Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.261
Filtrar
1.
Genome Biol ; 25(1): 250, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350172

RESUMO

BACKGROUND: Root nodule symbiosis (RNS) is a fascinating evolutionary event. Given that limited genes conferring the evolution of RNS in Leguminosae have been functionally validated, the genetic basis of the evolution of RNS remains largely unknown. Identifying the genes involved in the evolution of RNS will help to reveal the mystery. RESULTS: Here, we investigate the gene loss event during the evolution of RNS in Leguminosae through phylogenomic and synteny analyses in 48 species including 16 Leguminosae species. We reveal that loss of the Lateral suppressor gene, a member of the GRAS-domain protein family, is associated with the evolution of RNS in Leguminosae. Ectopic expression of the Lateral suppressor (Ls) gene from tomato and its homolog MONOCULM 1 (MOC1) and Os7 from rice in soybean and Medicago truncatula result in almost completely lost nodulation capability. Further investigation shows that Lateral suppressor protein, Ls, MOC1, and Os7 might function through an interaction with NODULATION SIGNALING PATHWAY 2 (NSP2) and CYCLOPS to repress the transcription of NODULE INCEPTION (NIN) to inhibit the nodulation in Leguminosae. Additionally, we find that the cathepsin H (CTSH), a conserved protein, could interact with Lateral suppressor protein, Ls, MOC1, and Os7 and affect the nodulation. CONCLUSIONS: This study sheds light on uncovering the genetic basis of the evolution of RNS in Leguminosae and suggests that gene loss plays an essential role.


Assuntos
Evolução Molecular , Fabaceae , Filogenia , Proteínas de Plantas , Nódulos Radiculares de Plantas , Simbiose , Simbiose/genética , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fabaceae/genética , Fabaceae/microbiologia , Regulação da Expressão Gênica de Plantas , Nodulação/genética , Medicago truncatula/genética , Medicago truncatula/microbiologia , Genes de Plantas , Glycine max/genética , Glycine max/microbiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-39235833

RESUMO

Three bacterial strains, 1AS14IT, 1AS12I and 6AS6, isolated from root nodules of Acacia saligna, were characterized using a polyphasic approach. Phylogenetic analysis based on rrs sequences placed all three strains within the Rhizobium leguminosarum complex. Further phylogeny, based on 1 756 bp sequences of four concatenated housekeeping genes (recA, atpD, glnII and gyrB), revealed their distinction from known rhizobia species of the R. leguminosarum complex (Rlc), forming a distinct clade. The closest related species, identified as Rhizobium laguerreae, with a sequence identity of 96.4% based on concatenated recA-atpD-glnII-gyrB sequences. The type strain, 1AS14IT, showed average nucleotide identity (ANI) values of 94.9, 94.3 and 94.1% and DNA-DNA hybridization values of 56.1, 57.4 and 60.0% with the type strains of closest known species: R. laguerreae, Rhizobium acaciae and 'Rhizobium indicum', respectively. Phylogenomic analyses using 81 up-to-date bacteria core genes and the Type (Strain) Genome Server pipeline further supported the uniqueness of strains 1AS14IT, 1AS12I and 6AS6. The relatedness of the novel strains to NCBI unclassified Rhizobium sp. (396 genomes) and metagenome-derived genomes showed ANI values from 76.7 to 94.8% with a species-level cut-off of 96%, suggesting that strains 1AS14I, 1AS12I and 6AS6 are a distinct lineage. Additionally, differentiation of strains 1AS14IT, 1AS12I and 6AS6 from their closest phylogenetic neighbours was achieved using phenotypic, physiological and fatty acid content analyses. Based on the genomic, phenotypic and biochemical data, we propose the establishment of a novel rhizobial species, Rhizobium aouanii sp. nov., with strain 1AS14IT designated as the type strain (=DSM 113914T=LMG 33206T). This study contributes to the understanding of microbial diversity in nitrogen-fixing symbioses, specifically within Acacia saligna ecosystems in Tunisia.


Assuntos
Acacia , Técnicas de Tipagem Bacteriana , DNA Bacteriano , Ácidos Graxos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Rhizobium , Nódulos Radiculares de Plantas , Análise de Sequência de DNA , Rhizobium/genética , Rhizobium/classificação , Rhizobium/isolamento & purificação , DNA Bacteriano/genética , Acacia/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , Tunísia , Nódulos Radiculares de Plantas/microbiologia , Genes Essenciais/genética , Genes Bacterianos , Composição de Bases , Simbiose
3.
Proc Natl Acad Sci U S A ; 121(37): e2322217121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39240965

RESUMO

Root exudates are known signaling agents that influence legume root nodulation, but the molecular mechanisms for nonflavonoid molecules remain largely unexplored. The number of soybean root nodules during the initial growth phase shows substantial discrepancies at distinct developmental junctures. Using a combination of metabolomics analyses on root exudates and nodulation experiments, we identify a pivotal role for certain root exudates during the rapid growth phase in promoting nodulation. Phenoxyacetic acid (POA) was found to activate the expression of GmGA2ox10 and thereby facilitate rhizobial infection and the formation of infection threads. Furthermore, POA exerts regulatory control on the miR172c-NNC1 module to foster nodule primordia development and consequently increase nodule numbers. These findings collectively highlight the important role of POA in enhancing nodulation during the accelerated growth phase of soybeans.


Assuntos
Glycine max , Nodulação , Simbiose , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Glycine max/microbiologia , Glycine max/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Acetatos/metabolismo , Acetatos/farmacologia
4.
Sensors (Basel) ; 24(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39275638

RESUMO

Soybean plants form symbiotic nitrogen-fixing nodules with specific rhizobia bacteria. The root hair is the initial infection site for the symbiotic process before the nodules. Since roots and nodules grow in soil and are hard to perceive, little knowledge is available on the process of soybean root hair deformation and nodule development over time. In this study, adaptive microrhizotrons were used to observe root hairs and to investigate detailed root hair deformation and nodule formation subjected to different rhizobia densities. The result showed that the root hair curling angle increased with the increase of rhizobia density. The largest curling angle reached 268° on the 8th day after inoculation. Root hairs were not always straight, even in the uninfected group with a relatively small angle (<45°). The nodule is an organ developed after root hair curling. It was inoculated from curling root hairs and swelled in the root axis on the 15th day after inoculation, with the color changing from light (15th day) to a little dark brown (35th day). There was an error between observing the diameter and the real diameter; thus, a diameter over 1 mm was converted to the real diameter according to the relationship between the perceived diameter and the real diameter. The diameter of the nodule reached 5 mm on the 45th day. Nodule number and curling number were strongly related to rhizobia density with a correlation coefficient of determination of 0.92 and 0.93, respectively. Thus, root hair curling development could be quantified, and nodule number could be estimated through derived formulation.


Assuntos
Glycine max , Raízes de Plantas , Nódulos Radiculares de Plantas , Simbiose , Glycine max/microbiologia , Glycine max/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Simbiose/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Rhizobium/fisiologia , Fixação de Nitrogênio
5.
Appl Environ Microbiol ; 90(9): e0059024, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39120150

RESUMO

Phosphatidylcholine (PC) is critical for the nitrogen-fixing symbiosis between rhizobia and legumes. We characterized three PC biosynthesis pathways in Rhizobium leguminosarum and evaluated their impact on nitrogen fixation in clover nodules. In the presence of choline, a PC synthase catalyzes the condensation of cytidine diphosphate-diacylglycerol with choline to produce PC. In the presence of lyso-PC, acyltransferases acylate this mono-acylated phospholipid to PC. The third pathway relies on phospholipid N-methyltransferases (Pmts), which sequentially methylate phosphatidylethanolamine (PE) through three rounds of methylation, yielding PC via the intermediates monomethyl-PE and dimethyl-PE. In R. leguminosarum, at least three Pmts participate in this methylation cascade. To elucidate the functions of these enzymes, we recombinantly produced and biochemically characterized them. We moved on to determine the phospholipid profiles of R. leguminosarum mutant strains harboring single and combinatorial deletions of PC biosynthesis genes. The cumulative results show that PC production occurs through the combined action of multiple enzymes, each with distinct substrate and product specificities. The methylation pathway emerges as the dominant PC biosynthesis route, and we pinpoint PmtS2, which catalyzes all three methylation steps, as the enzyme responsible for providing adequate PC amounts for a functional nitrogen-fixing symbiosis with clover. IMPORTANCE: Understanding the molecular mechanisms of symbiotic nitrogen fixation has important implications for sustainable agriculture. The presence of the phospholipid phosphatidylcholine (PC) in the membrane of rhizobia is critical for the establishment of productive nitrogen-fixing root nodules on legume plants. The reasons for the PC requirement are unknown. Here, we employed Rhizobium leguminosarum and clover as model system for a beneficial plant-microbe interaction. We found that R. leguminosarum produces PC by three distinct pathways. The relative contribution of these pathways to PC formation was determined in an array of single, double, and triple mutant strains. Several of the PC biosynthesis enzymes were purified and biochemically characterized. Most importantly, we demonstrated the essential role of PC formation by R. leguminosarum in nitrogen fixation and pinpointed a specific enzyme indispensable for plant-microbe interaction. Our study offers profound insights into bacterial PC biosynthesis and its pivotal role in biological nitrogen fixation.


Assuntos
Proteínas de Bactérias , Fixação de Nitrogênio , Fosfatidilcolinas , Rhizobium leguminosarum , Simbiose , Rhizobium leguminosarum/metabolismo , Rhizobium leguminosarum/genética , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/biossíntese , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Nódulos Radiculares de Plantas/microbiologia , Medicago/microbiologia
6.
Plant Cell ; 36(10): 4622-4636, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39136552

RESUMO

Symbiotic nitrogen fixation within nitrogen-fixing clade (NFC) plants is thought to have arisen from a single gain followed by massive losses in the genomes of ancestral non-nodulating plants. However, molecular evidence supporting this model is limited. Here, we confirm through bioinformatic analysis that NODULES WITH ACTIVATED DEFENSE1 (NAD1) is present only in NFC plants and is thus an NFC-specific gene. Moreover, NAD1 was specifically expressed in nodules. We identified three conserved nodulation-associated cis-regulatory elements (NACE1-3) in the promoter of LjNAD1 from Lotus japonicus that are required for its nodule specific expression. A survey of NFC plants revealed that NACE1 and NACE2 are specific to the Fabales and Papilionoideae, respectively, while NACE3 is present in all NFC plants. Moreover, we found that nodule inception (NIN) directly binds to all three NACEs to activate NAD1 expression. Mutation of L. japonicus LjNAD1 resulted in the formation of abnormal symbiosomes with enlarged symbiosome space and frequent breakdown of bacteroids in nodules, resembling phenotypes reported for Medicago truncatula Mtnad1 and Mtnin mutants. These data point to NIN-NAD1 as an important module regulating rhizobial accommodation in nodules. The regulation of NAD1 by NIN in the NFC ancestor represent an important evolutionary adaptation for nodulation.


Assuntos
Regulação da Expressão Gênica de Plantas , Lotus , Proteínas de Plantas , Nodulação , Nódulos Radiculares de Plantas , Simbiose , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Lotus/genética , Lotus/microbiologia , Lotus/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Nodulação/genética , Simbiose/genética , Fixação de Nitrogênio/genética , Medicago truncatula/genética , Medicago truncatula/microbiologia , Medicago truncatula/metabolismo , Regiões Promotoras Genéticas/genética , Mutação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência Conservada
7.
BMC Plant Biol ; 24(1): 766, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39123119

RESUMO

BACKGROUND: Legumes utilize a long-distance signaling feedback pathway, termed Autoregulation of Nodulation (AON), to regulate the establishment and maintenance of their symbiosis with rhizobia. Several proteins key to this pathway have been discovered, but the AON pathway is not completely understood. RESULTS: We report a new hypernodulating mutant, defective in autoregulation, with disruption of a gene, DAR (Medtr2g450550/MtrunA17_Chr2g0304631), previously unknown to play a role in AON. The dar-1 mutant produces ten-fold more nodules than wild type, similar to AON mutants with disrupted SUNN gene function. As in sunn mutants, suppression of nodulation by CLE peptides MtCLE12 and MtCLE13 is abolished in dar. Furthermore, dar-1 also shows increased root length colonization by an arbuscular mycorrhizal fungus, suggesting a role for DAR in autoregulation of mycorrhizal symbiosis (AOM). However, unlike SUNN which functions in the shoot to control nodulation, DAR functions in the root. CONCLUSIONS: DAR encodes a membrane protein that is a member of a small protein family in M. truncatula. Our results suggest that DAR could be involved in the subcellular transport of signals involved in symbiosis regulation, but it is not upregulated during symbiosis. DAR gene family members are also present in Arabidopsis, lycophytes, mosses, and microalgae, suggesting the AON and AOM may use pathway components common to other plants, even those that do not undergo either symbiosis.


Assuntos
Medicago truncatula , Micorrizas , Proteínas de Plantas , Nodulação , Simbiose , Medicago truncatula/genética , Medicago truncatula/microbiologia , Medicago truncatula/fisiologia , Micorrizas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Simbiose/genética , Regulação da Expressão Gênica de Plantas , Mutação , Genes de Plantas , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Homeostase , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo
8.
Int J Mol Sci ; 25(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39126082

RESUMO

Phaseolus vulgaris is a globally important legume cash crop, which can carry out symbiotic nitrogen fixation with rhizobia. The presence of suitable rhizobia in cultivating soils is crucial for legume cropping, especially in areas beyond the plant-host native range, where soils may lack efficient symbiotic partners. We analyzed the distribution patterns and traits of native rhizobia associated with P. vulgaris in soils of Yunnan, where the common bean experienced a recent expansion. A total of 608 rhizobial isolates were tracked from soils of fifteen sampling sites using two local varieties of P. vulgaris. The isolates were discriminated into 43 genotypes as defined by IGS PCR-RFLP. Multiple locus sequence analysis based on recA, atpD and rpoB of representative strains placed them into 11 rhizobial species of Rhizobium involving Rhizobium sophorae, Rhizobium acidisoli, Rhizobium ecuadorense, Rhizobium hidalgonense, Rhizobium vallis, Rhizobium sophoriradicis, Rhizobium croatiense, Rhizobium anhuiense, Rhizobium phaseoli, Rhizobium chutanense and Rhizobium etli, and five unknown Rhizobium species; Rhizobium genosp. I~V. R. phaseoli and R. anhuiense were the dominant species (28.0% and 28.8%) most widely distributed, followed by R. croatiense (14.8%). The other rhizobial species were less numerous or site-specific. Phylogenies of nodC and nifH markers, were divided into two specific symbiovars, sv. phaseoli regardless of the species affiliation and sv. viciae associated with R. vallis. Through symbiotic effect assessment, all the tested strains nodulated both P. vulgaris varieties, often resulting with a significant greenness index (91-98%). However, about half of them exhibited better plant biomass performance, at least on one common bean variety, and two isolates (CYAH-6 and BLYH-15) showed a better symbiotic efficiency score. Representative strains revealed diverse abiotic stress tolerance to NaCl, acidity, alkalinity, temperature, drought and glyphosate. One strain efficient on both varieties and exhibiting stress abiotic tolerance (BLYH-15) belonged to R. genosp. IV sv. phaseoli, a species first found as a legume symbiont.


Assuntos
Phaseolus , Filogenia , Rhizobium , Microbiologia do Solo , Simbiose , Phaseolus/microbiologia , Phaseolus/crescimento & desenvolvimento , Rhizobium/genética , Rhizobium/fisiologia , China , Fixação de Nitrogênio/genética , Nódulos Radiculares de Plantas/microbiologia
9.
BMC Plant Biol ; 24(1): 780, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148012

RESUMO

BACKGROUND: The symbiosis among plants, rhizobia, and arbuscular mycorrhizal fungi (AMF) is one of the most well-known symbiotic relationships in nature. However, it is still unclear how bilateral/tripartite symbiosis works under resource-limited conditions and the diverse genetic backgrounds of the host. RESULTS: Using a full factorial design, we manipulated mungbean accessions/subspecies, rhizobia, and AMF to test their effects on each other. Rhizobia functions as a typical facilitator by increasing plant nitrogen content, plant weight, chlorophyll content, and AMF colonization. In contrast, AMF resulted in a tradeoff in plants (reducing biomass for phosphorus acquisition) and behaved as a competitor in reducing rhizobia fitness (nodule weight). Plant genotype did not have a significant effect on AMF fitness, but different mungbean accessions had distinct rhizobia affinities. In contrast to previous studies, the positive relationship between plant and rhizobia fitness was attenuated in the presence of AMF, with wild mungbean being more responsive to the beneficial effect of rhizobia and attenuation by AMF. CONCLUSIONS: We showed that this complex tripartite relationship does not unconditionally benefit all parties. Moreover, rhizobia species and host genetic background affect the symbiotic relationship significantly. This study provides a new opportunity to re-evaluate the relationships between legume plants and their symbiotic partners.


Assuntos
Micorrizas , Rhizobium , Simbiose , Vigna , Micorrizas/fisiologia , Vigna/microbiologia , Vigna/genética , Vigna/fisiologia , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/fisiologia
11.
Nat Microbiol ; 9(8): 1929-1939, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39095495

RESUMO

Legumes are ecologically and economically important plants that contribute to nutrient cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-fixing rhizobia. Rhizobia vary dramatically in quality, ranging from highly growth-promoting to non-beneficial; therefore, legumes must optimize their symbiosis with rhizobia through host mechanisms that select for beneficial rhizobia and limit losses to non-beneficial strains. In this Perspective, we examine the considerable scientific progress made in decoding host control over rhizobia, empirically examining both molecular and cellular mechanisms and their effects on rhizobia symbiosis and its benefits. We consider pre-infection controls, which require the production and detection of precise molecular signals by the legume to attract and select for compatible rhizobia strains. We also discuss post-infection mechanisms that leverage the nodule-level and cell-level compartmentalization of symbionts to enable host control over rhizobia development and proliferation in planta. These layers of host control each contribute to legume fitness by directing host resources towards a narrowing subset of more-beneficial rhizobia.


Assuntos
Fabaceae , Fixação de Nitrogênio , Rhizobium , Simbiose , Fabaceae/microbiologia , Rhizobium/fisiologia , Rhizobium/metabolismo , Interações entre Hospedeiro e Microrganismos , Nódulos Radiculares de Plantas/microbiologia , Nodulação
12.
Plant Cell Environ ; 47(11): 4305-4322, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38963088

RESUMO

The regulation of legume-rhizobia symbiosis by microorganisms has obtained considerable interest in recent research, particularly in the common rhizobacteria Bacillus. However, few studies have provided detailed explanations regarding the regulatory mechanisms involved. Here, we investigated the effects of Bacillus (Bac.B) on Bradyrhizobium-soybean (Glycine max) symbiosis and elucidated the underlying ecological mechanisms. We found that two Bradyrhizobium strains (i.e. Bra.Q2 and Bra.D) isolated from nodules significantly promoted nitrogen (N) efficiency of soybean via facilitating nodule formation, thereby enhanced plant growth and yield. However, the intrusion of Bac.B caused a reverse shift in the synergistic efficiency of N2 fixation in the soybean-Bradyrhizobium symbiosis. Biofilm formation and naringenin may be importantin suppression of Bra.Q2 growth regulated by Bac.B. In addition, transcriptome and microbiome analyses revealed that Bra.Q2 and Bac.B might interact to regulateN transport and assimilation, thus influence the bacterial composition related to plant N nutrition in nodules. Also, the metabolisms of secondary metabolites and hormones associated with plant-microbe interaction and growth regulation were modulated by Bra.Q2 and Bac.B coinoculation. Collectively, we demonstrate that Bacillus negatively affects Bradyrhizobium-soybean symbiosis and modulate microbial interactions in the nodule. Our findings highlight a novel Bacillus-based regulation to improve N efficiency and sustainable agricultural development.


Assuntos
Bacillus , Bradyrhizobium , Glycine max , Fixação de Nitrogênio , Nitrogênio , Simbiose , Glycine max/microbiologia , Glycine max/fisiologia , Glycine max/metabolismo , Simbiose/fisiologia , Bradyrhizobium/fisiologia , Bacillus/fisiologia , Bacillus/metabolismo , Nitrogênio/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/metabolismo , Rhizobium/fisiologia , Microbiota/fisiologia
13.
Microbiology (Reading) ; 170(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39073398

RESUMO

Rhizobium leguminosarum aspartate aminotransferase (AatA) mutants show drastically reduced symbiotic nitrogen fixation in legume nodules. Whilst AatA reversibly transaminates the two major amino-donor compounds aspartate and glutamate, the reason for the lack of N2 fixation in the mutant has remained unclear. During our investigations into the role of AatA, we found that it catalyses an additional transamination reaction between aspartate and pyruvate, forming alanine. This secondary reaction runs at around 60 % of the canonical aspartate transaminase reaction rate and connects alanine biosynthesis to glutamate via aspartate. This may explain the lack of any glutamate-pyruvate transaminase activity in R. leguminosarum, which is common in eukaryotic and many prokaryotic genomes. However, the aspartate-to-pyruvate transaminase reaction is not needed for N2 fixation in legume nodules. Consequently, we show that aspartate degradation is required for N2 fixation, rather than biosynthetic transamination to form an amino acid. Hence, the enzyme aspartase, which catalyses the breakdown of aspartate to fumarate and ammonia, suppressed an AatA mutant and restored N2 fixation in pea nodules.


Assuntos
Aspartato Aminotransferases , Ácido Aspártico , Fixação de Nitrogênio , Pisum sativum , Rhizobium leguminosarum , Nódulos Radiculares de Plantas , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Rhizobium leguminosarum/enzimologia , Ácido Aspártico/metabolismo , Pisum sativum/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/genética , Especificidade por Substrato , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Simbiose , Mutação
14.
Artigo em Inglês | MEDLINE | ID: mdl-39037439

RESUMO

The species Rhizobium indigoferae and Sinorhizobium kummerowiae were isolated from legume nodules and the 16S rRNA sequences of their respective type strains, CCBAU 71042T and CCBAU 71714T, were highly divergent from those of the other species of the genera Rhizobium and Sinorhizobium, respectively. However, the 16S rRNA gene sequences obtained for strains CCBAU 71042T and CCBAU 71714T several years after description, were different from the original ones, showing 100 % similarity to the type strains of Rhizobium leguminosarum and Sinorhizobium meliloti, respectively. Phylogenetic analyses of two housekeeping genes, recA and atpD, confirmed the high phylogenetic closeness of strains CCBAU 71042T and CCBAU 71714T to the respective type strains of R. leguminosarum and S. meliloti. In the present work, we compared the genomes of the type strains of R. indigoferae and S. kummerowiae available in several culture collections with those of the respective type strains of R. leguminosarum and S. meliloti, some of them obtained in this study. The calculated average nucleotide identity-blast and digital DNA-DNA hybridization values in both cases were higher than those recommended for species differentiation, supporting the proposal for the reclassification of the type strains of R. indigoferae and S. kummerowiae into the species R. leguminosarum and S. meliloti, respectively.


Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Filogenia , RNA Ribossômico 16S , Rhizobium leguminosarum , Análise de Sequência de DNA , Sinorhizobium meliloti , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/classificação , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/classificação , Genoma Bacteriano , Rhizobium/classificação , Rhizobium/genética , Rhizobium/isolamento & purificação , Nódulos Radiculares de Plantas/microbiologia , Genes Essenciais , Genes Bacterianos , Hibridização de Ácido Nucleico
15.
Plant Physiol Biochem ; 214: 108936, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39018775

RESUMO

Vicia villosa (VV) and Vicia sativa (VS) are legume forages highly valued for their excellent nitrogen fixation. However, no research has addressed the mechanisms underlying their differences in nitrogen fixation. This study employed physiological, cytological, and comparative transcriptomic approaches to elucidate the disparities in nitrogen fixation between them. Our results showed that the total amount of nitrogen fixed was 60.45% greater in VV than in VS, and the comprehensive nitrogen response performance was 94.19% greater, while the nitrogen fixation efficiency was the same. The infection zone and differentiated bacteroid proportion in mature VV root nodules were 33.76% and 19.35% greater, respectively, than those in VS. The size of the VV genome was 15.16% larger than that of the VS genome, consistent with its greater biomass. A significant enrichment of the flavonoid biosynthetic pathway was found only for VV-specific genes, among which chalcone-flavonone isomerase, caffeoyl-CoA-O-methyltransferase and stilbene synthase were extremely highly expressed. The VV-specific genes also exhibited significant enrichment in symbiotic nodulation; genes related to nodule-specific cysteine-rich peptides (NCRs) comprised 61.11% of the highly expressed genes. qRT‒PCR demonstrated that greater enrichment and expression of the dominant NCR (Unigene0004451) were associated with greater nodule bacteroid differentiation and greater nitrogen fixation in VV. Our findings suggest that the greater total nitrogen fixation of VV was attributed to its larger biomass, leading to a greater nitrogen demand and enhanced fixation physiology. This process is likely achieved by the synergistic effects of high bacteroid differentiation along with high expression of flavonoid and NCR genes.


Assuntos
Flavonoides , Fixação de Nitrogênio , Transcriptoma , Fixação de Nitrogênio/genética , Flavonoides/metabolismo , Transcriptoma/genética , Vicia sativa/genética , Vicia sativa/metabolismo , Vicia/genética , Vicia/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cisteína/metabolismo , Peptídeos/metabolismo , Peptídeos/genética
16.
Nat Commun ; 15(1): 6387, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39080318

RESUMO

Legumes acquire nitrogen-fixing ability by forming root nodules. Transferring this capability to more crops could reduce our reliance on nitrogen fertilizers, thereby decreasing environmental pollution and agricultural production costs. Nodule organogenesis is complex, and a comprehensive transcriptomic atlas is crucial for understanding the underlying molecular events. Here, we utilized spatial transcriptomics to investigate the development of nodules in the model legume, Lotus japonicus. Our investigation has identified the developmental trajectories of two critical regions within the nodule: the infection zone and peripheral tissues. We reveal the underlying biological processes and provide gene sets to achieve symbiosis and material exchange, two essential aspects of nodulation. Among the candidate regulatory genes, we illustrate that LjNLP3, a transcription factor belonging to the NIN-LIKE PROTEIN family, orchestrates the transition of nodules from the differentiation to maturation. In summary, our research advances our understanding of nodule organogenesis and provides valuable data for developing symbiotic nitrogen-fixing crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Lotus , Fixação de Nitrogênio , Proteínas de Plantas , Nódulos Radiculares de Plantas , Transcriptoma , Lotus/genética , Lotus/metabolismo , Lotus/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fixação de Nitrogênio/genética , Simbiose/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Nodulação/genética , Perfilação da Expressão Gênica , Análise Espaço-Temporal , Organogênese Vegetal/genética , Organogênese/genética
17.
Sci Adv ; 10(31): eadp6436, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39083610

RESUMO

Host range specificity is a prominent feature of the legume-rhizobial symbiosis. Sinorhizobium meliloti and Sinorhizobium medicae are two closely related species that engage in root nodule symbiosis with legume plants of the Medicago genus, but certain Medicago species exhibit selectivity in their interactions with the two rhizobial species. We have identified a Medicago receptor-like kinase, which can discriminate between the two bacterial species, acting as a genetic barrier against infection by most S. medicae strains. Activation of this receptor-mediated nodulation restriction requires a bacterial gene that encodes a glycine-rich octapeptide repeat protein with distinct variants capable of distinguishing S. medicae from S. meliloti. This study sheds light on the coevolution of host plants and rhizobia, shaping symbiotic selectivity in their respective ecological niches.


Assuntos
Simbiose , Especificidade da Espécie , Medicago/microbiologia , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-39078400

RESUMO

A comprehensive polyphasic taxonomic investigation integrating taxongenomic criteria was conducted on strain IRAMC:0171T isolated from the root nodules of Retama raetam in Tunisia. This Gram-stain-negative and aerobic bacterium thrived within a temperature range of 5-45 °C, optimal at 28 °C, and tolerated salt concentrations from 0-6 % NaCl, with an optimal range of 0-3 %. It displayed pH tolerance from pH 4 to 10, thriving best at pH 6.8-7.5. Chemotaxonomically, strain IRAMC:0171T was characterized by diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and phosphatidylethanolamine as polar lipids. Its predominant fatty acid composition was C18 : 1 ω7c (61.2 %), and the primary ubiquinone was Q10 (97 %). Analysis of the 16S rRNA gene of strain IRAMC:0171T showed 99.08 % similarity to Mesorhizobium waimense ICMP 19557T, Mesorhizobium amorphae ACCC 19665T, and Mesorhizobium huakuii IAM 14158. However, digital DNA-DNA hybridization and average nucleotide identity analyses revealed values ranging from 21.1 to 25.2 % and 77.05 to 82.24 %, respectively, signifying significant deviation from established species demarcation thresholds. Phylogenetic studies, encompassing 16S rRNA, whole-genome-based tree reconstruction, and core protein analysis, positioned strain IRAMC:0171T closest to Mesorhizobium terrae KCTC 72278T and 'Mesorhizobium hungaricum' UASWS1009T, forming together a distinct branch within the genus Mesorhizobium. In consideration of this comprehensive data, we propose strain IRAMC:0171T (=DSM 112841T=CECT 30767T) as the type strain of a new species named Mesorhizobium retamae sp. nov.


Assuntos
Ácidos Graxos , Mesorhizobium , Filogenia , Nódulos Radiculares de Plantas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Ácidos Graxos/química , Mesorhizobium/genética , Mesorhizobium/isolamento & purificação , Mesorhizobium/classificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Tunísia , Ubiquinona
19.
Science ; 385(6706): 288-294, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39024445

RESUMO

Host plants benefit from legume root nodule symbiosis with nitrogen-fixing bacteria under nitrogen-limiting conditions. In this interaction, the hosts must regulate nodule numbers and distribution patterns to control the degree of symbiosis and maintain root growth functions. The host response to symbiotic bacteria occurs discontinuously but repeatedly at the region behind the tip of the growing roots. Here, live-imaging and transcriptome analyses revealed oscillating host gene expression with approximately 6-hour intervals upon bacterial inoculation. Cytokinin response also exhibited a similar oscillation pattern. Cytokinin signaling is crucial to maintaining the periodicity, as observed in cytokinin receptor mutants displaying altered infection foci distribution. This periodic regulation influences the size of the root region responsive to bacteria, as well as the nodulation process progression.


Assuntos
Citocininas , Regulação da Expressão Gênica de Plantas , Interações entre Hospedeiro e Microrganismos , Lotus , Mesorhizobium , Nodulação , Nódulos Radiculares de Plantas , Simbiose , Citocininas/metabolismo , Perfilação da Expressão Gênica , Lotus/genética , Lotus/crescimento & desenvolvimento , Lotus/metabolismo , Mutação , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Transdução de Sinais , Mesorhizobium/genética , Mesorhizobium/fisiologia
20.
Mol Plant Microbe Interact ; 37(9): 662-675, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38904752

RESUMO

The symbiosis between Mesorhizobium japonicum R7A and Lotus japonicus Gifu is an important model system for investigating the role of bacterial exopolysaccharides (EPS) in plant-microbe interactions. Previously, we showed that R7A exoB mutants that are affected at an early stage of EPS synthesis and in lipopolysaccharide (LPS) synthesis induce effective nodules on L. japonicus Gifu after a delay, whereas exoU mutants affected in the biosynthesis of the EPS side chain induce small uninfected nodule primordia and are impaired in infection. The presence of a halo around the exoU mutant when grown on Calcofluor-containing media suggested the mutant secreted a truncated version of R7A EPS. A nonpolar ΔexoA mutant defective in the addition of the first glucose residue to the EPS backbone was also severely impaired symbiotically. Here, we used a suppressor screen to show that the severe symbiotic phenotype of the exoU mutant was due to the secretion of an acetylated pentasaccharide, as both monomers and oligomers, by the same Wzx/Wzy system that transports wild-type exopolysaccharide. We also present evidence that the ΔexoA mutant secretes an oligosaccharide by the same transport system, contributing to its symbiotic phenotype. In contrast, ΔexoYF and polar exoA and exoL mutants have a similar phenotype to exoB mutants, forming effective nodules after a delay. These studies provide substantial evidence that secreted incompatible EPS is perceived by the plant, leading to abrogation of the infection process. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Lotus , Mesorhizobium , Polissacarídeos Bacterianos , Simbiose , Polissacarídeos Bacterianos/metabolismo , Mesorhizobium/fisiologia , Mesorhizobium/genética , Lotus/microbiologia , Mutação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Nódulos Radiculares de Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA