to deploying these commercially-available tools, a thorough evaluation of their performance for disabled populations is necessary. In this study, we provide an in-depth analysis of the accuracy of Leap's hand-tracking feature for both individuals with and without upper-body disabilities for common dynamic tasks used in rehabilitation. Leap is compared against motion capture with conventional techniques such as signal correlations, mean absolute errors, and digit segment length estimation. We also propose the use of dimensionality reduction techniques, such as Principal Component Analysis (PCA), to capture the complex, high-dimensional signal spaces of the hand. We found that Leap's hand-tracking performance did not differ between individuals with and without disabilities, yielding average signal correlations between 0.7-0.9. Both low and high mean absolute errors (between 10-80mm) were observed across participants. Overall, Leap did well with general hand posture tracking, with the largest errors associated with the tracking of the index finger. Leap's hand model was found to be most inaccurate in the proximal digit segment, underestimating digit lengths with errors as high as 18mm. Using PCA to quantify differences between the high-dimensional spaces of Leap and motion capture showed that high correlations between latent space projections were associated with high accuracy in the original signal space. These results point to the potential of low-dimensional representations of complex hand movements to support hand rehabilitation and assessment.


Assuntos
Mãos , Análise de Componente Principal , Gravação em Vídeo , Humanos , Mãos/fisiologia , Masculino , Feminino , Adulto , Pessoas com Deficiência/reabilitação , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem , Algoritmos , Movimento/fisiologia
6.
PLoS One ; 19(5): e0291279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739557

RESUMO

Upper limb robotic (myoelectric) prostheses are technologically advanced, but challenging to use. In response, substantial research is being done to develop person-specific prosthesis controllers that can predict a user's intended movements. Most studies that test and compare new controllers rely on simple assessment measures such as task scores (e.g., number of objects moved across a barrier) or duration-based measures (e.g., overall task completion time). These assessment measures, however, fail to capture valuable details about: the quality of device arm movements; whether these movements match users' intentions; the timing of specific wrist and hand control functions; and users' opinions regarding overall device reliability and controller training requirements. In this work, we present a comprehensive and novel suite of myoelectric prosthesis control evaluation metrics that better facilitates analysis of device movement details-spanning measures of task performance, control characteristics, and user experience. As a case example of their use and research viability, we applied these metrics in real-time control experimentation. Here, eight participants without upper limb impairment compared device control offered by a deep learning-based controller (recurrent convolutional neural network-based classification with transfer learning, or RCNN-TL) to that of a commonly used controller (linear discriminant analysis, or LDA). The participants wore a simulated prosthesis and performed complex functional tasks across multiple limb positions. Analysis resulting from our suite of metrics identified 16 instances of a user-facing problem known as the "limb position effect". We determined that RCNN-TL performed the same as or significantly better than LDA in four such problem instances. We also confirmed that transfer learning can minimize user training burden. Overall, this study contributes a multifaceted new suite of control evaluation metrics, along with a guide to their application, for use in research and testing of myoelectric controllers today, and potentially for use in broader rehabilitation technologies of the future.


Assuntos
Membros Artificiais , Eletromiografia , Humanos , Masculino , Feminino , Adulto , Desenho de Prótese , Extremidade Superior/fisiologia , Robótica , Movimento/fisiologia , Redes Neurais de Computação , Adulto Jovem , Aprendizado Profundo
7.
Sci Rep ; 14(1): 9996, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693184

RESUMO

Tracking a moving object with the eyes seems like a simple task but involves areas of prefrontal cortex (PFC) associated with attention, working memory and prediction. Increasing the demand on these processes with secondary tasks can affect eye movements and/or perceptual judgments. This is particularly evident in chronic or acute neurological conditions such as Alzheimer's disease or mild traumatic brain injury. Here, we combined near infrared spectroscopy and video-oculography to examine the effects of concurrent upper limb movement, which provides additional afference and efference that facilitates tracking of a moving object, in a novel dual-task pursuit protocol. We confirmed the expected effects on judgement accuracy in the primary and secondary tasks, as well as a reduction in eye velocity when the moving object was occluded. Although there was limited evidence of oculo-manual facilitation on behavioural measures, performing concurrent upper limb movement did result in lower activity in left medial PFC, as well as a change in PFC network organisation, which was shown by Graph analysis to be locally and globally more efficient. These findings extend upon previous work by showing how PFC is functionally organised to support eye-hand coordination when task demands more closely replicate daily activities.


Assuntos
Córtex Pré-Frontal , Extremidade Superior , Humanos , Córtex Pré-Frontal/fisiologia , Masculino , Feminino , Extremidade Superior/fisiologia , Adulto , Adulto Jovem , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Movimentos Oculares/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho , Atenção/fisiologia
8.
PLoS One ; 19(5): e0301608, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38691555

RESUMO

The application of pattern mining algorithms to extract movement patterns from sports big data can improve training specificity by facilitating a more granular evaluation of movement. Since movement patterns can only occur as consecutive, non-consecutive, or non-sequential, this study aimed to identify the best set of movement patterns for player movement profiling in professional rugby league and quantify the similarity among distinct movement patterns. Three pattern mining algorithms (l-length Closed Contiguous [LCCspm], Longest Common Subsequence [LCS] and AprioriClose) were used to extract patterns to profile elite rugby football league hookers (n = 22 players) and wingers (n = 28 players) match-games movements across 319 matches. Jaccard similarity score was used to quantify the similarity between algorithms' movement patterns and machine learning classification modelling identified the best algorithm's movement patterns to separate playing positions. LCCspm and LCS movement patterns shared a 0.19 Jaccard similarity score. AprioriClose movement patterns shared no significant Jaccard similarity with LCCspm (0.008) and LCS (0.009) patterns. The closed contiguous movement patterns profiled by LCCspm best-separated players into playing positions. Multi-layered Perceptron classification algorithm achieved the highest accuracy of 91.02% and precision, recall and F1 scores of 0.91 respectively. Therefore, we recommend the extraction of closed contiguous (consecutive) over non-consecutive and non-sequential movement patterns for separating groups of players.


Assuntos
Algoritmos , Futebol Americano , Movimento , Humanos , Futebol Americano/fisiologia , Movimento/fisiologia , Desempenho Atlético/fisiologia , Masculino , Aprendizado de Máquina , Atletas , Mineração de Dados/métodos , Adulto , Rugby
9.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732811

RESUMO

Rotational jumps are crucial techniques in sports competitions. Estimating ground reaction forces (GRFs), a constituting component of jumps, through a biomechanical model-based approach allows for analysis, even in environments where force plates or machine learning training data would be impossible. In this study, rotational jump movements involving twists on land were measured using inertial measurement units (IMUs), and GRFs and body loads were estimated using a 3D forward dynamics model. Our forward dynamics and optimization calculation-based estimation method generated and optimized body movements using cost functions defined by motion measurements and internal body loads. To reduce the influence of dynamic acceleration in the optimization calculation, we estimated the 3D orientation using sensor fusion, comprising acceleration and angular velocity data from IMUs and an extended Kalman filter. As a result, by generating cost function-based movements, we could calculate biomechanically valid GRFs while following the measured movements, even if not all joints were covered by IMUs. The estimation approach we developed in this study allows for measurement condition- or training data-independent 3D motion analysis.


Assuntos
Movimento , Esportes , Humanos , Movimento/fisiologia , Fenômenos Biomecânicos/fisiologia , Esportes/fisiologia , Aceleração , Masculino , Adulto , Algoritmos
10.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732933

RESUMO

This paper investigates a method for precise mapping of human arm movements using sEMG signals. A multi-channel approach captures the sEMG signals, which, combined with the accurately calculated joint angles from an Inertial Measurement Unit, allows for action recognition and mapping through deep learning algorithms. Firstly, signal acquisition and processing were carried out, which involved acquiring data from various movements (hand gestures, single-degree-of-freedom joint movements, and continuous joint actions) and sensor placement. Then, interference signals were filtered out through filters, and the signals were preprocessed using normalization and moving averages to obtain sEMG signals with obvious features. Additionally, this paper constructs a hybrid network model, combining Convolutional Neural Networks and Artificial Neural Networks, and employs a multi-feature fusion algorithm to enhance the accuracy of gesture recognition. Furthermore, a nonlinear fitting between sEMG signals and joint angles was established based on a backpropagation neural network, incorporating momentum term and adaptive learning rate adjustments. Finally, based on the gesture recognition and joint angle prediction model, prosthetic arm control experiments were conducted, achieving highly accurate arm movement prediction and execution. This paper not only validates the potential application of sEMG signals in the precise control of robotic arms but also lays a solid foundation for the development of more intuitive and responsive prostheses and assistive devices.


Assuntos
Algoritmos , Braço , Eletromiografia , Movimento , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Humanos , Eletromiografia/métodos , Braço/fisiologia , Movimento/fisiologia , Gestos , Masculino , Adulto
11.
Sensors (Basel) ; 24(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38733012

RESUMO

The purpose of this article is to establish a prediction model of joint movements and realize the prediction of joint movemenst, and the research results are of reference value for the development of the rehabilitation equipment. This will be carried out by analyzing the impact of surface electromyography (sEMG) on ankle movements and using the Hill model as a framework for calculating ankle joint torque. The table and scheme used in the experiments were based on physiological parameters obtained through the model. Data analysis was performed on ankle joint angle signal, movement signal, and sEMG data from nine subjects during dorsiflexion/flexion, varus, and internal/external rotation. The Hill model was employed to determine 16 physiological parameters which were optimized using a genetic algorithm. Three experiments were carried out to identify the optimal model to calculate torque and root mean square error. The optimized model precisely calculated torque and had a root mean square error of under 1.4 in comparison to the measured torque. Ankle movement models predict torque patterns with accuracy, thereby providing a solid theoretical basis for ankle rehabilitation control. The optimized model provides a theoretical foundation for precise ankle torque forecasts, thereby improving the efficacy of rehabilitation robots for the ankle.


Assuntos
Algoritmos , Articulação do Tornozelo , Eletromiografia , Torque , Humanos , Articulação do Tornozelo/fisiologia , Eletromiografia/métodos , Masculino , Amplitude de Movimento Articular/fisiologia , Adulto , Movimento/fisiologia , Fenômenos Biomecânicos/fisiologia , Adulto Jovem
12.
Sensors (Basel) ; 24(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38733030

RESUMO

This article presents a study on the neurobiological control of voluntary movements for anthropomorphic robotic systems. A corticospinal neural network model has been developed to control joint trajectories in multi-fingered robotic hands. The proposed neural network simulates cortical and spinal areas, as well as the connectivity between them, during the execution of voluntary movements similar to those performed by humans or monkeys. Furthermore, this neural connection allows for the interpretation of functional roles in the motor areas of the brain. The proposed neural control system is tested on the fingers of a robotic hand, which is driven by agonist-antagonist tendons and actuators designed to accurately emulate complex muscular functionality. The experimental results show that the corticospinal controller produces key properties of biological movement control, such as bell-shaped asymmetric velocity profiles and the ability to compensate for disturbances. Movements are dynamically compensated for through sensory feedback. Based on the experimental results, it is concluded that the proposed biologically inspired adaptive neural control system is robust, reliable, and adaptable to robotic platforms with diverse biomechanics and degrees of freedom. The corticospinal network successfully integrates biological concepts with engineering control theory for the generation of functional movement. This research significantly contributes to improving our understanding of neuromotor control in both animals and humans, thus paving the way towards a new frontier in the field of neurobiological control of anthropomorphic robotic systems.


Assuntos
Mãos , Redes Neurais de Computação , Robótica , Tendões , Humanos , Robótica/métodos , Mãos/fisiologia , Tendões/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Fenômenos Biomecânicos/fisiologia , Tratos Piramidais/fisiologia , Animais
13.
Sensors (Basel) ; 24(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38733052

RESUMO

Motion capture technology plays a crucial role in optimizing athletes' skills, techniques, and strategies by providing detailed feedback on motion data. This article presents a comprehensive survey aimed at guiding researchers in selecting the most suitable motion capture technology for sports science investigations. By comparing and analyzing the characters and applications of different motion capture technologies in sports scenarios, it is observed that cinematography motion capture technology remains the gold standard in biomechanical analysis and continues to dominate sports research applications. Wearable sensor-based motion capture technology has gained significant traction in specialized areas such as winter sports, owing to its reliable system performance. Computer vision-based motion capture technology has made significant advancements in recognition accuracy and system reliability, enabling its application in various sports scenarios, from single-person technique analysis to multi-person tactical analysis. Moreover, the emerging field of multimodal motion capture technology, which harmonizes data from various sources with the integration of artificial intelligence, has proven to be a robust research method for complex scenarios. A comprehensive review of the literature from the past 10 years underscores the increasing significance of motion capture technology in sports, with a notable shift from laboratory research to practical training applications on sports fields. Future developments in this field should prioritize research and technological advancements that cater to practical sports scenarios, addressing challenges such as occlusion, outdoor capture, and real-time feedback.


Assuntos
Esportes , Dispositivos Eletrônicos Vestíveis , Humanos , Esportes/fisiologia , Fenômenos Biomecânicos , Inquéritos e Questionários , Movimento (Física) , Inteligência Artificial , Movimento/fisiologia , Captura de Movimento
14.
Sensors (Basel) ; 24(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38733054

RESUMO

The problem of supporting visually impaired and blind people in meaningful interactions with objects is often neglected. To address this issue, we adapted a tactile belt for enhanced spatial navigation into a bracelet worn on the wrist that allows visually impaired people to grasp target objects. Participants' performance in locating and grasping target items when guided using the bracelet, which provides direction commands via vibrotactile signals, was compared to their performance when receiving auditory instructions. While participants were faster with the auditory commands, they also performed well with the bracelet, encouraging future development of this system and similar systems.


Assuntos
Força da Mão , Tato , Pessoas com Deficiência Visual , Humanos , Masculino , Tato/fisiologia , Feminino , Força da Mão/fisiologia , Adulto , Cegueira/fisiopatologia , Cegueira/reabilitação , Movimento/fisiologia , Pessoa de Meia-Idade
15.
BMC Musculoskelet Disord ; 25(1): 376, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741076

RESUMO

OBJECTIVES: The traditional understanding of craniocervical alignment emphasizes specific anatomical landmarks. However, recent research has challenged the reliance on forward head posture as the primary diagnostic criterion for neck pain. An advanced relationship exists between neck pain and craniocervical alignment, which requires a deeper exploration of diverse postures and movement patterns using advanced techniques, such as clustering analysis. We aimed to explore the complex relationship between craniocervical alignment, and neck pain and to categorize alignment patterns in individuals with nonspecific neck pain using the K-means algorithm. METHODS: This study included 229 office workers with nonspecific neck pain who applied unsupervised machine learning techniques. The craniocervical angles (CCA) during rest, protraction, and retraction were measured using two-dimensional video analysis, and neck pain severity was assessed using the Northwick Park Neck Pain Questionnaire (NPQ). CCA during sitting upright in a comfortable position was assessed to evaluate the resting CCA. The average of midpoints between repeated protraction and retraction measures was considered as the midpoint CCA. The K-means algorithm helped categorize participants into alignment clusters based on age, sex and CCA data. RESULTS: We found no significant correlation between NPQ scores and CCA data, challenging the traditional understanding of neck pain and alignment. We observed a significant difference in age (F = 140.14, p < 0.001), NPQ total score (F = 115.83, p < 0.001), resting CCA (F = 79.22, p < 0.001), CCA during protraction (F = 33.98, p < 0.001), CCA during retraction (F = 40.40, p < 0.001), and midpoint CCA (F = 66.92, p < 0.001) among the three clusters and healthy controls. Cluster 1 was characterized by the lowest resting and midpoint CCA, and CCA during pro- and -retraction, indicating a significant forward head posture and a pattern of retraction restriction. Cluster 2, the oldest group, showed CCA measurements similar to healthy controls, yet reported the highest NPQ scores. Cluster 3 exhibited the highest CCA during protraction and retraction, suggesting a limitation in protraction movement. DISCUSSION: Analyzing 229 office workers, three distinct alignment patterns were identified, each with unique postural characteristics; therefore, treatments addressing posture should be individualized and not generalized across the population.


Assuntos
Cervicalgia , Postura , Aprendizado de Máquina não Supervisionado , Humanos , Cervicalgia/fisiopatologia , Masculino , Feminino , Adulto , Postura/fisiologia , Pessoa de Meia-Idade , Análise por Conglomerados , Cabeça , Vértebras Cervicais/fisiopatologia , Vértebras Cervicais/diagnóstico por imagem , Movimento/fisiologia , Medição da Dor/métodos , Adulto Jovem , Movimentos da Cabeça/fisiologia
16.
JMIR Res Protoc ; 13: e57329, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669065

RESUMO

BACKGROUND: Relative motion between the residual limb and socket in individuals with transtibial limb loss can lead to substantial consequences that limit mobility. Although assessments of the relative motion between the residual limb and socket have been performed, there remains a substantial gap in understanding the complex mechanics of the residual limb-socket interface during dynamic activities that limits the ability to improve socket design. However, dynamic stereo x-ray (DSX) is an advanced imaging technology that can quantify 3D bone movement and skin deformation inside a socket during dynamic activities. OBJECTIVE: This study aims to develop analytical tools using DSX to quantify the dynamic, in vivo kinematics between the residual limb and socket and the mechanism of residual tissue deformation. METHODS: A lower limb cadaver study will first be performed to optimize the placement of an array of radiopaque beads and markers on the socket, liner, and skin to simultaneously assess dynamic tibial movement and residual tissue and liner deformation. Five cadaver limbs will be used in an iterative process to develop an optimal marker setup. Stance phase gait will be simulated during each session to induce bone movement and skin and liner deformation. The number, shape, size, and placement of each marker will be evaluated after each session to refine the marker set. Once an optimal marker setup is identified, 21 participants with transtibial limb loss will be fitted with a socket capable of being suspended via both elevated vacuum and traditional suction. Participants will undergo a 4-week acclimation period and then be tested in the DSX system to track tibial, skin, and liner motion under both suspension techniques during 3 activities: treadmill walking at a self-selected speed, at a walking speed 10% faster, and during a step-down movement. The performance of the 2 suspension techniques will be evaluated by quantifying the 3D bone movement of the residual tibia with respect to the socket and quantifying liner and skin deformation at the socket-residuum interface. RESULTS: This study was funded in October 2021. Cadaver testing began in January 2023. Enrollment began in February 2024. Data collection is expected to conclude in December 2025. The initial dissemination of results is expected in November 2026. CONCLUSIONS: The successful completion of this study will help develop analytical methods for the accurate assessment of residual limb-socket motion. The results will significantly advance the understanding of the complex biomechanical interactions between the residual limb and the socket, which can aid in evidence-based clinical practice and socket prescription guidelines. This critical foundational information can aid in the development of future socket technology that has the potential to reduce secondary comorbidities that result from complications of poor prosthesis load transmission. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/57329.


Assuntos
Extremidade Inferior , Pele , Tíbia , Humanos , Cotos de Amputação/diagnóstico por imagem , Cotos de Amputação/fisiopatologia , Membros Artificiais , Fenômenos Biomecânicos/fisiologia , Cadáver , Extremidade Inferior/diagnóstico por imagem , Extremidade Inferior/cirurgia , Extremidade Inferior/fisiologia , Movimento/fisiologia , Pele/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Tíbia/cirurgia
17.
Bioinspir Biomim ; 19(4)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38648793

RESUMO

The human toe, characterized by its rigid-flexible structure comprising hard bones and flexible joints, facilitates adaptive and stable movement across varied terrains. In this paper, we utilized a motion capture system to study the adaptive adjustments of toe joints when encountering obstacles. Inspired by the mechanics of toe joints, we proposed a novel design method for a rigid-flexible coupled wheel. The wheel comprises multiple elements: a rigid skeleton, supporting toes, connecting shafts, torsion springs, soft tendons, and damping pads. The torsion springs connect the rigid frame to the supporting toes, enabling them to adapt to uneven terrains and pipes with different diameters. The design was validated through kinematic and dynamic modeling, rigid-flexible coupled dynamics simulation, and stress analysis. Different stiffness coefficients of torsion springs were compared for optimal wheel design. Then, the wheel was applied to a sewer robot, and its performance was evaluated and compared with a pneumatic rubber tire in various experiments, including movement on flat surfaces, overcoming small obstacles, adaptability tests in different terrains, and active driving force tests in dry and wet pipelines. The results prove that the designed wheel showed better stability and anti-slip properties than conventional tires, making it suitable for diverse applications such as pipeline robots, desert vehicles, and lunar rovers.


Assuntos
Desenho de Equipamento , Robótica , Robótica/instrumentação , Humanos , Fenômenos Biomecânicos , Dedos do Pé/fisiologia , Biomimética/métodos , Biomimética/instrumentação , Modelos Biológicos , Articulação do Dedo do Pé/fisiologia , Simulação por Computador , Movimento/fisiologia
18.
PLoS One ; 19(4): e0301320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630752

RESUMO

Movement systems are massively redundant, and there are always multiple movement solutions to any task demand; motor abundance. Movement consequently exhibits 'repetition without repetition', where movement outcomes are preserved but the kinematic details of the movement vary across repetitions. The uncontrolled manifold (UCM) concept is one of several methods that analyses movement variability with respect to task goals, to quantify repetition without repetition and test hypotheses about the control architecture producing a given abundant response to a task demand. However, like all these methods, UCM is under-constrained in how it decomposes a task and performance. In this paper, we propose and test a theoretical framework for constraining UCM analysis, specifically the perception of task-dynamical affordances. Participants threw tennis balls to hit a target set at 5m, 10m or 15m, and we performed UCM analysis on the shoulder-elbow-wrist joint angles with respect to variables derived from an affordance analysis of this task as well as more typical biomechanical variables. The affordance-based UCM analysis performed well, although data also showed thrower dynamics (effectivities) need to be accounted for as well. We discuss how the theoretical framework of affordances and affordance-based control can be connected to motor abundance methods in the future.


Assuntos
Movimento , Articulação do Ombro , Humanos , Movimento/fisiologia , Articulação do Ombro/fisiologia , Fenômenos Biomecânicos
19.
Nat Commun ; 15(1): 3166, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605062

RESUMO

Increasing evidence suggests a considerable role of pre-movement beta bursts for motor control and its impairment in Parkinson's disease. However, whether beta bursts occur during precise and prolonged movements and if they affect fine motor control remains unclear. To investigate the role of within-movement beta bursts for fine motor control, we here combine invasive electrophysiological recordings and clinical deep brain stimulation in the subthalamic nucleus in 19 patients with Parkinson's disease performing a context-varying task that comprised template-guided and free spiral drawing. We determined beta bursts in narrow frequency bands around patient-specific peaks and assessed burst amplitude, duration, and their immediate impact on drawing speed. We reveal that beta bursts occur during the execution of drawing movements with reduced duration and amplitude in comparison to rest. Exclusively when drawing freely, they parallel reductions in acceleration. Deep brain stimulation increases the acceleration around beta bursts in addition to a general increase in drawing velocity and improvements of clinical function. These results provide evidence for a diverse and task-specific role of subthalamic beta bursts for fine motor control in Parkinson's disease; suggesting that pathological beta bursts act in a context dependent manner, which can be targeted by clinical deep brain stimulation.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Ritmo beta/fisiologia , Movimento/fisiologia
20.
Sensors (Basel) ; 24(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38676137

RESUMO

Human action recognition (HAR) is growing in machine learning with a wide range of applications. One challenging aspect of HAR is recognizing human actions while playing music, further complicated by the need to recognize the musical notes being played. This paper proposes a deep learning-based method for simultaneous HAR and musical note recognition in music performances. We conducted experiments on Morin khuur performances, a traditional Mongolian instrument. The proposed method consists of two stages. First, we created a new dataset of Morin khuur performances. We used motion capture systems and depth sensors to collect data that includes hand keypoints, instrument segmentation information, and detailed movement information. We then analyzed RGB images, depth images, and motion data to determine which type of data provides the most valuable features for recognizing actions and notes in music performances. The second stage utilizes a Spatial Temporal Attention Graph Convolutional Network (STA-GCN) to recognize musical notes as continuous gestures. The STA-GCN model is designed to learn the relationships between hand keypoints and instrument segmentation information, which are crucial for accurate recognition. Evaluation on our dataset demonstrates that our model outperforms the traditional ST-GCN model, achieving an accuracy of 81.4%.


Assuntos
Aprendizado Profundo , Música , Humanos , Redes Neurais de Computação , Atividades Humanas , Reconhecimento Automatizado de Padrão/métodos , Gestos , Algoritmos , Movimento/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA