Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.787
Filtrar
1.
Sci Rep ; 14(1): 17771, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090136

RESUMO

Lifelong neurogenesis endows the mouse olfactory system with a capacity for regeneration that is unique in the mammalian nervous system. Throughout life, olfactory sensory neurons (OSNs) are generated from olfactory epithelium (OE) stem cells in the nose, while the subventricular zone generates neuroblasts that migrate to the olfactory bulb (OB) and differentiate into multiple populations of inhibitory interneurons. Methimazole (MMZ) selectively ablates OSNs, but OE neurogenesis enables OSN repopulation and gradual recovery of OSN input to the OB within 6 weeks. However, it is not known how OB interneurons are affected by this loss and subsequent regeneration of OSN input following MMZ treatment. We found that dopaminergic neuron density was significantly reduced 7-14 days post-MMZ but recovered substantially at 35 days. The density of parvalbumin-expressing interneurons was unaffected by MMZ; however, their soma size was significantly reduced at 7-14 days post-MMZ, recovering by 35 days. Surprisingly, we found a transient increase in the density of calretinin-expressing neurons in the glomerular and external plexiform layers, but not the granule cell layer, 7 days post-MMZ. This could not be accounted for by increased neurogenesis but may result from increased calretinin expression. Together, our data demonstrate cell type- and layer-specific changes in OB interneuron density and morphology after MMZ treatment, providing new insight into the range of plasticity mechanisms employed by OB circuits during loss and regeneration of sensory input.


Assuntos
Interneurônios , Neurogênese , Bulbo Olfatório , Neurônios Receptores Olfatórios , Animais , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Camundongos , Neurônios Receptores Olfatórios/fisiologia , Plasticidade Neuronal/fisiologia , Metimazol/farmacologia , Masculino , Neurônios Dopaminérgicos/fisiologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/citologia , Mucosa Olfatória/citologia , Camundongos Endogâmicos C57BL , Calbindina 2/metabolismo
2.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126095

RESUMO

Olfactory perception is an important physiological function for human well-being and health. Loss of olfaction, or anosmia, caused by viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has received considerable attention, especially in persistent cases that take a long time to recover. This review discusses the integration of different components of the olfactory epithelium to serve as a structural and functional unit and explores how they are affected during viral infections, leading to the development of olfactory dysfunction. The review mainly focused on the role of receptors mediating the disruption of olfactory signal transduction pathways such as angiotensin converting enzyme 2 (ACE2), transmembrane protease serine type 2 (TMPRSS2), neuropilin 1 (NRP1), basigin (CD147), olfactory, transient receptor potential vanilloid 1 (TRPV1), purinergic, and interferon gamma receptors. Furthermore, the compromised function of the epithelial sodium channel (ENaC) induced by SARS-CoV-2 infection and its contribution to olfactory dysfunction are also discussed. Collectively, this review provides fundamental information about the many types of receptors that may modulate olfaction and participate in olfactory dysfunction. It will help to understand the underlying pathophysiology of virus-induced anosmia, which may help in finding and designing effective therapies targeting molecules involved in viral invasion and olfaction. To the best of our knowledge, this is the only review that covered all the receptors potentially involved in, or mediating, the disruption of olfactory signal transduction pathways during COVID-19 infection. This wide and complex spectrum of receptors that mediates the pathophysiology of olfactory dysfunction reflects the many ways in which anosmia can be therapeutically managed.


Assuntos
Anosmia , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/metabolismo , COVID-19/complicações , COVID-19/fisiopatologia , COVID-19/virologia , Anosmia/fisiopatologia , Anosmia/etiologia , Anosmia/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Mucosa Olfatória/metabolismo , Mucosa Olfatória/virologia , Transdução de Sinais , Serina Endopeptidases/metabolismo , Neuropilina-1/metabolismo , Basigina/metabolismo , Canais de Cátion TRPV/metabolismo
3.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39126059

RESUMO

Alzheimer's disease (AD) is a condition in the brain that is marked by a gradual and ongoing reduction in memory, thought, and the ability to perform simple tasks. AD has a poor prognosis but no cure yet. Therefore, the need for novel models to study its pathogenesis and therapeutic strategies is evident, as the brain poorly recovers after injury and neurodegenerative diseases and can neither replace dead neurons nor reinnervate target structures. Recently, mesenchymal stem cells (MSCs), particularly those from the human olfactory mucous membrane referred to as the olfactory ecto-MSCs (OE-MSCs), have emerged as a potential avenue to explore in modeling AD and developing therapeutics for the disease due to their lifelong regeneration potency and facile accessibility. This review provides a comprehensive summary of the current literature on isolating OE-MSCs and delves into whether they could be reliable models for studying AD pathogenesis. It also explores whether healthy individual-derived OE-MSCs could be therapeutic agents for the disease. Despite being a promising tool in modeling and developing therapies for AD, some significant issues remain, which are also discussed in the review.


Assuntos
Doença de Alzheimer , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Mucosa Olfatória , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Mucosa Olfatória/citologia , Animais
4.
Mil Med Res ; 11(1): 48, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034405

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra (SN). Activation of the neuroinflammatory response has a pivotal role in PD. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach for various nerve injuries, but there are limited reports on their use in PD and the underlying mechanisms remain unclear. METHODS: We investigated the effects of clinical-grade hypoxia-preconditioned olfactory mucosa (hOM)-MSCs on neural functional recovery in both PD models and patients, as well as the preventive effects on mouse models of PD. To assess improvement in neuroinflammatory response and neural functional recovery induced by hOM-MSCs exposure, we employed single-cell RNA sequencing (scRNA-seq), assay for transposase accessible chromatin with high-throughput sequencing (ATAC-seq) combined with full-length transcriptome isoform-sequencing (ISO-seq), and functional assay. Furthermore, we present the findings from an initial cohort of patients enrolled in a phase I first-in-human clinical trial evaluating the safety and efficacy of intraspinal transplantation of hOM-MSC transplantation into severe PD patients. RESULTS: A functional assay identified that transforming growth factor-ß1 (TGF-ß1), secreted from hOM-MSCs, played a critical role in modulating mitochondrial function recovery in dopaminergic neurons. This effect was achieved through improving microglia immune regulation and autophagy homeostasis in the SN, which are closely associated with neuroinflammatory responses. Mechanistically, exposure to hOM-MSCs led to an improvement in neuroinflammation and neural function recovery partially mediated by TGF-ß1 via activation of the anaplastic lymphoma kinase/phosphatidylinositol-3-kinase/protein kinase B (ALK/PI3K/Akt) signaling pathway in microglia located in the SN of PD patients. Furthermore, intraspinal transplantation of hOM-MSCs improved the recovery of neurologic function and regulated the neuroinflammatory response without any adverse reactions observed in patients with PD. CONCLUSIONS: These findings provide compelling evidence for the involvement of TGF-ß1 in mediating the beneficial effects of hOM-MSCs on neural functional recovery in PD. Treatment and prevention of hOM-MSCs could be a promising and effective neuroprotective strategy for PD. Additionally, TGF-ß1 may be used alone or combined with hOM-MSCs therapy for treating PD.


Assuntos
Modelos Animais de Doenças , Células-Tronco Mesenquimais , Mucosa Olfatória , Doença de Parkinson , Fator de Crescimento Transformador beta1 , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Transplante de Células-Tronco Mesenquimais/métodos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Recuperação de Função Fisiológica , Fator de Crescimento Transformador beta1/metabolismo
5.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000511

RESUMO

The ion channels Piezo 1 and Piezo 2 have been identified as membrane mechano-proteins. Studying mechanosensitive channels in chemosensory organs could help in understanding the mechanisms by which these channels operate, offering new therapeutic targets for various disorders. This study investigates the expression patterns of Piezo proteins in zebrafish chemosensory organs. For the first time, Piezo protein expression in adult zebrafish chemosensory organs is reported. In the olfactory epithelium, Piezo 1 immunolabels kappe neurons, microvillous cells, and crypt neurons, while Calretinin is expressed in ciliated sensory cells. The lack of overlap between Piezo 1 and Calretinin confirms Piezo 1's specificity for kappe neurons, microvillous cells, and crypt neurons. Piezo 2 shows intense immunoreactivity in kappe neurons, one-ciliated sensory cells, and multi-ciliated sensory cells, with overlapping Calretinin expression, indicating its olfactory neuron nature. In taste buds, Piezo 1 immunolabels Merkel-like cells at the bases of cutaneous and pharyngeal taste buds and the light and dark cells of cutaneous and oral taste buds. It also marks the dark cells of pharyngeal taste buds and support cells in oral taste buds. Piezo 2 is found in the light and dark cells of cutaneous and oral taste buds and isolated chemosensory cells. These findings provide new insights into the distribution of Piezo channels in zebrafish chemosensory organs, enhancing our understanding of their sensory processing and potential therapeutic applications.


Assuntos
Canais Iônicos , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Canais Iônicos/metabolismo , Canais Iônicos/genética , Papilas Gustativas/metabolismo , Calbindina 2/metabolismo , Mucosa Olfatória/metabolismo
6.
Cell Death Dis ; 15(7): 478, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961086

RESUMO

A recent approach to promote central nervous system (CNS) regeneration after injury or disease is direct conversion of somatic cells to neurons. This is achieved by transduction of viral vectors that express neurogenic transcription factors. In this work we propose adult human mucosal olfactory ensheathing glia (hmOEG) as a candidate for direct reprogramming to neurons due to its accessibility and to its well-characterized neuroregenerative capacity. After induction of hmOEG with the single neurogenic transcription factor NEUROD1, the cells under study exhibited morphological and immunolabeling neuronal features, fired action potentials and expressed glutamatergic and GABAergic markers. In addition, after engraftment of transduced hmOEG cells in the mouse hippocampus, these cells showed specific neuronal labeling. Thereby, if we add to the neuroregenerative capacity of hmOEG cultures the conversion to neurons of a fraction of their population through reprogramming techniques, the engraftment of hmOEG and hmOEG-induced neurons could be a procedure to enhance neural repair after central nervous system injury.


Assuntos
Neuroglia , Neurônios , Humanos , Animais , Neuroglia/metabolismo , Neuroglia/citologia , Neurônios/metabolismo , Neurônios/citologia , Camundongos , Adulto , Mucosa Olfatória/citologia , Mucosa Olfatória/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula , Hipocampo/citologia , Hipocampo/metabolismo , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Células Cultivadas
7.
Stem Cell Reports ; 19(8): 1156-1171, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39059377

RESUMO

While horizontal basal cells (HBCs) make minor contributions to olfactory epithelium (OE) regeneration during homeostatic conditions, they possess a potent, latent capacity to activate and subsequently regenerate the OE following severe injury. Activation requires, and is mediated by, the downregulation of the transcription factor (TF) TP63. In this paper, we describe the cellular processes that drive the nascent stages of HBC activation. The compound phorbol 12-myristate 13-acetate (PMA) induces a rapid loss in TP63 protein and rapid enrichment of HOPX and the nuclear translocation of RELA, previously identified as components of HBC activation. Using bulk RNA sequencing (RNA-seq), we find that PMA-treated HBCs pass through various stages of activation identifiable by transcriptional regulatory signatures that mimic stages identified in vivo. These temporal stages are associated with varying degrees of engraftment and differentiation potential in transplantation assays. Together, these data show that our in vitro HBC activation system models physiologically relevant features of in vivo HBC activation and identifies new candidates for mechanistic testing.


Assuntos
Redes Reguladoras de Genes , Animais , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator de Transcrição RelA/metabolismo , Mucosa Olfatória/metabolismo , Mucosa Olfatória/citologia , Diferenciação Celular/genética , Acetato de Tetradecanoilforbol/farmacologia , Regulação da Expressão Gênica
8.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892263

RESUMO

The cell surface metalloprotease ADAM17 (a disintegrin and metalloprotease 17) and its binding partners iRhom2 and iRhom1 (inactive Rhomboid-like proteins 1 and 2) modulate cell-cell interactions by mediating the release of membrane proteins such as TNFα (Tumor necrosis factor α) and EGFR (Epidermal growth factor receptor) ligands from the cell surface. Most cell types express both iRhoms, though myeloid cells exclusively express iRhom2, and iRhom1 is the main iRhom in the mouse brain. Here, we report that iRhom2 is uniquely expressed in olfactory sensory neurons (OSNs), highly specialized cells expressing one olfactory receptor (OR) from a repertoire of more than a thousand OR genes in mice. iRhom2-/- mice had no evident morphological defects in the olfactory epithelium (OE), yet RNAseq analysis revealed differential expression of a small subset of ORs. Notably, while the majority of ORs remain unaffected in iRhom2-/- OE, OSNs expressing ORs that are enriched in iRhom2-/- OE showed fewer gene expression changes upon odor environmental changes than the majority of OSNs. Moreover, we discovered an inverse correlation between the expression of iRhom2 compared to OSN activity genes and that odor exposure negatively regulates iRhom2 expression. Given that ORs are specialized G-protein coupled receptors (GPCRs) and many GPCRs activate iRhom2/ADAM17, we investigated if ORs could activate iRhom2/ADAM17. Activation of an olfactory receptor that is ectopically expressed in keratinocytes (OR2AT4) by its agonist Sandalore leads to ERK1/2 phosphorylation, likely via an iRhom2/ADAM17-dependent pathway. Taken together, these findings point to a mechanism by which odor stimulation of OSNs activates iRhom2/ADAM17 catalytic activity, resulting in downstream transcriptional changes to the OR repertoire and activity genes, and driving a negative feedback loop to downregulate iRhom2 expression.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Camundongos , Neurônios Receptores Olfatórios/metabolismo , Olfato/fisiologia , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Camundongos Knockout , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Mucosa Olfatória/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Humanos
9.
eNeuro ; 11(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834299

RESUMO

Viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use respiratory epithelial cells as an entry point for infection. Within the nasal cavity, the olfactory epithelium (OE) is particularly sensitive to infections which may lead to olfactory dysfunction. In patients suffering from coronavirus disease 2019, deficits in olfaction have been characterized as a distinctive symptom. Here, we used the K18hACE2 mice to study the spread of SARS-CoV-2 infection and inflammation in the olfactory system (OS) after 7 d of infection. In the OE, we found that SARS-CoV-2 selectively targeted the supporting/sustentacular cells (SCs) and macrophages from the lamina propria. In the brain, SARS-CoV-2 infected some microglial cells in the olfactory bulb (OB), and there was a widespread infection of projection neurons in the OB, piriform cortex (PC), and tubular striatum (TuS). Inflammation, indicated by both elevated numbers and morphologically activated IBA1+ cells (monocyte/macrophage lineages), was preferentially increased in the OE septum, while it was homogeneously distributed throughout the layers of the OB, PC, and TuS. Myelinated OS axonal tracts, the lateral olfactory tract, and the anterior commissure, exhibited decreased levels of 2',3'-cyclic-nucleotide 3'-phosphodiesterase, indicative of myelin defects. Collectively, our work supports the hypothesis that SARS-CoV-2 infected SC and macrophages in the OE and, centrally, microglia and subpopulations of OS neurons. The observed inflammation throughout the OS areas and central myelin defects may account for the long-lasting olfactory deficit.


Assuntos
COVID-19 , Bainha de Mielina , Bulbo Olfatório , Mucosa Olfatória , SARS-CoV-2 , Animais , COVID-19/patologia , COVID-19/complicações , Camundongos , Mucosa Olfatória/patologia , Mucosa Olfatória/virologia , Bulbo Olfatório/patologia , Bulbo Olfatório/virologia , Bainha de Mielina/patologia , Bainha de Mielina/metabolismo , Microglia/patologia , Microglia/metabolismo , Microglia/virologia , Camundongos Transgênicos , Enzima de Conversão de Angiotensina 2/metabolismo , Transtornos do Olfato/patologia , Transtornos do Olfato/virologia , Modelos Animais de Doenças , Masculino , Inflamação/patologia , Inflamação/virologia , Macrófagos/patologia , Feminino
10.
Front Neural Circuits ; 18: 1406218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903957

RESUMO

The olfactory epithelium (OE) is directly exposed to environmental agents entering the nasal cavity, leaving OSNs prone to injury and degeneration. The causes of olfactory dysfunction are diverse and include head trauma, neurodegenerative diseases, and aging, but the main causes are chronic rhinosinusitis (CRS) and viral infections. In CRS and viral infections, reduced airflow due to local inflammation, inflammatory cytokine production, release of degranulated proteins from eosinophils, and cell injury lead to decreased olfactory function. It is well known that injury-induced loss of mature OSNs in the adult OE causes massive regeneration of new OSNs within a few months through the proliferation and differentiation of progenitor basal cells that are subsequently incorporated into olfactory neural circuits. Although normal olfactory function returns after injury in most cases, prolonged olfactory impairment and lack of improvement in olfactory function in some cases poses a major clinical problem. Persistent inflammation or severe injury in the OE results in morphological changes in the OE and respiratory epithelium and decreases the number of mature OSNs, resulting in irreversible loss of olfactory function. In this review, we discuss the histological structure and distribution of the human OE, and the pathogenesis of olfactory dysfunction associated with CRS and viral infection.


Assuntos
Mucosa Olfatória , Humanos , Mucosa Olfatória/patologia , Mucosa Olfatória/metabolismo , Transtornos do Olfato/etiologia , Transtornos do Olfato/fisiopatologia , Transtornos do Olfato/patologia , Neurônios Receptores Olfatórios/fisiologia , Neurônios Receptores Olfatórios/metabolismo , Sinusite/patologia , Sinusite/fisiopatologia , Rinite/patologia , Rinite/fisiopatologia , Rinite/metabolismo , Animais
11.
J Otolaryngol Head Neck Surg ; 53: 19160216241258431, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38888945

RESUMO

IMPORTANCE: Mesenchymal stem cells (MSCs) have the capability of providing ongoing paracrine support to degenerating tissues. Since MSCs can be extracted from a broad range of tissues, their specific surface marker profiles and growth factor secretions can be different. We hypothesized that MSCs derived from different sources might also have different neuroprotective potential. OBJECTIVE: In this study, we extracted MSCs from rodent olfactory mucosa and compared their neuroprotective effects on auditory hair cell survival with MSCs extracted from rodent adipose tissue. METHODS: Organ of Corti explants were dissected from 41 cochlea and incubated with olfactory mesenchymal stem cells (OMSCs) and adipose mesenchymal stem cells (AMSCs). After 72 hours, Corti explants were fixed, stained, and hair cells counted. Growth factor concentrations were determined in the supernatant and cell lysate using Enzyme-Linked Immunosorbent Assay (ELISA). RESULTS: Co-culturing of organ of Corti explants with OMSCs resulted in a significant increase in inner and outer hair cell stereocilia survival, compared to control. Comparisons between both stem cell lines, showed that co-culturing with OMSCs resulted in superior inner and outer hair cell stereocilia survival rates over co-culturing with AMSCs. Assessment of growth factor secretions revealed that the OMSCs secrete significant amounts of insulin-like growth factor 1 (IGF-1). Co-culturing OMSCs with organ of Corti explants resulted in a 10-fold increase in IGF-1 level compared to control, and their secretion was 2 to 3 times higher compared to the AMSCs. CONCLUSIONS: This study has shown that OMSCs may mitigate auditory hair cell stereocilia degeneration. Their neuroprotective effects may, at least partially, be ascribed to their enhanced IGF-1 secretory abilities compared to AMSCs.


Assuntos
Células Ciliadas Auditivas , Fator de Crescimento Insulin-Like I , Células-Tronco Mesenquimais , Animais , Fator de Crescimento Insulin-Like I/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ratos , Células Ciliadas Auditivas/metabolismo , Mucosa Olfatória/citologia , Ensaio de Imunoadsorção Enzimática , Técnicas de Cocultura , Sobrevivência Celular , Células Cultivadas , Tecido Adiposo/citologia , Transplante de Células-Tronco Mesenquimais/métodos
12.
World J Biol Psychiatry ; 25(6): 317-329, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38869228

RESUMO

OBJECTIVES: Neural stem/progenitor cells derived from olfactory neuroepithelium (hereafter olfactory neural stem/progenitor cells, ONSPCs) are emerging as a potential tool in the exploration of psychiatric disorders. The present study intended to assess whether ONSPCs could help discern individuals with schizophrenia (SZ) from non-schizophrenic (NS) subjects by exploring specific cellular and molecular features. METHODS: ONSPCs were collected from 19 in-patients diagnosed with SZ and 31 NS individuals and propagated in basal medium. Mitochondrial ATP production, expression of ß-catenin and cell proliferation, which are described to be altered in SZ, were examined in freshly isolated or newly thawed ONSPCs after a few culture passages. RESULTS: SZ-ONSPCs exhibited a lower mitochondrial ATP production and insensitivity to agents capable of positively or negatively affecting ß-catenin expression with respect to NS-ONSPCs. As to proliferation, it declined in SZ-ONSPCs as the number of culture passages increased compared to a steady level of growth shown by NS-ONSPCs. CONCLUSIONS: The ease and safety of sample collection as well as the differences observed between NS- and SZ-ONSPCs, may lay the groundwork for a new approach to obtain biological material from a large number of living individuals and gain a better understanding of the mechanisms underlying SZ pathophysiology.


Assuntos
Proliferação de Células , Células-Tronco Neurais , Mucosa Olfatória , Esquizofrenia , beta Catenina , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Humanos , Adulto , Masculino , Feminino , beta Catenina/metabolismo , Mucosa Olfatória/citologia , Mucosa Olfatória/metabolismo , Mucosa Olfatória/patologia , Trifosfato de Adenosina/metabolismo , Pessoa de Meia-Idade , Células Cultivadas , Mitocôndrias/metabolismo , Células Neuroepiteliais/metabolismo
13.
Spinal Cord ; 62(8): 429-439, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38849489

RESUMO

STUDY DESIGN: Animal studies OBJECTIVES: To evaluate the therapeutic effect of olfactory mucosa mesenchymal stem cell (OM-MSCs) transplantation in mice with spinal cord injury (SCI) and to explore the mechanism by which OM-MSCs inhibit neuroinflammation and improve SCI. SETTING: Xiangya Hospital, Central South University; Affiliated Hospital of Guangdong Medical University. METHODS: Mice (C57BL/6, female, 6-week-old) were randomly divided into sham, SCI, and SCI + OM-MSC groups. The SCI mouse model was generated using Allen's method. OM-MSCs were immediately delivered to the lateral ventricle after SCI using stereotaxic brain injections. One day prior to injury and on days 1, 5, 7, 14, 21, and 28 post-injury, the Basso Mouse Scale and Rivlin inclined plate tests were performed. Inflammation and microglial polarization were evaluated using histological staining, immunofluorescence, and qRT-PCR. RESULTS: OM-MSCs originating from the neuroectoderm have great potential in the management of SCI owing to their immunomodulatory effects. OM-MSCs administration improved motor function, alleviated inflammation, promoted the transformation of the M1 phenotype of microglia into the M2 phenotype, facilitated axonal regeneration, and relieved spinal cord injury in SCI mice. CONCLUSIONS: OM-MSCs reduced the level of inflammation in the spinal cord tissue, protected neurons, and repaired spinal cord injury by regulating the M1/M2 polarization of microglia.


Assuntos
Transplante de Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Microglia , Mucosa Olfatória , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Mucosa Olfatória/citologia , Microglia/fisiologia , Camundongos , Feminino , Modelos Animais de Doenças , Células-Tronco Mesenquimais/fisiologia , Recuperação de Função Fisiológica/fisiologia , Polaridade Celular/fisiologia
14.
Cancer Cell ; 42(6): 1086-1105.e13, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38788720

RESUMO

The olfactory epithelium undergoes neuronal regeneration from basal stem cells and is susceptible to olfactory neuroblastoma (ONB), a rare tumor of unclear origins. Employing alterations in Rb1/Trp53/Myc (RPM), we establish a genetically engineered mouse model of high-grade metastatic ONB exhibiting a NEUROD1+ immature neuronal phenotype. We demonstrate that globose basal cells (GBCs) are a permissive cell of origin for ONB and that ONBs exhibit cell fate heterogeneity that mimics normal GBC developmental trajectories. ASCL1 loss in RPM ONB leads to emergence of non-neuronal histopathologies, including a POU2F3+ microvillar-like state. Similar to small-cell lung cancer (SCLC), mouse and human ONBs exhibit mutually exclusive NEUROD1 and POU2F3-like states, an immune-cold tumor microenvironment, intratumoral cell fate heterogeneity comprising neuronal and non-neuronal lineages, and cell fate plasticity-evidenced by barcode-based lineage tracing and single-cell transcriptomics. Collectively, our findings highlight conserved similarities between ONB and neuroendocrine tumors with significant implications for ONB classification and treatment.


Assuntos
Linhagem da Célula , Estesioneuroblastoma Olfatório , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Camundongos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Humanos , Estesioneuroblastoma Olfatório/genética , Estesioneuroblastoma Olfatório/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Microambiente Tumoral , Neoplasias Nasais/genética , Neoplasias Nasais/patologia , Mucosa Olfatória/patologia , Mucosa Olfatória/metabolismo , Modelos Animais de Doenças , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
Sci Rep ; 14(1): 11779, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783070

RESUMO

Most terrestrial mammals have a vomeronasal system to detect specific chemicals. The peripheral organ of this system is a vomeronasal organ (VNO) opening to the incisive duct, and its primary integrative center is an accessory olfactory bulb (AOB). The VNO in seals is thought to be degenerated like whales and manatees, unlike otariids, because of the absence of the AOB. However, olfaction plays pivotal roles in seals, and thus we conducted a detailed morphological evaluation of the vomeronasal system of three harbor seals (Phoca vitulina). The VNO lumen was not found, and the incisive duct did not open into the oral cavity but was recognized as a fossa on the anteroventral side of the nasal cavity. This fossa is rich in mucous glands that secrete acidic mucopolysaccharides, which might originate from the vomeronasal glands. The olfactory bulb consisted only of a main olfactory bulb that received projections from the olfactory mucosa, but an AOB region was not evident. These findings clarified that harbor seals do not have a VNO to detect some chemicals, but the corresponding region is a specialized secretory organ.


Assuntos
Cavidade Nasal , Bulbo Olfatório , Phoca , Órgão Vomeronasal , Animais , Órgão Vomeronasal/metabolismo , Órgão Vomeronasal/anatomia & histologia , Phoca/metabolismo , Phoca/anatomia & histologia , Cavidade Nasal/anatomia & histologia , Cavidade Nasal/metabolismo , Bulbo Olfatório/metabolismo , Bulbo Olfatório/anatomia & histologia , Muco/metabolismo , Mucosa Olfatória/metabolismo , Mucosa Olfatória/anatomia & histologia , Masculino , Olfato/fisiologia , Feminino
16.
Phytomedicine ; 129: 155635, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38701541

RESUMO

BACKGROUND: Cerebral ischemia-reperfusion (I/R) injury often leads to neuronal death through persistent neuroinflammatory responses. Recent research has unveiled a unique inflammatory programmed cell death mode known as PANoptosis. However, direct evidence for PANoptosis in ischemic stroke-induced neuronal death has not been established. Although it is widely thought that modulating the balance of microglial phenotypic polarization in cerebral I/R could mitigate neuroinflammation-mediated neuronal death, it remains unknown whether microglial polarization influences PANoptotic neuronal death triggered by cerebral I/R. Our prior study demonstrated that curcumin (CUR) preconditioning could boost the neuroprotective properties of olfactory mucosa-derived mesenchymal stem cells (OM-MSCs) in intracerebral hemorrhage. Yet, the potential neuroprotective capacity of curcumin-pretreated OM-MSCs (CUR-OM-MSCs) on reducing PANoptotic neuronal death during cerebral I/R injury through modulating microglial polarization is uncertain. METHODS: To mimic cerebral I/R injury, We established in vivo models of reversible middle cerebral artery occlusion (MCAO) in C57BL/6 mice and in vitro models of oxygen-glucose deprivation/reoxygenation (OGD/R) in HT22 neurons and BV2 microglia. RESULTS: Our findings indicated that cerebral I/R injury caused PANoptotic neuronal death and triggered microglia to adopt an M1 (pro-inflammatory) phenotype both in vivo and in vitro. Curcumin pretreatment enhanced the proliferation and anti-inflammatory capacity of OM-MSCs. The CUR-OM-MSCs group experienced a more pronounced reduction in PANoptotic neuronal death and a better recovery of neurological function than the OM-MSCs group. Bioinformatic analysis revealed that microRNA-423-5p (miRNA-423-5p) expression was obviously upregulated in CUR-OM-MSCs compared to OM-MSCs. CUR-OM-MSCs treatment induced the switch to an M2 (anti-inflammatory) phenotype in microglia by releasing miRNA-423-5p, which targeted nucleotide-binding oligomerization domain 2 (NOD2), an upstream regulator of NF-kappaB (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) signaling pathways, to attenuate PANoptotic neuronal death resulting from cerebral I/R. CONCLUSION: This results provide the first demonstration of the existence of PANoptotic neuronal death in cerebral I/R conditions. Curcumin preconditioning enhanced the ameliorating effect of OM-MSCs on neuroinflammation mediated by microglia polarization via upregulating the abundance of miRNA-423-5p. This intervention effectively alleviates PANoptotic neuronal death resulting from cerebral I/R. The combination of curcumin with OM-MSCs holds promise as a potentially efficacious treatment for cerebral ischemic stroke in the future.


Assuntos
Curcumina , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Microglia , Fármacos Neuroprotetores , Mucosa Olfatória , Traumatismo por Reperfusão , Curcumina/farmacologia , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Microglia/efeitos dos fármacos , Camundongos , Células-Tronco Mesenquimais/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores/farmacologia , Mucosa Olfatória/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Neurônios/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Modelos Animais de Doenças
17.
Lifestyle Genom ; 17(1): 42-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38749402

RESUMO

Olfactory dysfunction (OD) is not uncommon following viral infection. Herein, we explore the interplay of host genetics with viral correlates in coronavirus disease 2019 (COVID-19)- and long COVID-related OD, and its diagnosis and treatment that remain challenging. Two genes associated with olfaction, UGT2A1 and UGT2A2, appear to be involved in COVID-19-related anosmia, a hallmark symptom of acute infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), particularly in the early stages of the pandemic. SARS-CoV-2 infects olfactory support cells, sustentacular and Bowman gland cells, that surround olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) where the initial step of odor detection takes place. Anosmia primarily arises from the infection of support cells of the OE, followed by the deciliation and disruption of OE integrity, typically without OSN infection. Through the projected axons of OSNs, the virus could theoretically reach the olfactory bulb and brain, but current evidence points against this route. Intriguingly, SARS-CoV-2 infection of support cells leads to profound alterations in the nuclear architecture of OSNs, leading to the downregulation of odorant receptor-related genes, e.g., of Adcy3. Viral factors associated with the development of OD include spike protein aminoacidic changes, e.g., D614G, the first substitution that was selected early during SARS-CoV-2 evolution. More recent variants of the Omicron family are less likely to cause OD compared to Delta or Alpha, although OD has been associated with a milder disease course. OD is one of the most prevalent post-acute neurologic symptoms of SARS-CoV-2 infection. The tens of millions of people worldwide who have lingering problems with OD wait eagerly for effective new treatments that will restore their sense of smell which adds value to their quality of life.


Assuntos
COVID-19 , Transtornos do Olfato , SARS-CoV-2 , COVID-19/complicações , Humanos , Transtornos do Olfato/fisiopatologia , Anosmia/fisiopatologia , Síndrome de COVID-19 Pós-Aguda , Mucosa Olfatória/virologia , Mucosa Olfatória/patologia , Neurônios Receptores Olfatórios
18.
Eur J Neurosci ; 60(1): 3719-3741, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38758670

RESUMO

Across vertebrate species, the olfactory epithelium (OE) exhibits the uncommon feature of lifelong neuronal turnover. Epithelial stem cells give rise to new neurons that can adequately replace dying olfactory receptor neurons (ORNs) during developmental and adult phases and after lesions. To relay olfactory information from the environment to the brain, the axons of the renewed ORNs must reconnect with the olfactory bulb (OB). In Xenopus laevis larvae, we have previously shown that this process occurs between 3 and 7 weeks after olfactory nerve (ON) transection. In the present study, we show that after 7 weeks of recovery from ON transection, two functionally and spatially distinct glomerular clusters are reformed in the OB, akin to those found in non-transected larvae. We also show that the same odourant response tuning profiles observed in the OB of non-transected larvae are again present after 7 weeks of recovery. Next, we show that characteristic odour-guided behaviour disappears after ON transection but recovers after 7-9 weeks of recovery. Together, our findings demonstrate that the olfactory system of larval X. laevis regenerates with high accuracy after ON transection, leading to the recovery of odour-guided behaviour.


Assuntos
Larva , Bulbo Olfatório , Xenopus laevis , Animais , Bulbo Olfatório/fisiologia , Regeneração Nervosa/fisiologia , Odorantes , Traumatismos do Nervo Olfatório , Nervo Olfatório/fisiologia , Mucosa Olfatória/citologia , Mucosa Olfatória/fisiologia , Olfato/fisiologia , Neurônios Receptores Olfatórios/fisiologia
19.
FEBS J ; 291(10): 2094-2097, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38680125

RESUMO

Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a transmembrane protein that, when cleaved by metalloproteases through a process called ectodomain shedding, binds to the EGF receptor (EGFR), activating downstream signaling. The HB-EGF/EGFR pathway is crucial in development and is involved in numerous pathophysiological processes. In this issue of The FEBS Journal, Sireci et al. reveal a previously unexplored function of the HB-EGF/EGFR pathway in promoting neuronal progenitor proliferation and sensory neuron regeneration in the zebrafish olfactory epithelium in response to injury.


Assuntos
Receptores ErbB , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Transdução de Sinais , Peixe-Zebra , Animais , Humanos , Proliferação de Células , Receptores ErbB/metabolismo , Receptores ErbB/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Regeneração Nervosa , Neurônios/metabolismo , Neurônios/patologia , Mucosa Olfatória/metabolismo , Peixe-Zebra/metabolismo
20.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674045

RESUMO

Chronic rhinosinusitis (CRS) is a highly prevalent disease and up to 83% of CRS patients suffer from olfactory dysfunction (OD). Because OD is specifically seen in those CRS patients that present with a type 2 eosinophilic inflammation, it is believed that type 2 inflammatory mediators at the level of the olfactory epithelium are involved in the development of this olfactory loss. However, due to the difficulties in obtaining tissue from the olfactory epithelium, little is known about the true mechanisms of inflammatory OD. Thanks to the COVID-19 pandemic, interest in olfaction has been growing rapidly and several studies have been focusing on disease mechanisms of OD in inflammatory conditions. In this paper, we summarize the most recent data exploring the pathophysiological mechanisms underlying OD in CRS. We also review what is known about the potential capacity of olfactory recovery of the currently available treatments in those patients.


Assuntos
Transtornos do Olfato , Rinossinusite , Humanos , Doença Crônica , Transtornos do Olfato/etiologia , Transtornos do Olfato/fisiopatologia , Mucosa Olfatória/metabolismo , Mucosa Olfatória/patologia , Rinossinusite/complicações , Olfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA