Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.905
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731905

RESUMO

A novel rare mutation in the pore region of Nav1.5 channels (p.L889V) has been found in three unrelated Spanish families that produces quite diverse phenotypic manifestations (Brugada syndrome, conduction disease, dilated cardiomyopathy, sinus node dysfunction, etc.) with variable penetrance among families. We clinically characterized the carriers and recorded the Na+ current (INa) generated by p.L889V and native (WT) Nav1.5 channels, alone or in combination, to obtain further insight into the genotypic-phenotypic relationships in patients carrying SCN5A mutations and in the molecular determinants of the Nav1.5 channel function. The variant produced a strong dominant negative effect (DNE) since the peak INa generated by p.L889V channels expressed in Chinese hamster ovary cells, either alone (-69.4 ± 9.0 pA/pF) or in combination with WT (-62.2 ± 14.6 pA/pF), was significantly (n ≥ 17, p < 0.05) reduced compared to that generated by WT channels alone (-199.1 ± 44.1 pA/pF). The mutation shifted the voltage dependence of channel activation and inactivation to depolarized potentials, did not modify the density of the late component of INa, slightly decreased the peak window current, accelerated the recovery from fast and slow inactivation, and slowed the induction kinetics of slow inactivation, decreasing the fraction of channels entering this inactivated state. The membrane expression of p.L889V channels was low, and in silico molecular experiments demonstrated profound alterations in the disposition of the pore region of the mutated channels. Despite the mutation producing a marked DNE and reduction in the INa and being located in a critical domain of the channel, its penetrance and expressivity are quite variable among the carriers. Our results reinforce the argument that the incomplete penetrance and phenotypic variability of SCN5A loss-of-function mutations are the result of a combination of multiple factors, making it difficult to predict their expressivity in the carriers despite the combination of clinical, genetic, and functional studies.


Assuntos
Cricetulus , Canal de Sódio Disparado por Voltagem NAV1.5 , Linhagem , Penetrância , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Humanos , Animais , Células CHO , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Espanha , Mutação com Perda de Função , Fenótipo , Mutação
2.
Proc Natl Acad Sci U S A ; 121(20): e2316271121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709929

RESUMO

Random mutagenesis, including when it leads to loss of gene function, is a key mechanism enabling microorganisms' long-term adaptation to new environments. However, loss-of-function mutations are often deleterious, triggering, in turn, cellular stress and complex homeostatic stress responses, called "allostasis," to promote cell survival. Here, we characterize the differential impacts of 65 nonlethal, deleterious single-gene deletions on Escherichia coli growth in three different growth environments. Further assessments of select mutants, namely, those bearing single adenosine triphosphate (ATP) synthase subunit deletions, reveal that mutants display reorganized transcriptome profiles that reflect both the environment and the specific gene deletion. We also find that ATP synthase α-subunit deleted (ΔatpA) cells exhibit elevated metabolic rates while having slower growth compared to wild-type (wt) E. coli cells. At the single-cell level, compared to wt cells, individual ΔatpA cells display near normal proliferation profiles but enter a postreplicative state earlier and exhibit a distinct senescence phenotype. These results highlight the complex interplay between genomic diversity, adaptation, and stress response and uncover an "aging cost" to individual bacterial cells for maintaining population-level resilience to environmental and genetic stress; they also suggest potential bacteriostatic antibiotic targets and -as select human genetic diseases display highly similar phenotypes, - a bacterial origin of some human diseases.


Assuntos
Escherichia coli , Estresse Fisiológico , Escherichia coli/genética , Escherichia coli/metabolismo , Estresse Fisiológico/genética , Mutação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Transcriptoma , Regulação Bacteriana da Expressão Gênica , Adaptação Fisiológica/genética , Mutação com Perda de Função
3.
Science ; 384(6695): 573-579, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696577

RESUMO

Neurons on the left and right sides of the nervous system often show asymmetric properties, but how such differences arise is poorly understood. Genetic screening in zebrafish revealed that loss of function of the transmembrane protein Cachd1 resulted in right-sided habenula neurons adopting left-sided identity. Cachd1 is expressed in neuronal progenitors, functions downstream of asymmetric environmental signals, and influences timing of the normally asymmetric patterns of neurogenesis. Biochemical and structural analyses demonstrated that Cachd1 can bind simultaneously to Lrp6 and Frizzled family Wnt co-receptors. Consistent with this, lrp6 mutant zebrafish lose asymmetry in the habenulae, and epistasis experiments support a role for Cachd1 in modulating Wnt pathway activity in the brain. These studies identify Cachd1 as a conserved Wnt receptor-interacting protein that regulates lateralized neuronal identity in the zebrafish brain.


Assuntos
Habenula , Neurogênese , Neurônios , Via de Sinalização Wnt , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Habenula/metabolismo , Habenula/embriologia , Neurônios/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Receptores Frizzled/metabolismo , Receptores Frizzled/genética , Receptores Wnt/metabolismo , Receptores Wnt/genética , Encéfalo/metabolismo , Mutação com Perda de Função , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
4.
Fly (Austin) ; 18(1): 2352938, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38741287

RESUMO

To identify genes required for brain growth, we took an RNAi knockdown reverse genetic approach in Drosophila. One potential candidate isolated from this effort is the anti-lipogenic gene adipose (adp). Adp has an established role in the negative regulation of lipogenesis in the fat body of the fly and adipose tissue in mammals. While fat is key to proper development in general, adp has not been investigated during brain development. Here, we found that RNAi knockdown of adp in neuronal stem cells and neurons results in reduced brain lobe volume and sought to replicate this with a mutant fly. We generated a novel adp mutant that acts as a loss-of-function mutant based on buoyancy assay results. We found that despite a change in fat content in the body overall and a decrease in the number of larger (>5 µm) brain lipid droplets, there was no change in the brain lobe volume of mutant larvae. Overall, our work describes a novel adp mutant that can functionally replace the long-standing adp60 mutant and shows that the adp gene has no obvious involvement in brain growth.


Assuntos
Encéfalo , Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Mutação com Perda de Função , Interferência de RNA , Neurônios/metabolismo , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Drosophila/genética , Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Mutação
5.
mBio ; 15(5): e0060724, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38572992

RESUMO

Salmonella enterica serovar Typhi and Paratyphi A are the cause of typhoid and paratyphoid fever in humans, which are systemic life-threatening illnesses. Both serovars are exclusively adapted to the human host, where they can cause life-long persistent infection. A distinct feature of these serovars is the presence of a relatively high number of degraded coding sequences coding for metabolic pathways, most likely a consequence of their adaptation to a single host. As a result of convergent evolution, these serovars shared many of the degraded coding sequences although often affecting different genes in the same metabolic pathway. However, there are several coding sequences that appear intact in one serovar while clearly degraded in the other, suggesting differences in their metabolic capabilities. Here, we examined the functionality of metabolic pathways that appear intact in S. Typhi but that show clear signs of degradation in S. Paratyphi A. We found that, in all cases, the existence of single amino acid substitutions in S. Typhi metabolic enzymes, transporters, or transcription regulators resulted in the inactivation of these metabolic pathways. Thus, the inability of S. Typhi to metabolize Glucose-6-Phosphate or 3-phosphoglyceric acid is due to the silencing of the expression of the genes encoding the transporters for these compounds due to point mutations in the transcriptional regulatory proteins. In contrast, its inability to utilize glucarate or galactarate is due to the presence of point mutations in the transporter and enzymes necessary for the metabolism of these sugars. These studies provide additional support for the concept of adaptive convergent evolution of these two human-adapted S. enterica serovars and highlight a limitation of bioinformatic approaches to predict metabolic capabilities. IMPORTANCE: Salmonella enterica serovar Typhi and Paratyphi A are the cause of typhoid and paratyphoid fever in humans, which are systemic life-threatening illnesses. Both serovars can only infect the human host, where they can cause life-long persistent infection. Because of their adaptation to the human host, these bacterial pathogens have changed their metabolism, leading to the loss of their ability to utilize certain nutrients. In this study we examined the functionality of metabolic pathways that appear intact in S. Typhi but that show clear signs of degradation in S. Paratyphi A. We found that, in all cases, the existence of single amino acid substitutions in S. Typhi metabolic enzymes, transporters, or transcription regulators resulted in the inactivation of these metabolic pathways. These studies provide additional support for the concept of adaptive convergent evolution of these two human-adapted S. enterica serovars.


Assuntos
Redes e Vias Metabólicas , Salmonella typhi , Redes e Vias Metabólicas/genética , Salmonella typhi/genética , Salmonella typhi/metabolismo , Humanos , Genoma Bacteriano , Salmonella paratyphi A/genética , Salmonella paratyphi A/metabolismo , Mutação com Perda de Função , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Febre Tifoide/microbiologia , Sorogrupo
6.
BMC Nephrol ; 25(1): 139, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649831

RESUMO

BACKGROUND: Renal tubular dysgenesis (RTD) is a severe disorder with poor prognosis significantly impacting the proximal tubules of the kidney while maintaining an anatomically normal gross structure. The genetic origin of RTD, involving variants in the ACE, REN, AGT, and AGTR1 genes, affects various enzymes or receptors within the Renin angiotensin system (RAS). This condition manifests prenatally with oligohydramninos and postnatally with persistent anuria, severe refractory hypotension, and defects in skull ossification. CASE PRESENTATION: In this report, we describe a case of a female patient who, despite receiving multi vasopressor treatment, experienced persistent hypotension, ultimately resulting in early death at five days of age. While there was a history of parental consanguinity, no reported family history of renal disease existed. Blood samples from the parents and the remaining DNA sample of the patient underwent Whole Genome Sequencing (WGS). The genetic analysis revealed a rare homozygous loss of function variant (NM_000685.5; c.415C > T; p.Arg139*) in the Angiotensin II Receptor Type 1 (AGTR1) gene. CONCLUSION: This case highlights the consequence of loss-of-function variants in AGTR1 gene leading to RTD, which is characterized by high mortality rate at birth or during the neonatal period. Furthermore, we provide a comprehensive review of previously reported variants in the AGTR1 gene, which is the least encountered genetic cause of RTD, along with their associated clinical features.


Assuntos
Túbulos Renais Proximais/anormalidades , Receptor Tipo 1 de Angiotensina , Anormalidades Urogenitais , Humanos , Feminino , Receptor Tipo 1 de Angiotensina/genética , Recém-Nascido , Mutação com Perda de Função , Evolução Fatal , Hipotensão/genética
8.
Genome Med ; 16(1): 64, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671509

RESUMO

BACKGROUND: Genetic variants that severely alter protein products (e.g. nonsense, frameshift) are often associated with disease. For some genes, these predicted loss-of-function variants (pLoFs) are observed throughout the gene, whilst in others, they occur only at specific locations. We hypothesised that, for genes linked with monogenic diseases that display incomplete penetrance, pLoF variants present in apparently unaffected individuals may be limited to regions where pLoFs are tolerated. To test this, we investigated whether pLoF location could explain instances of incomplete penetrance of variants expected to be pathogenic for Mendelian conditions. METHODS: We used exome sequence data in 454,773 individuals in the UK Biobank (UKB) to investigate the locations of pLoFs in a population cohort. We counted numbers of unique pLoF, missense, and synonymous variants in UKB in each quintile of the coding sequence (CDS) of all protein-coding genes and clustered the variants using Gaussian mixture models. We limited the analyses to genes with ≥ 5 variants of each type (16,473 genes). We compared the locations of pLoFs in UKB with all theoretically possible pLoFs in a transcript, and pathogenic pLoFs from ClinVar, and performed simulations to estimate the false-positive rate of non-uniformly distributed variants. RESULTS: For most genes, all variant classes fell into clusters representing broadly uniform variant distributions, but genes in which haploinsufficiency causes developmental disorders were less likely to have uniform pLoF distribution than other genes (P < 2.2 × 10-6). We identified a number of genes, including ARID1B and GATA6, where pLoF variants in the first quarter of the CDS were rescued by the presence of an alternative translation start site and should not be reported as pathogenic. For other genes, such as ODC1, pLoFs were located approximately uniformly across the gene, but pathogenic pLoFs were clustered only at the end, consistent with a gain-of-function disease mechanism. CONCLUSIONS: Our results suggest the potential benefits of localised constraint metrics and that the location of pLoF variants should be considered when interpreting variants.


Assuntos
Mutação com Perda de Função , Penetrância , Humanos , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Exoma , Análise por Conglomerados , Sequenciamento do Exoma
9.
Cell Rep ; 43(4): 114104, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602872

RESUMO

Clinical evidence has revealed that high-level activation of NRF2 caused by somatic mutations in NRF2 (NFE2L2) is frequently detected in esophageal squamous cell carcinoma (ESCC), whereas that caused by somatic mutations in KEAP1, a negative regulator of NRF2, is not. Here, we aspire to generate a mouse model of NRF2-activated ESCC using the cancer-derived NRF2L30F mutation and cancer driver mutant TRP53R172H. Concomitant expression of NRF2L30F and TRP53R172H results in formation of NRF2-activated ESCC-like lesions. In contrast, while squamous-cell-specific deletion of KEAP1 induces similar NRF2 hyperactivation, the loss of KEAP1 combined with expression of TRP53R172H does not elicit the formation of ESCC-like lesions. Instead, KEAP1-deleted cells disappear from the esophageal epithelium over time. These findings demonstrate that, while cellular NRF2 levels are similarly induced, NRF2 gain of function and KEAP1 loss of function elicits distinct fates of squamous cells. The NRF2L30F mutant mouse model developed here will be instrumental in elucidating the mechanistic basis leading to NRF2-activated ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Mutação com Ganho de Função , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Mutação com Perda de Função
10.
Nat Immunol ; 25(5): 764-777, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609546

RESUMO

The linear ubiquitin assembly complex (LUBAC) consists of HOIP, HOIL-1 and SHARPIN and is essential for proper immune responses. Individuals with HOIP and HOIL-1 deficiencies present with severe immunodeficiency, autoinflammation and glycogen storage disease. In mice, the loss of Sharpin leads to severe dermatitis due to excessive keratinocyte cell death. Here, we report two individuals with SHARPIN deficiency who manifest autoinflammatory symptoms but unexpectedly no dermatological problems. Fibroblasts and B cells from these individuals showed attenuated canonical NF-κB responses and a propensity for cell death mediated by TNF superfamily members. Both SHARPIN-deficient and HOIP-deficient individuals showed a substantial reduction of secondary lymphoid germinal center B cell development. Treatment of one SHARPIN-deficient individual with anti-TNF therapies led to complete clinical and transcriptomic resolution of autoinflammation. These findings underscore the critical function of the LUBAC as a gatekeeper for cell death-mediated immune dysregulation in humans.


Assuntos
Síndromes de Imunodeficiência , Proteínas do Tecido Nervoso , Ubiquitinas , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Feminino , Masculino , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/genética , Inflamação/imunologia , Inflamação/genética , Linfócitos B/imunologia , Mutação com Perda de Função , Fibroblastos/metabolismo , Fibroblastos/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Camundongos , Alelos
11.
Arch Biochem Biophys ; 756: 110000, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621442

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive degeneration of motor neurons, resulting in respiratory failure and mortality within 3-5 years. Mutations in the Angiogenin (ANG) cause loss of ribonucleolytic and nuclear translocation activities, contributing to ALS pathogenesis. This study focused on investigating two uncharacterized ANG mutations, T11S and R122H, newly identified in the Project Mine consortium. Using extensive computational analysis, including structural modeling and microsecond-timescale molecular dynamics (MD) simulations, we observed conformational changes in the catalytic residue His114 of ANG induced by T11S and R122H mutations. These alterations impaired ribonucleolytic activity, as inferred through molecular docking and binding free energy calculations. Gibbs free energy landscape and residue-residue interaction network analysis further supported our findings, revealing the energetic states and allosteric pathway from the mutated site to His114. Additionally, we assessed the binding of NCI-65828, an inhibitor of ribonucleolytic activity of ANG, and found reduced effectiveness in binding to T11S and R122H mutants when His114 assumed a non-native conformation. This highlights the crucial role of His114 and its association with ALS. Elucidating the relationship between physical structure and functional dynamics of frequently mutated ANG mutants is essential for understanding ALS pathogenesis and developing more effective therapeutic interventions.


Assuntos
Esclerose Lateral Amiotrófica , Simulação de Dinâmica Molecular , Ribonuclease Pancreático , Ribonuclease Pancreático/química , Ribonuclease Pancreático/genética , Ribonuclease Pancreático/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Humanos , Mutação com Perda de Função , Simulação de Acoplamento Molecular , Mutação , Conformação Proteica , Termodinâmica
12.
JCI Insight ; 9(9)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564302

RESUMO

Loss-of-function (LoF) variants in the filaggrin (FLG) gene are the strongest known genetic risk factor for atopic dermatitis (AD), but the impact of these variants on AD outcomes is poorly understood. We comprehensively identified genetic variants through targeted region sequencing of FLG in children participating in the Mechanisms of Progression of Atopic Dermatitis to Asthma in Children cohort. Twenty FLG LoF variants were identified, including 1 novel variant and 9 variants not previously associated with AD. FLG LoF variants were found in the cohort. Among these children, the presence of 1 or more FLG LoF variants was associated with moderate/severe AD compared with those with mild AD. Children with FLG LoF variants had a higher SCORing for Atopic Dermatitis (SCORAD) and higher likelihood of food allergy within the first 2.5 years of life. LoF variants were associated with higher transepidermal water loss (TEWL) in both lesional and nonlesional skin. Collectively, our study identifies established and potentially novel AD-associated FLG LoF variants and associates FLG LoF variants with higher TEWL in lesional and nonlesional skin.


Assuntos
Dermatite Atópica , Proteínas Filagrinas , Proteínas de Filamentos Intermediários , Mutação com Perda de Função , Fenótipo , Dermatite Atópica/genética , Dermatite Atópica/patologia , Humanos , Masculino , Feminino , Pré-Escolar , Estudos Prospectivos , Lactente , Proteínas de Filamentos Intermediários/genética , Predisposição Genética para Doença , Criança , Hipersensibilidade Alimentar/genética
13.
J Biol Chem ; 300(4): 107124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432637

RESUMO

Rab35 (Ras-associated binding protein) is a small GTPase that regulates endosomal membrane trafficking and functions in cell polarity, cytokinesis, and growth factor signaling. Altered Rab35 function contributes to progression of glioblastoma, defects in primary cilia formation, and altered cytokinesis. Here, we report a pediatric patient with global developmental delay, hydrocephalus, a Dandy-Walker malformation, axial hypotonia with peripheral hypertonia, visual problems, and conductive hearing impairment. Exome sequencing identified a homozygous missense variant in the GTPase fold of RAB35 (c.80G>A; p.R27H) as the most likely candidate. Functional analysis of the R27H-Rab35 variant protein revealed enhanced interaction with its guanine-nucleotide exchange factor, DENND1A and decreased interaction with a known effector, MICAL1, indicating that the protein is in an inactive conformation. Cellular expression of the variant drives the activation of Arf6, a small GTPase under negative regulatory control of Rab35. Importantly, variant expression leads to delayed cytokinesis and altered length, number, and Arl13b composition of primary cilia, known factors in neurodevelopmental disease. Our findings provide evidence of altered Rab35 function as a causative factor of a neurodevelopmental disorder.


Assuntos
Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Proteínas rab de Ligação ao GTP , Humanos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Fator 6 de Ribosilação do ADP , Mutação com Perda de Função , Citocinese/genética , Masculino , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Cílios/metabolismo , Cílios/genética , Cílios/patologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Feminino
14.
Nature ; 628(8008): 620-629, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509369

RESUMO

Epstein-Barr virus (EBV) infection can engender severe B cell lymphoproliferative diseases1,2. The primary infection is often asymptomatic or causes infectious mononucleosis (IM), a self-limiting lymphoproliferative disorder3. Selective vulnerability to EBV has been reported in association with inherited mutations impairing T cell immunity to EBV4. Here we report biallelic loss-of-function variants in IL27RA that underlie an acute and severe primary EBV infection with a nevertheless favourable outcome requiring a minimal treatment. One mutant allele (rs201107107) was enriched in the Finnish population (minor allele frequency = 0.0068) and carried a high risk of severe infectious mononucleosis when homozygous. IL27RA encodes the IL-27 receptor alpha subunit5,6. In the absence of IL-27RA, phosphorylation of STAT1 and STAT3 by IL-27 is abolished in T cells. In in vitro studies, IL-27 exerts a synergistic effect on T-cell-receptor-dependent T cell proliferation7 that is deficient in cells from the patients, leading to impaired expansion of potent anti-EBV effector cytotoxic CD8+ T cells. IL-27 is produced by EBV-infected B lymphocytes and an IL-27RA-IL-27 autocrine loop is required for the maintenance of EBV-transformed B cells. This potentially explains the eventual favourable outcome of the EBV-induced viral disease in patients with IL-27RA deficiency. Furthermore, we identified neutralizing anti-IL-27 autoantibodies in most individuals who developed sporadic infectious mononucleosis and chronic EBV infection. These results demonstrate the critical role of IL-27RA-IL-27 in immunity to EBV, but also the hijacking of this defence by EBV to promote the expansion of infected transformed B cells.


Assuntos
Infecções por Vírus Epstein-Barr , Interleucina-27 , Receptores de Interleucina , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem , Alelos , Linfócitos B/patologia , Linfócitos B/virologia , Linfócitos T CD8-Positivos/patologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/terapia , Finlândia , Frequência do Gene , Herpesvirus Humano 4 , Homozigoto , Mononucleose Infecciosa/complicações , Mononucleose Infecciosa/genética , Mononucleose Infecciosa/terapia , Interleucina-27/imunologia , Interleucina-27/metabolismo , Mutação com Perda de Função , Receptores de Interleucina/deficiência , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Resultado do Tratamento
15.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38512324

RESUMO

The conserved MRE11-RAD50-NBS1/Xrs2 complex is crucial for DNA break metabolism and genome maintenance. Although hypomorphic Rad50 mutation mice showed normal meiosis, both null and hypomorphic rad50 mutation yeast displayed impaired meiosis recombination. However, the in vivo function of Rad50 in mammalian germ cells, particularly its in vivo role in the resection of meiotic double strand break (DSB) ends at the molecular level remains elusive. Here, we have established germ cell-specific Rad50 knockout mouse models to determine the role of Rad50 in mitosis and meiosis of mammalian germ cells. We find that Rad50-deficient spermatocytes exhibit defective meiotic recombination and abnormal synapsis. Mechanistically, using END-seq, we demonstrate reduced DSB formation and abnormal DSB end resection occurs in mutant spermatocytes. We further identify that deletion of Rad50 in gonocytes leads to complete loss of spermatogonial stem cells due to genotoxic stress. Taken together, our results reveal the essential role of Rad50 in mammalian germ cell meiosis and mitosis, and provide in vivo views of RAD50 function in meiotic DSB formation and end resection at the molecular level.


Assuntos
Quebras de DNA de Cadeia Dupla , Animais , Masculino , Camundongos , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Mutação com Perda de Função , Mamíferos/metabolismo , Meiose/genética , Mutação , Espermatócitos/metabolismo , Células Germinativas/metabolismo , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo
16.
Hum Genet ; 143(3): 455-469, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526744

RESUMO

Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokinesis 4 (DOCK4) through the activation of RAC1. Here, we clinically describe 7 individuals (6 males and one female) with variants in DOCK4 and overlapping phenotype of mild to severe global developmental delay. Additional symptoms include coordination or gait abnormalities, microcephaly, nonspecific brain malformations, hypotonia and seizures. Four individuals carry missense variants (three of them detected de novo) and three individuals carry null variants (two of them maternally inherited). Molecular modeling of the heterozygous missense variants suggests that the majority of them affect the globular structure of DOCK4. In vitro functional expression studies in transfected Neuro-2A cells showed that all missense variants impaired neurite outgrowth. Furthermore, Dock4 knockout Neuro-2A cells also exhibited defects in promoting neurite outgrowth. Our results, including clinical, molecular and functional data, suggest that loss-of-function variants in DOCK4 probable cause a variable spectrum of a novel neurodevelopmental disorder with microcephaly.


Assuntos
Proteínas Ativadoras de GTPase , Heterozigoto , Microcefalia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Humanos , Microcefalia/genética , Feminino , Masculino , Pré-Escolar , Proteínas Ativadoras de GTPase/genética , Criança , Transtornos do Neurodesenvolvimento/genética , Mutação com Perda de Função , Animais , Deficiências do Desenvolvimento/genética , Camundongos , Lactente , Fenótipo , Adolescente
17.
Science ; 383(6686): eadh4059, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38422122

RESUMO

We describe humans with rare biallelic loss-of-function PTCRA variants impairing pre-α T cell receptor (pre-TCRα) expression. Low circulating naive αß T cell counts at birth persisted over time, with normal memory αß and high γδ T cell counts. Their TCRα repertoire was biased, which suggests that noncanonical thymic differentiation pathways can rescue αß T cell development. Only a minority of these individuals were sick, with infection, lymphoproliferation, and/or autoimmunity. We also report that 1 in 4000 individuals from the Middle East and South Asia are homozygous for a common hypomorphic PTCRA variant. They had normal circulating naive αß T cell counts but high γδ T cell counts. Although residual pre-TCRα expression drove the differentiation of more αß T cells, autoimmune conditions were more frequent in these patients compared with the general population.


Assuntos
Autoimunidade , Linfócitos Intraepiteliais , Glicoproteínas de Membrana , Receptores de Antígenos de Linfócitos T alfa-beta , Humanos , Autoimunidade/genética , Diferenciação Celular , Homozigoto , Linfócitos Intraepiteliais/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Glicoproteínas de Membrana/genética , Mutação com Perda de Função , Contagem de Linfócitos , Alelos , Infecções/imunologia , Transtornos Linfoproliferativos/imunologia , Linhagem , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
18.
Genet Med ; 26(5): 101097, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38334070

RESUMO

PURPOSE: Pathogenic variants of FIG4 generate enlarged lysosomes and neurological and developmental disorders. To identify additional genes regulating lysosomal volume, we carried out a genome-wide activation screen to detect suppression of enlarged lysosomes in FIG4-/- cells. METHODS: The CRISPR-a gene activation screen utilized sgRNAs from the promoters of protein-coding genes. Fluorescence-activated cell sorting separated cells with correction of the enlarged lysosomes from uncorrected cells. Patient variants of SLC12A9 were identified by exome or genome sequencing and studied by segregation analysis and clinical characterization. RESULTS: Overexpression of SLC12A9, a solute co-transporter, corrected lysosomal swelling in FIG4-/- cells. SLC12A9 (NP_064631.2) colocalized with LAMP2 at the lysosome membrane. Biallelic variants of SLC12A9 were identified in 3 unrelated probands with neurodevelopmental disorders. Common features included intellectual disability, skeletal and brain structural abnormalities, congenital heart defects, and hypopigmented hair. Patient 1 was homozygous for nonsense variant p.(Arg615∗), patient 2 was compound heterozygous for p.(Ser109Lysfs∗20) and a large deletion, and proband 3 was compound heterozygous for p.(Glu290Glyfs∗36) and p.(Asn552Lys). Fibroblasts from proband 1 contained enlarged lysosomes that were corrected by wild-type SLC12A9 cDNA. Patient variant p.(Asn552Lys) failed to correct the lysosomal defect. CONCLUSION: Impaired function of SLC12A9 results in enlarged lysosomes and a recessive disorder with a recognizable neurodevelopmental phenotype.


Assuntos
Mutação com Perda de Função , Lisossomos , Transtornos do Neurodesenvolvimento , Humanos , Lisossomos/metabolismo , Lisossomos/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Masculino , Mutação com Perda de Função/genética , Feminino , Alelos , Criança , Pré-Escolar , Lactente , Fenótipo , Linhagem
19.
Am J Med Genet A ; 194(6): e63550, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38297485

RESUMO

Klippel-Feil syndrome (KFS) has a genetically heterogeneous phenotype with six known genes, exhibiting both autosomal dominant and autosomal recessive inheritance patterns. PUF60 is a nucleic acid-binding protein, which is involved in a number of nuclear processes, including pre-mRNA splicing, apoptosis, and transcription regulation. Pathogenic variants in this gene have been described in Verheij syndrome due to either 8q24.3 microdeletion or PUF60 single-nucleotide variants. PUF60-associated conditions usually include intellectual disability, among other findings, some overlapping KFS; however, PUF60 is not classically referred to as a KFS gene. Here, we describe a 6-year-old female patient with clinically diagnosed KFS and normal cognition, who harbors a heterozygous de novo variant in the PUF60 gene (c.1179del, p.Ile394Serfs*7). This is a novel frameshift variant, which is predicted to result in a premature stop codon. Clinically, our patient demonstrates a pattern of malformations that matches reported cases of PUF60 variants; however, unlike most others, she has no clear learning difficulties. In light of these findings, we propose that PUF60 should be considered in the differential diagnosis of KFS and that normal cognition should not exclude its testing.


Assuntos
Síndrome de Klippel-Feil , Fatores de Processamento de RNA , Humanos , Feminino , Criança , Diagnóstico Diferencial , Fatores de Processamento de RNA/genética , Síndrome de Klippel-Feil/genética , Síndrome de Klippel-Feil/diagnóstico , Síndrome de Klippel-Feil/fisiopatologia , Síndrome de Klippel-Feil/patologia , Fenótipo , Cognição , Proteínas Repressoras/genética , Mutação com Perda de Função/genética , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia
20.
Eur J Hum Genet ; 32(5): 558-566, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374468

RESUMO

Biallelic loss-of-function variants in TBC1D2B have been reported in five subjects with cognitive impairment and seizures with or without gingival overgrowth. TBC1D2B belongs to the family of Tre2-Bub2-Cdc16 (TBC)-domain containing RAB-specific GTPase activating proteins (TBC/RABGAPs). Here, we report five new subjects with biallelic TBC1D2B variants, including two siblings, and delineate the molecular and clinical features in the ten subjects known to date. One of the newly reported subjects was compound heterozygous for the TBC1D2B variants c.2584C>T; p.(Arg862Cys) and c.2758C>T; p.(Arg920*). In subject-derived fibroblasts, TBC1D2B mRNA level was similar to control cells, while the TBC1D2B protein amount was reduced by about half. In one of two siblings with a novel c.360+1G>T splice site variant, TBC1D2B transcript analysis revealed aberrantly spliced mRNAs and a drastically reduced TBC1D2B mRNA level in leukocytes. The molecular spectrum included 12 different TBC1D2B variants: seven nonsense, three frameshifts, one splice site, and one missense variant. Out of ten subjects, three had fibrous dysplasia of the mandible, two of which were diagnosed as cherubism. Most subjects developed gingival overgrowth. Half of the subjects had developmental delay. Seizures occurred in 80% of the subjects. Six subjects showed a progressive disease with mental deterioration. Brain imaging revealed cerebral and/or cerebellar atrophy with or without lateral ventricle dilatation. The TBC1D2B disorder is a progressive neurological disease with gingival overgrowth and abnormal mandible morphology. As TBC1D2B has been shown to positively regulate autophagy, defects in autophagy and the endolysosomal system could be associated with neuronal dysfunction and the neurodegenerative disease in the affected individuals.


Assuntos
Proteínas Ativadoras de GTPase , Crescimento Excessivo da Gengiva , Adulto , Feminino , Humanos , Crescimento Excessivo da Gengiva/genética , Crescimento Excessivo da Gengiva/patologia , Proteínas Ativadoras de GTPase/genética , Mutação com Perda de Função , Linhagem , Convulsões/genética , Convulsões/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA