Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 612
Filtrar
1.
Cells ; 13(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39329706

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive, often fatal lung disease characterized by tissue scarring and declining lung function. The MUC5B promoter polymorphism rs35705950, a significant genetic predisposition for IPF, paradoxically associates with better survival and slower disease progression than other IPF genotypes. This study investigates the potential paradoxical protective effects of this MUC5B variant in lung fibrosis. For this purpose, we developed a transgenic mouse model overexpressing the human MUC5B rs35705950 variant in the proximal large airways. Lung fibrosis was induced through subcutaneous injection of bleomycin. Results demonstrated significantly reduced lung fibrosis severity in transgenic mice compared to wild-type mice, assessed by trichrome staining, Ashcroft scoring, and hydroxyproline levels. Additionally, transgenic mice showed significantly lower levels of inflammatory cells and cytokines (TNFα, IL-6, IFNγ) and growth factors (PDGF, CTGF, IL-13) in the bronchoalveolar lavage fluid and lung tissues. There was also a significant decrease in mRNA expressions of fibrosis-related markers (periostin, fibronectin, Col1a1). In summary, this study reveals that mucin overexpression related to the MUC5B rs35705950 variant in the large airways significantly attenuates lung fibrosis and inflammatory responses in transgenic mice. These findings suggest that the rs35705950 variant modulates inflammatory and fibrotic responses in the proximal airways, which may contribute to the slower disease progression observed in IPF patients carrying this variant. Our study offers a possible explanation for the paradoxical beneficial effects of the MUC5B variant despite its role as a significant predisposing factor for IPF.


Assuntos
Bleomicina , Camundongos Transgênicos , Mucina-5B , Animais , Mucina-5B/genética , Mucina-5B/metabolismo , Humanos , Camundongos , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Citocinas/metabolismo , Citocinas/genética , Pulmão/patologia , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Modelos Animais de Doenças , Líquido da Lavagem Broncoalveolar
2.
Glycobiology ; 34(10)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39173029

RESUMO

Human sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed on subsets of immune cells. Siglec-8 is an immune inhibitory Siglec on eosinophils and mast cells, which are effectors in allergic disorders including eosinophilic esophagitis. Inhibition occurs when Siglec-8 is crosslinked by multivalent Siglec ligands in target tissues. Previously we discovered a high-affinity Siglec-8 sialoglycan ligand on human airways composed of terminally sialylated keratan sulfate chains carried on a single protein, DMBT1. Here we extend that approach to another allergic inflammatory target tissue, human esophagus. Lectin overlay histochemistry revealed that Siglec-8 ligands are expressed predominantly by esophageal submucosal glands, and are densely packed in submucosal ducts leading to the lumen. Expression is tissue-specific; esophageal glands express Siglec-8 ligand whereas nearby gastric glands do not. Extraction and resolution by gel electrophoresis revealed a single predominant human esophageal Siglec-8 ligand migrating at >2 MDa. Purification by size exclusion and affinity chromatography, followed by proteomic mass spectrometry, revealed the protein carrier to be MUC5B. Whereas all human esophageal submucosal cells express MUC5B, only a portion convert it to Siglec-8 ligand by adding terminally sialylated keratan sulfate chains. We refer to this as MUC5B S8L. Material from the esophageal lumen of live subjects revealed MUC5B S8L species ranging from ~1-4 MDa. We conclude that MUC5B in the human esophagus is a protein canvas on which Siglec-8 binding sialylated keratan sulfate chains are post-translationally added. These data expand understanding of Siglec-8 ligands and may help us understand their roles in allergic immune regulation.


Assuntos
Esôfago , Sulfato de Queratano , Lectinas , Mucina-5B , Humanos , Ligantes , Mucina-5B/metabolismo , Mucina-5B/genética , Lectinas/metabolismo , Lectinas/química , Sulfato de Queratano/metabolismo , Sulfato de Queratano/química , Esôfago/metabolismo , Antígenos CD/metabolismo , Antígenos CD/química , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos B
3.
Int J Chron Obstruct Pulmon Dis ; 19: 1635-1647, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045541

RESUMO

Background: Chronic obstructive pulmonary disease (COPD) is caused by exposure to noxious external particles, air pollution, and the inhalation of cigarette smoke. Airway mucus hypersecretion particularly mucin5AC (MUC5AC), is a crucial pathological feature of COPD and is associated with its initiation and progression. In this study, we aimed to investigate the effects of cigarette smoke extract (CSE) on MUC5AC expression, particularly the mechanisms by which reactive oxygen species (ROS) induce MUC5AC expression. Methods: The effects of CSE on the expression of MUC5AC and mucin5B (MUC5B) were investigated in vitro in Calu-3 cells. MUC5AC and MUC5B expression levels were measured using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), immunofluorescence staining, and enzyme-linked immunosorbent assay (ELISA). Total cellular levels of ROS and Ca2+ were determined using DCFH-DA and Fluo-4 AM. Subsequently, the expression levels of IP3R, IRE1α, p-IRE1α and XBP1s were measured by Western blotting. Gene silencing was achieved by using small-interfering RNAs. Results: Our findings revealed that exposure to CSE increased MUC5AC levels and upregulated ROS, IP3R/Ca2+ and unfolded protein response (UPR)-associated factors. In addition, knockdown of IP3R using siRNA decreased CSE-induced Ca2+ production, UPR-associated factors, and MUC5AC expression. Furthermore, 10 mM N-acetyl-l-cysteine (NAC) treatment suppressed the effects of CSE, including ROS generation, IP3R/ Ca2+, UPR activation, and MUC5AC overexpression. Conclusion: Our results suggest that ROS regulates CSE-induced UPR and MUC5AC overexpression through IP3R/ Ca2+ signaling. Additionally, we identified NAC as a promising therapeutic agent for mitigating CSE-induced MUC5AC overexpression.


Assuntos
Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato , Mucina-5AC , Mucina-5B , Espécies Reativas de Oxigênio , Fumaça , Mucina-5AC/metabolismo , Mucina-5AC/genética , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fumaça/efeitos adversos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Mucina-5B/metabolismo , Mucina-5B/genética , Sinalização do Cálcio/efeitos dos fármacos , Regulação para Cima , Estresse Oxidativo/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Linhagem Celular Tumoral , Nicotiana/efeitos adversos , Interferência de RNA , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Acetilcisteína/farmacologia , Fumar Cigarros/efeitos adversos , Cálcio/metabolismo , Proteína 1 de Ligação a X-Box , Endorribonucleases
4.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999930

RESUMO

Although SARS-CoV-2 induces mucin hypersecretion in the respiratory tract, hyposalivation/xerostomia has been reported by COVID-19 patients. We evaluate the submandibular gland (SMGs) pathogenesis in SARS-CoV-2-infected K18-hACE2 mice, focusing on the impact of infection on the mucin production and structural integrity of acini, ductal system, myoepithelial cells (MECs) and telocytes. The spike protein, the nucleocapsid protein, hACE2, actin, EGF, TNF-α and IL-1ß were detected by immunofluorescence, and the Egfr and Muc5b expression was evaluated. In the infected animals, significant acinar hypertrophy was observed in contrast to ductal atrophy. Nucleocapsid proteins and/or viral particles were detected in the SMG cells, mainly in the nuclear membrane-derived vesicles, confirming the nuclear role in the viral formation. The acinar cells showed intense TNF-α and IL-1ß immunoexpression, and the EGF-EGFR signaling increased, together with Muc5b upregulation. This finding explains mucin hypersecretion and acinar hypertrophy, which compress the ducts. Dying MECs and actin reduction were also observed, indicating failure of contraction and acinar support, favoring acinar hypertrophy. Viral assembly was found in the dying telocytes, pointing to these intercommunicating cells as viral transmitters in SMGs. Therefore, EGF-EGFR-induced mucin hypersecretion was triggered by SARS-CoV-2 in acinar cells, likely mediated by cytokines. The damage to telocytes and MECs may have favored the acinar hypertrophy, leading to ductal obstruction, explaining xerostomia in COVID-19 patients. Thus, acinar cells, telocytes and MECs may be viral targets, which favor replication and cell-to-cell viral transmission in the SMG, corroborating the high viral load in saliva of infected individuals.


Assuntos
COVID-19 , Receptores ErbB , SARS-CoV-2 , Glândula Submandibular , Xerostomia , COVID-19/patologia , COVID-19/virologia , COVID-19/metabolismo , Animais , Glândula Submandibular/virologia , Glândula Submandibular/patologia , Glândula Submandibular/metabolismo , SARS-CoV-2/fisiologia , Camundongos , Xerostomia/etiologia , Xerostomia/patologia , Xerostomia/virologia , Xerostomia/metabolismo , Receptores ErbB/metabolismo , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Mucina-5B/metabolismo , Células Acinares/patologia , Células Acinares/metabolismo , Células Acinares/virologia , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Modelos Animais de Doenças
5.
Am J Hum Genet ; 111(8): 1700-1716, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38991590

RESUMO

The secreted mucins MUC5AC and MUC5B are large glycoproteins that play critical defensive roles in pathogen entrapment and mucociliary clearance. Their respective genes contain polymorphic and degenerate protein-coding variable number tandem repeats (VNTRs) that make the loci difficult to investigate with short reads. We characterize the structural diversity of MUC5AC and MUC5B by long-read sequencing and assembly of 206 human and 20 nonhuman primate (NHP) haplotypes. We find that human MUC5B is largely invariant (5,761-5,762 amino acids [aa]); however, seven haplotypes have expanded VNTRs (6,291-7,019 aa). In contrast, 30 allelic variants of MUC5AC encode 16 distinct proteins (5,249-6,325 aa) with cysteine-rich domain and VNTR copy-number variation. We group MUC5AC alleles into three phylogenetic clades: H1 (46%, ∼5,654 aa), H2 (33%, ∼5,742 aa), and H3 (7%, ∼6,325 aa). The two most common human MUC5AC variants are smaller than NHP gene models, suggesting a reduction in protein length during recent human evolution. Linkage disequilibrium and Tajima's D analyses reveal that East Asians carry exceptionally large blocks with an excess of rare variation (p < 0.05) at MUC5AC. To validate this result, we use Locityper for genotyping MUC5AC haplogroups in 2,600 unrelated samples from the 1000 Genomes Project. We observe a signature of positive selection in H1 among East Asians and a depletion of the likely ancestral haplogroup (H3). In Europeans, H3 alleles show an excess of common variation and deviate from Hardy-Weinberg equilibrium (p < 0.05), consistent with heterozygote advantage and balancing selection. This study provides a generalizable strategy to characterize complex protein-coding VNTRs for improved disease associations.


Assuntos
Alelos , Variação Genética , Haplótipos , Repetições Minissatélites , Mucina-5AC , Mucina-5B , Filogenia , Humanos , Mucina-5B/genética , Animais , Mucina-5AC/genética , Mucina-5AC/metabolismo , Repetições Minissatélites/genética , Variações do Número de Cópias de DNA , Primatas/genética
6.
Sci Rep ; 14(1): 16568, 2024 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019950

RESUMO

Mucus stasis is a pathologic hallmark of muco-obstructive diseases, including cystic fibrosis (CF). Mucins, the principal component of mucus, are extensively modified with hydroxyl (O)-linked glycans, which are largely terminated by sialic acid. Sialic acid is a negatively charged monosaccharide and contributes to the biochemical/biophysical properties of mucins. Reports suggest that mucin sialylation may be altered in CF; however, the consequences of reduced sialylation on mucus clearance have not been fully determined. Here, we investigated the consequences of reduced sialylation on the charge state and conformation of the most prominent airway mucin, MUC5B, and defined the functional consequences of reduced sialylation on mucociliary transport (MCT). Reduced sialylation contributed to a lower charged MUC5B form and decreased polymer expansion. The inhibition of total mucin sialylation de novo impaired MCT in primary human bronchial epithelial cells and rat airways, and specific α-2,3 sialylation blockade was sufficient to recapitulate these findings. Finally, we show that ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3Gal1) expression is downregulated in CF and partially restored by correcting CFTR via Elexacaftor/Tezacaftor/Ivacaftor treatment. Overall, this study demonstrates the importance of mucin sialylation in mucus clearance and identifies decreased sialylation by ST3Gal1 as a possible therapeutic target in CF and potentially other muco-obstructive diseases.


Assuntos
Mucina-5B , Muco , Humanos , Animais , Mucina-5B/metabolismo , Ratos , Muco/metabolismo , Sialiltransferases/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Depuração Mucociliar , Mucosa Respiratória/metabolismo , Fibrose Cística/metabolismo , Mucinas/metabolismo , Células Epiteliais/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Brônquios/metabolismo
7.
Biomater Sci ; 12(17): 4376-4385, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39028033

RESUMO

Increased disulfide crosslinking of secreted mucins causes elevated viscoelasticity of mucus and is a key determinant of mucus dysfunction in patients with cystic fibrosis (CF) and other muco-obstructive lung diseases. In this study, we describe the synthesis of a novel thiol-containing, sulfated dendritic polyglycerol (dPGS-SH), designed to chemically reduce these abnormal crosslinks, which we demonstrate with mucolytic activity assays in sputum from patients with CF. This mucolytic polymer, which is based on a reportedly anti-inflammatory polysulfate scaffold, additionally carries multiple thiol groups for mucolytic activity and can be produced on a gram-scale. After a physicochemical compound characterization, we compare the mucolytic activity of dPGS-SH to the clinically approved N-acetylcysteine (NAC) using western blot studies and investigate the effect of dPGS-SH on the viscoelastic properties of sputum samples from CF patients by oscillatory rheology. We show that dPGS-SH is more effective than NAC in reducing multimer intensity of the secreted mucins MUC5B and MUC5AC and demonstrate significant mucolytic activity by rheology. In addition, we provide data for dPGS-SH demonstrating a high compound stability, low cytotoxicity, and superior reaction kinetics over NAC at different pH levels. Our data support further development of the novel reducing polymer system dPGS-SH as a potential mucolytic to improve mucus function and clearance in patients with CF as well as other muco-obstructive lung diseases.


Assuntos
Glicerol , Polímeros , Escarro , Compostos de Sulfidrila , Humanos , Glicerol/química , Polímeros/química , Polímeros/farmacologia , Escarro/metabolismo , Escarro/química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Mucina-5AC/metabolismo , Pneumopatias Obstrutivas/tratamento farmacológico , Pneumopatias Obstrutivas/metabolismo , Mucina-5B/metabolismo , Sulfatos/química , Sulfatos/farmacologia , Expectorantes/farmacologia , Expectorantes/química , Muco/metabolismo , Muco/química , Reologia , Acetilcisteína/farmacologia , Acetilcisteína/química , Viscosidade
8.
Chemosphere ; 363: 142837, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009092

RESUMO

BACKGROUND: Current knowledge suggests that the gene region containing MUC5B and TOLLIP plays a role in airway defence and airway inflammation, and hence respiratory disease. It is also known that exposure to air pollution increases susceptibility to respiratory disease. We aimed to study whether the effect of air pollutants on the immune response and respiratory symptoms in infants may be modified by polymorphisms in MUC5B and TOLLIP genes. METHODS: 359 healthy term infants from the prospective Basel-Bern Infant Lung Development (BILD) birth cohort were included in the study. The main outcome was the score of weekly assessed respiratory symptoms in the first year of life. Using the candidate gene approach, we selected 10 single nucleotide polymorphisms (SNPs) from the MUC5B and TOLLIP regions. Nitrogen dioxide (NO2) and particulate matter ≤10 µm in aerodynamic diameter (PM10) exposure was estimated on a weekly basis. We used generalised additive mixed models adjusted for known covariates. To validate our results in vitro, cells from a lung epithelial cell line were downregulated in TOLLIP expression and exposed to diesel particulate matter (DPM) and polyinosinic-polycytidylic acid. RESULTS: Significant interaction was observed between modelled air pollution (weekly NO2 exposure) and 5 SNPs within MUC5B and TOLLIP genes regarding respiratory symptoms as outcome: E.g., infants carrying minor alleles of rs5744034, rs3793965 and rs3750920 (all TOLLIP) had an increased risk of respiratory symptoms with increasing NO2 exposure. In vitro experiments showed that cells downregulated for TOLLIP react differently to environmental pollutant exposure with DPM and viral stimulation. CONCLUSION: Our findings suggest that the effect of air pollution on respiratory symptoms in infancy may be influenced by the genotype of specific SNPs from the MUC5B and TOLLIP regions. For validation of the findings, we provided in vitro evidence for the interaction of TOLLIP with air pollution.


Assuntos
Poluentes Atmosféricos , Mucina-5B , Dióxido de Nitrogênio , Polimorfismo de Nucleotídeo Único , Humanos , Mucina-5B/genética , Poluentes Atmosféricos/toxicidade , Lactente , Masculino , Dióxido de Nitrogênio/toxicidade , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Poluição do Ar/efeitos adversos , Material Particulado/toxicidade , Estudos Prospectivos , Recém-Nascido , Exposição Ambiental/efeitos adversos , Doenças Respiratórias/induzido quimicamente , Doenças Respiratórias/genética
9.
PLoS One ; 19(6): e0306058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935605

RESUMO

Mucosal-delivered drugs have to pass through the mucus layer before absorption through the epithelial cell membrane. Although there has been increasing interest in polymeric mucins, a major structural component of mucus, potentially acting as important physiological regulators of mucosal drug absorption, there are no reports that have systematically evaluated the interaction between mucins and drugs. In this study, we assessed the potential interaction between human polymeric mucins (MUC2, MUC5B, and MUC5AC) and various drugs with different chemical profiles by simple centrifugal method and fluorescence analysis. We found that paclitaxel, rifampicin, and theophylline likely induce the aggregation of MUC5B and/or MUC2. In addition, we showed that the binding affinity of drugs for polymeric mucins varied, not only between individual drugs but also among mucin subtypes. Furthermore, we demonstrated that deletion of MUC5AC and MUC5B in A549 cells increased the cytotoxic effects of cyclosporin A and paclitaxel, likely due to loss of mucin-drug interaction. In conclusion, our results indicate the necessity to determine the binding of drugs to mucins and their potential impact on the mucin network property.


Assuntos
Mucina-5AC , Paclitaxel , Humanos , Paclitaxel/farmacologia , Paclitaxel/metabolismo , Mucina-5AC/metabolismo , Mucina-5AC/genética , Células A549 , Interações Medicamentosas , Mucina-5B/metabolismo , Mucina-5B/genética , Mucinas/metabolismo , Mucina-2/metabolismo , Mucina-2/genética , Rifampina/farmacologia , Ciclosporina/farmacologia , Ligação Proteica
11.
Allergol Int ; 73(3): 375-381, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692992

RESUMO

Mucus provides a protective barrier that is crucial for host defense in the lungs. However, excessive or abnormal mucus can have pathophysiological consequences in many pulmonary diseases, including asthma. Patients with asthma are treated with agents that relax airway smooth muscle and reduce airway inflammation, but responses are often inadequate. In part, this is due to the inability of existing therapeutic agents to directly target mucus. Accordingly, there is a critical need to better understand how mucus hypersecretion and airway plugging are affected by the epithelial cells that synthesize, secrete, and transport mucus components. This review highlights recent advances in the biology of mucin glycoproteins with a specific focus on MUC5AC and MUC5B, the chief macromolecular components of airway mucus. An improved mechanistic understanding of key steps in mucin production and secretion will help reveal novel potential therapeutic strategies.


Assuntos
Asma , Muco , Humanos , Asma/metabolismo , Asma/tratamento farmacológico , Muco/metabolismo , Animais , Terapia de Alvo Molecular , Mucinas/metabolismo , Mucina-5AC/metabolismo , Mucina-5B/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/imunologia
12.
Am J Respir Crit Care Med ; 210(4): 401-423, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38573068

RESUMO

Recent genetic and genomic advancements have elucidated the complex etiology of idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases (ILDs), emphasizing the contribution of heritable factors. This state-of-the-art review synthesizes evidence on significant genetic contributors to pulmonary fibrosis (PF), including rare genetic variants and common SNPs. The MUC5B promoter variant is unusual, a common SNP that markedly elevates the risk of early and established PF. We address the utility of genetic variation in enhancing understanding of disease pathogenesis and clinical phenotypes, improving disease definitions, and informing prognosis and treatment response. Critical research gaps are highlighted, particularly the underrepresentation of non-European ancestries in PF genetic studies and the exploration of PF phenotypes beyond usual interstitial pneumonia/IPF. We discuss the role of telomere length, often critically short in PF, and its link to progression and mortality, underscoring the genetic complexity involving telomere biology genes (TERT, TERC) and others like SFTPC and MUC5B. In addition, we address the potential of gene-by-environment interactions to modulate disease manifestation, advocating for precision medicine in PF. Insights from gene expression profiling studies and multiomic analyses highlight the promise for understanding disease pathogenesis and offer new approaches to clinical care, therapeutic drug development, and biomarker discovery. Finally, we discuss the ethical, legal, and social implications of genomic research and therapies in PF, stressing the need for sound practices and informed clinical genetic discussions. Looking forward, we advocate for comprehensive genetic testing panels and polygenic risk scores to improve the management of PF and related ILDs across diverse populations.


Assuntos
Genômica , Fibrose Pulmonar Idiopática , Mucina-5B , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/terapia , Mucina-5B/genética , Predisposição Genética para Doença/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/terapia , Polimorfismo de Nucleotídeo Único/genética
13.
Ann Am Thorac Soc ; 21(9): 1251-1260, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38568439

RESUMO

Rationale: It is unknown whether air pollution is associated with radiographic features of interstitial lung disease in individuals with chronic obstructive pulmonary disease (COPD). Objectives: To determine whether air pollution increases the prevalence of interstitial lung abnormalities (ILA) or percent high-attenuation areas (HAA) on computed tomography (CT) in individuals with a heavy smoking history and COPD. Methods: We performed a cross-sectional study of SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study), focused on current or former smokers with COPD. Ten-year exposure to particulate matter ⩽2.5 µm in aerodynamic diameter (PM2.5), nitrogen oxides (NOx), nitrogen dioxide (NO2), and ozone before enrollment CT (completed between 2010 and 2015) were estimated with validated spatiotemporal models at residential addresses. We applied adjusted multivariable modified Poisson regression and linear regression to investigate associations between pollution exposure and relative risk (RR) of ILA or increased percent HAA (between -600 and -250 Hounsfield units), respectively. We assessed for effect modification by MUC5B-promoter polymorphism (variant allele carriers GT or TT vs. GG at rs3705950), smoking status, sex, and percent emphysema. Results: Among 1,272 participants with COPD assessed for HAA, 424 were current smokers, and 249 were carriers of the variant MUC5B allele. A total of 519 participants were assessed for ILA. We found no association between pollution exposure and ILA or HAA. Associations between pollutant exposures and risk of ILA were modified by the presence of MUC5B polymorphism (P value interaction term for NOx = 0.04 and PM2.5 = 0.05) and smoking status (P value interaction term for NOx = 0.05; NO2 = 0.01; and ozone = 0.05). With higher exposure to NOx and PM2.5, MUC5B variant carriers had an increased risk of ILA (RR per 26 ppb NOx, 2.41; 95% confidence interval [CI], 0.97-6.0; and RR per 4 µg ⋅ m-3 PM2.5, 1.43; 95% CI, 0.93-2.2, respectively). With higher exposure to NO2, former smokers had an increased risk of ILA (RR per 10 ppb, 1.64; 95% CI, 1.0-2.7). Conclusions: Exposure to ambient air pollution was not associated with interstitial features on CT in this population of heavy smokers with COPD. MUC5B modified the association between pollution and ILA, suggesting that gene-environment interactions may influence prevalence of interstitial lung features in COPD.


Assuntos
Poluição do Ar , Material Particulado , Doença Pulmonar Obstrutiva Crônica , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Idoso , Pessoa de Meia-Idade , Estudos Transversais , Material Particulado/efeitos adversos , Poluição do Ar/efeitos adversos , Mucina-5B/genética , Doenças Pulmonares Intersticiais/epidemiologia , Doenças Pulmonares Intersticiais/etiologia , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Exposição Ambiental/efeitos adversos , Estados Unidos/epidemiologia , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Óxidos de Nitrogênio/efeitos adversos , Óxidos de Nitrogênio/análise , Modelos Lineares , Fumar/efeitos adversos , Fumar/epidemiologia , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Ozônio/efeitos adversos , Prevalência
14.
Am J Reprod Immunol ; 91(3): e13832, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462543

RESUMO

PROBLEM: Excisional surgery for cervical intraepithelial neoplasia is a risk factor for preterm birth in subsequent pregnancies. However, the underlying mechanisms of this association remain unclear. We previously showed that cervical MUC5B, a mucin protein, may be a barrier to ascending pathogens during pregnancy. We thus hypothesized that hyposecretion of cervical MUC5B is associated with preterm birth after cervical excisional surgery. METHOD OF STUDY: This prospective nested case-control study (Study 1) included pregnant women who had previously undergone cervical excisional surgery across 11 hospitals. We used proteomics to compare cervicovaginal fluid at 18-22 weeks of gestation between the preterm and term birth groups. In another case-control analysis (Study 2), we compared MUC5B expression in nonpregnant uterine tissues between 15 women with a history of cervical excisional surgery and 26 women without a history of cervical surgery. RESULTS: The abundance of MUC5B in cervicovaginal fluid was significantly decreased in the preterm birth group (fold change = 0.41, p = .035). Among the 480 quantified proteins, MUC5B had the second highest positive correlation with gestational age at delivery in the combined preterm and term groups. The cervicovaginal microbiome composition was not significantly different between the two groups. Cervical length was not correlated with gestational age at delivery (r = 0.18, p = .079). Histologically, the MUC5B-positive area in the nonpregnant cervix was significantly decreased in women with a history of cervical excisional surgery (0.85-fold, p = .048). The distribution of MUC5B-positive areas in the cervical tissues of 26 women without a history of cervical excisional surgery differed across individuals. CONCLUSIONS: This study suggests that the primary mechanism by which cervical excisional surgery causes preterm birth is the hyposecretion of MUC5B due to loss of the cervical glands.


Assuntos
Colo do Útero , Nascimento Prematuro , Feminino , Gravidez , Recém-Nascido , Humanos , Colo do Útero/cirurgia , Gestantes , Estudos de Casos e Controles , Estudos Prospectivos , Estudos Retrospectivos , Mucina-5B
15.
Am J Respir Crit Care Med ; 210(3): 298-310, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315959

RESUMO

Rationale: Progressive lung function loss is recognized in chronic obstructive pulmonary disease (COPD); however, no study concurrently evaluates how accelerated lung function decline relates to mucus properties and the microbiome in COPD. Objectives: Longitudinal assessment of mucus and microbiome changes accompanying accelerated lung function decline in patients COPD. Methods: This was a prospective, longitudinal assessment of the London COPD cohort exhibiting the greatest FEV1 decline (n = 30; accelerated decline; 156 ml/yr FEV1 loss) and with no FEV1 decline (n = 28; nondecline; 49 ml/yr FEV1 gain) over time. Lung microbiomes from paired sputum (total 116 specimens) were assessed by shotgun metagenomics and corresponding mucus profiles evaluated for biochemical and biophysical properties. Measurements and Main Results: Biochemical and biophysical mucus properties are significantly altered in the accelerated decline group. Unsupervised principal component analysis showed clear separation, with mucus biochemistry associated with accelerated decline, whereas biophysical mucus characteristics contributed to interindividual variability. When mucus and microbes are considered together, an accelerated decline mucus-microbiome association emerges, characterized by increased mucin (MUC5AC [mucin 5AC] and MUC5B [mucin 5B]) concentration and the presence of Achromobacter and Klebsiella. As COPD progresses, mucus-microbiome shifts occur, initially characterized by low mucin concentration and transition from viscous to elastic dominance accompanied by the commensals Veillonella, Gemella, Rothia, and Prevotella (Global Initiative for Chronic Obstructive Lung Disease [GOLD] A and B) before transition to increased mucus viscosity, mucins, and DNA concentration together with the emergence of pathogenic microorganisms including Haemophilus, Moraxella, and Pseudomonas (GOLD E). Conclusions: Mucus-microbiome associations evolve over time with accelerated lung function decline, symptom progression, and exacerbations affording fresh therapeutic opportunities for early intervention.


Assuntos
Microbiota , Muco , Doença Pulmonar Obstrutiva Crônica , Escarro , Humanos , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Prospectivos , Escarro/microbiologia , Muco/microbiologia , Estudos Longitudinais , Progressão da Doença , Mucina-5B/metabolismo , Volume Expiratório Forçado , Mucina-5AC/metabolismo , Londres
16.
Am J Respir Cell Mol Biol ; 70(6): 437-445, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38363828

RESUMO

The recent European Respiratory Society statement on familial pulmonary fibrosis supports the need for genetic testing in the care of patients and their relatives. However, no solution (i.e., a concrete test) was provided to implement genetic testing in daily practice. Herein, we tabulated and standardized the nomenclature of 128 genetic variants in 20 genes implicated in adult-onset pulmonary fibrosis. The objective was to develop a laboratory-developed test (LDT) on the basis of standard Sanger sequencing to capture all known familial pulmonary fibrosis-associated variants. Targeted DNA fragments were amplified using harmonized PCR conditions to perform the LDT in a single 96-well plate. The new genetic test was evaluated in 62 sporadic cases of idiopathic pulmonary fibrosis. As expected in this population, we observed a low yield of disease-causing mutations. More important, 100% of targeted variants by the LDT were successfully evaluated. Furthermore, four variants of uncertain significance with in silico-predicted deleterious scores were identified in three patients, suggesting novel pathogenic variants in genes known to cause idiopathic pulmonary fibrosis. Finally, the MUC5B promoter variant rs35705950 was strongly enriched in these patients with a minor allele frequency of 41.1% compared with 10.6% in a matched population-based cohort (n = 29,060), leading to an estimation that this variant may explain up to 35% of the population-attributable risk. This LDT provides a solution for rapid clinical translation. Technical laboratory details are provided so that specialized pulmonary centers can implement the LDT in house to expedite the clinical recommendations of expert panels.


Assuntos
Predisposição Genética para Doença , Testes Genéticos , Fibrose Pulmonar Idiopática , Mucina-5B , Humanos , Fibrose Pulmonar Idiopática/genética , Masculino , Feminino , Testes Genéticos/métodos , Mucina-5B/genética , Pessoa de Meia-Idade , Frequência do Gene , Mutação/genética , Idoso , Adulto , Regiões Promotoras Genéticas/genética
18.
J Mol Recognit ; 37(1): e3064, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37804135

RESUMO

Gel-forming mucin MUC5B is significantly deregulated in lung adenocarcinoma (LUAD), however, its role in tumor progression is not yet clearly understood. Here, we used an integrated computational-pipeline-initiated with gene expression analysis followed by network, functional-enrichment, O-linked glycosylation analyses, mutational profiling, and immune cell infiltration estimation to functionally characterize MUC5B gene in LUAD. Thereafter, clinical biomarker validation was supported by the overall survival (OA) and comparative expression profiling across clinical stages using computational algorithms. The gene expression profile of LUAD identified MUC5B to be significantly up-regulated (logFC: 2.36; p-value: 0.01). Network analysis on LUAD interactome screened MUC5B-related genes, having key enrichment in immune suppression and O-linked glycosylation with serine-threonine-rich tandem repeats being highly glycosylated. Furthermore, positive correlation of mutant MUC5B with immune cells in tumor microenvironment (TME) such as cancer-associated fibroblasts and myeloid-derived suppressor cells indicates TME-mediated tumor progression. The positive correlation with immune inhibitors suggested the enhanced tumor proliferation mediated by MUC5B. Structural stability due to genetic alterations identified overall rigid N-H-backbone dynamics (S2 : 0.756), indicating an overall stable mutant protein. Moreover, the low median OA (<50 months) with a hazard ratio of 1.4 and clinical profile of MUC5B gene showed high median expression corresponding to lymph node (N2) and tumor (T3) stages. Our study concludes by highlighting the functional role of O-glycosylated and mutant MUC5B in promoting LUAD by immune suppression. Further, clinical gene expression validation of MUC5B suggests its potential role as a diagnostic biomarker for LUAD metastasis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Detecção Precoce de Câncer , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Algoritmos , Glicosilação , Microambiente Tumoral/genética , Mucina-5B/genética
20.
Respir Res ; 24(1): 240, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777755

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) has an unknown aetiology and limited treatment options. A recent meta-analysis identified three novel causal variants in the TERT, SPDL1, and KIF15 genes. This observational study aimed to investigate whether the aforementioned variants cause clinical phenotypes in a well-characterised IPF cohort. METHODS: The study consisted of 138 patients with IPF who were diagnosed and treated at the Helsinki University Hospital and genotyped in the FinnGen FinnIPF study. Data on > 25 clinical parameters were collected by two pulmonologists who were blinded to the genetic data for patients with TERT loss of function and missense variants, SPDL1 and KIF15 missense variants, and a MUC5B variant commonly present in patients with IPF, or no variants were separately analysed. RESULTS: The KIF15 missense variant is associated with the early onset of the disease, leading to progression to early-age transplantation or death. In patients with the KIF15 variant, the median age at diagnosis was 54.0 years (36.5-69.5 years) compared with 72.0 years (65.8-75.3 years) in the other patients (P = 0.023). The proportion of KIF15 variant carriers was 9- or 3.6-fold higher in patients aged < 55 or 65 years, respectively. The variants for TERT and MUC5B had similar effects on the patient's clinical course, as previously described. No distinct phenotypes were observed in patients with the SPDL1 variant. CONCLUSIONS: Our study indicated the potential of KIF15 to be used in the genetic diagnostics of IPF. Further studies are needed to elucidate the biological mechanisms of KIF15 in IPF.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Pessoa de Meia-Idade , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/genética , Genótipo , Fenótipo , Mucina-5B/genética , Cinesinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA