Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.656
Filtrar
1.
Addict Biol ; 29(5): e13397, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711205

RESUMO

Neuronal ensembles in the medial prefrontal cortex mediate cocaine self-administration via projections to the nucleus accumbens. We have recently shown that neuronal ensembles in the prelimbic cortex form rapidly to mediate cocaine self-administration. However, the role of neuronal ensembles within the nucleus accumbens in initial cocaine-seeking behaviour remains unknown. Here, we sought to expand the current literature by testing the necessity of the cocaine self-administration ensemble in the nucleus accumbens core (NAcCore) 1 day after male and female rats acquire cocaine self-administration by using the Daun02 inactivation procedure. We found that disrupting the NAcCore ensembles after a no-cocaine reward-seeking test increased subsequent cocaine seeking, while disrupting NAcCore ensembles following a cocaine self-administration session decreased subsequent cocaine seeking. We then characterized neuronal cell type in the NAcCore using RNAscope in situ hybridization. In the no-cocaine session, we saw reduced dopamine D1 type neuronal activation, while in the cocaine self-administration session, we found preferential dopamine D1 type neuronal activity in the NAcCore.


Assuntos
Cocaína , Comportamento de Procura de Droga , Neurônios , Núcleo Accumbens , Autoadministração , Animais , Núcleo Accumbens/efeitos dos fármacos , Cocaína/farmacologia , Masculino , Feminino , Ratos , Comportamento de Procura de Droga/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Recompensa , Inibidores da Captação de Dopamina/farmacologia , Reforço Psicológico , Receptores de Dopamina D1 , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Ratos Sprague-Dawley , Córtex Pré-Frontal/efeitos dos fármacos
2.
Addict Biol ; 29(5): e13401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38782631

RESUMO

Addictive properties of propofol have been demonstrated in both humans and animals. The nucleus accumbens (NAc) shell (NAsh) in the brain, along with the interactions between N-methyl-D-aspartate receptor (NMDAR) and the dopamine D1 receptor (D1R), as well as their downstream ERK/CREB signalling pathway in the NAc, are integral in regulating reward-seeking behaviour. Nevertheless, it remains unclear whether NMDARs and the NMDAR-D1R/ERK/CREB signalling pathway in the NAsh are involved in mediating propofol addiction. To investigate it, we conducted experiments with adult male Sprague-Dawley rats to establish a model of propofol self-administration behaviour. Subsequently, we microinjected D-AP5 (a competitive antagonist of NMDARs, 1.0-4.0 µg/0.3 µL/site) or vehicle into bilateral NAsh in rats that had previously self-administered propofol to examine the impact of NMDARs within the NAsh on propofol self-administration behaviour. Additionally, we examined the protein expressions of NR2A and NR2B subunits, and the D1R/ERK/CREB signalling pathways within the NAc. The results revealed that propofol administration behaviour was enhanced by D-AP5 pretreatment in NAsh, accompanied by elevated expressions of phosphorylation of NR2A (Tyr1246) and NR2B (Tyr1472) subunits. There were statistically significant increases in the expressions of D1Rs, as well as in the phosphorylated ERK1/2 (p-ERK1/2) and CREB (p-CREB). This evidence substantiates a pivotal role of NMDARs in the NAsh, with a particular emphasis on the NR2A and NR2B subunits, in mediating propofol self-administration behaviour. Furthermore, it suggests that this central reward processing mechanism may operate through the NMDAR-D1R/ERK/CREB signal transduction pathway.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Núcleo Accumbens , Propofol , Ratos Sprague-Dawley , Receptores de Dopamina D1 , Receptores de N-Metil-D-Aspartato , Autoadministração , Transdução de Sinais , Animais , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Propofol/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Masculino , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
3.
Neuropharmacology ; 253: 109971, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705568

RESUMO

The impact of environmental enrichment (EE) on natural rewards, including social and appetitive rewards, was investigated in male Swiss mice. EE, known for providing animals with various stimuli, was assessed for its effects on conditioned place preference (CPP) associated with ethanol and social stimuli. We previously demonstrated that EE increased the levels of the prosocial neuropeptide oxytocin (OT) in the hypothalamus and enhanced ethanol rewarding effects via an oxytocinergic mechanism. This study also investigated the impact of EE on social dominance and motivation for rewards, measured OT-mediated phospholipase C (PLC) activity in striatal membranes, and assessed OT expression in the hypothalamus. The role of dopamine in motivating rewards was considered, along with the interaction between OT and D1 receptors (DR) in the nucleus accumbens (NAc). Results showed that EE mice exhibited a preference for ethanol reward over social reward, a pattern replicated by the OT analogue Carbetocin. EE mice demonstrated increased social dominance and reduced motivation for appetitive taste stimuli. Higher OT mRNA levels in the hypothalamus were followed by diminished OT receptor (OTR) signaling activity in the striatum of EE mice. Additionally, EE mice displayed elevated D1R expression, which was attenuated by the OTR antagonist (L-368-889). The findings underscore the reinforcing effect of EE on ethanol and social rewards through an oxytocinergic mechanism. Nonetheless, they suggest that mechanisms other than the prosocial effect of EE may contribute to the ethanol pro-rewarding effect of EE and Carbetocin. They also point towards an OT-dopamine interaction potentially underlying some of these effects.


Assuntos
Dopamina , Etanol , Núcleo Accumbens , Ocitocina , Receptores de Dopamina D1 , Receptores de Ocitocina , Recompensa , Animais , Ocitocina/metabolismo , Ocitocina/análogos & derivados , Masculino , Etanol/farmacologia , Etanol/administração & dosagem , Camundongos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Dopamina/metabolismo , Receptores de Ocitocina/metabolismo , Receptores de Ocitocina/antagonistas & inibidores , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Meio Ambiente , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Predomínio Social , Comportamento Social , Motivação/fisiologia , Motivação/efeitos dos fármacos
4.
CNS Neurosci Ther ; 30(5): e14737, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38702929

RESUMO

AIMS: This study aims to investigate the pharmacological effects and the underlying mechanism of cannabidiol (CBD) on methamphetamine (METH)-induced relapse and behavioral sensitization in male mice. METHODS: The conditioned place preference (CPP) test with a biased paradigm and open-field test were used to assess the effects of CBD on METH-induced relapse and behavioral sensitization in male mice. RNA sequencing and bioinformatics analysis was employed to identify differential expressed (DE) circRNAs, miRNAs, and mRNAs in the nucleus accumbens (NAc) of mice, and the interaction among them was predicted using competing endogenous RNAs (ceRNAs) network analysis. RESULTS: Chronic administration of CBD (40 mg/kg) during the METH withdrawal phase alleviated METH (2 mg/kg)-induced CPP reinstatement and behavioral sensitization in mice, as well as mood and cognitive impairments following behavioral sensitization. Furthermore, 42 DEcircRNAs, 11 DEmiRNAs, and 40 DEmRNAs were identified in the NAc of mice. The circMeis2-miR-183-5p-Kcnj5 network in the NAc of mice is involved in the effects of CBD on METH-induced CPP reinstatement and behavioral sensitization. CONCLUSIONS: This study constructed the ceRNAs network for the first time, revealing the potential mechanism of CBD in treating METH-induced CPP reinstatement and behavioral sensitization, thus advancing the application of CBD in METH use disorders.


Assuntos
Canabidiol , Metanfetamina , Camundongos Endogâmicos C57BL , MicroRNAs , RNA Circular , RNA Mensageiro , Animais , Canabidiol/farmacologia , Masculino , Metanfetamina/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos , RNA Circular/genética , RNA Mensageiro/metabolismo , Recidiva , Estimulantes do Sistema Nervoso Central/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Redes Reguladoras de Genes/efeitos dos fármacos
5.
Elife ; 132024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748470

RESUMO

Acetylcholine is widely believed to modulate the release of dopamine in the striatum of mammals. Experiments in brain slices clearly show that synchronous activation of striatal cholinergic interneurons is sufficient to drive dopamine release via axo-axonal stimulation of nicotinic acetylcholine receptors. However, evidence for this mechanism in vivo has been less forthcoming. Mohebi, Collins and Berke recently reported that, in awake behaving rats, optogenetic activation of striatal cholinergic interneurons with blue light readily evokes dopamine release measured with the red fluorescent sensor RdLight1 (Mohebi et al., 2023). Here, we show that blue light alone alters the fluorescent properties of RdLight1 in a manner that may be misconstrued as phasic dopamine release, and that this artefactual photoactivation can account for the effects attributed to cholinergic interneurons. Our findings indicate that measurements of dopamine using the red-shifted fluorescent sensor RdLight1 should be interpreted with caution when combined with optogenetics. In light of this and other publications that did not observe large acetylcholine-evoked dopamine transients in vivo, the conditions under which such release occurs in behaving animals remain unknown.


Assuntos
Neurônios Colinérgicos , Dopamina , Interneurônios , Optogenética , Dopamina/metabolismo , Animais , Interneurônios/metabolismo , Interneurônios/fisiologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Ratos , Optogenética/métodos , Motivação , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Acetilcolina/metabolismo
6.
Prog Neurobiol ; 237: 102616, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723884

RESUMO

Alterations in cognitive and non-cognitive cerebral functions characterize Alzheimer's disease (AD). Cortical and hippocampal impairments related to extracellular accumulation of Aß in AD animal models have been extensively investigated. However, recent reports have also implicated intracellular Aß in limbic regions, such as the nucleus accumbens (nAc). Accumbal neurons express high levels of inhibitory glycine receptors (GlyRs) that are allosterically modulated by ethanol and have a role in controlling its intake. In the present study, we investigated how GlyRs in the 2xTg mice (AD model) affect nAc functions and ethanol intake behavior. Using transgenic and control aged-matched litter mates, we found that the GlyRα2 subunit was significantly decreased in AD mice (6-month-old). We also examined intracellular calcium dynamics using the fluorescent calcium protein reporter GCaMP in slice photometry. We also found that the calcium signal mediated by GlyRs, but not GABAAR, was also reduced in AD neurons. Additionally, ethanol potentiation was significantly decreased in accumbal neurons in the AD mice. Finally, we performed drinking in the dark (DID) experiments and found that 2xTg mice consumed less ethanol on the last day of DID, in agreement with a lower blood ethanol concentration. 2xTg mice also showed lower sucrose consumption, indicating that overall food reward was altered. In conclusion, the data support the role of GlyRs in nAc neuron excitability and a decreased glycinergic activity in the 2xTg mice that might lead to impairment in reward processing at an early stage of the disease.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Etanol , Camundongos Transgênicos , Núcleo Accumbens , Receptores de Glicina , Recompensa , Animais , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Receptores de Glicina/metabolismo , Etanol/administração & dosagem , Etanol/farmacologia , Camundongos , Masculino , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Consumo de Bebidas Alcoólicas/metabolismo
7.
Mol Brain ; 17(1): 27, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783364

RESUMO

Itch is a protective/defensive function with divalent motivational drives. Itch itself elicits an unpleasant experience, which triggers the urge to scratch, relieving the itchiness. Still, it can also result in dissatisfaction when the scratch is too intense and painful or unsatisfactory due to insufficient scratch effect. Therefore, it is likely that the balance between the unpleasantness/pleasure and satisfaction/unsatisfaction associated with itch sensation and scratching behavior is determined by complex brain mechanisms. The physiological/pathological mechanisms underlying this balance remain largely elusive. To address this issue, we targeted the "reward center" of the brain, the nucleus accumbens (NAc), in which itch-responsive neurons have been found in rodents. We examined how neurons in the NAc are activated or suppressed during histamine-induced scratching behaviors in mice. The mice received an intradermal injection of histamine or saline at the neck, and the scratching number was analyzed by recording the movement of the bilateral hind limbs for about 45 min after injection. To experimentally manipulate the scratch efficacy in these histamine models, we compared histamine's behavioral and neuronal effects between mice with intact and clipped nails on the hind paws. As expected, the clipping of the hind limb nail increased the number of scratches after the histamine injection. In the brains of mice exhibiting scratching behaviors, we analyzed the expression of the c-fos gene (Fos) as a readout of an immediate activation of neurons during itch/scratch and dopamine receptors (Drd1 and Drd2) using multiplex single-molecule fluorescence in situ hybridization (RNAscope) in the NAc and surrounding structures. We performed a model-free analysis of gene expression in geometrically divided NAc subregions without assuming the conventional core-shell divisions. The results indicated that even within the NAc, multiple subregions responded differentially to various itch/scratch conditions. We also found different clusters with neurons showing similar or opposite changes in Fos expression and the correlation between scratch number and Fos expression in different itch/scratch conditions. These regional differences and clusters would provide a basis for the complex role of the NAc and surrounding structures in encoding the outcomes of scratching behavior and itchy sensations.


Assuntos
Histamina , Camundongos Endogâmicos C57BL , Núcleo Accumbens , Prurido , Animais , Prurido/fisiopatologia , Prurido/patologia , Masculino , Comportamento Animal , Proteínas Proto-Oncogênicas c-fos/metabolismo , Neurônios/metabolismo , Camundongos
8.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731799

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder. Dopamine (DA) neurons in the substantia nigra pars compacta, which have axonal projections to the dorsal striatum (dSTR), degenerate in PD. In contrast, DA neurons in the ventral tegmental area, with axonal projections to the ventral striatum, including the nucleus accumbens (NAcc) shell, are largely spared. This study aims to uncover the relative contributions of glycolysis and oxidative phosphorylation (OxPhos) to DA release in the striatum. We measured evoked DA release in mouse striatal brain slices using fast-scan cyclic voltammetry applied every two minutes. Blocking OxPhos resulted in a greater reduction in evoked DA release in the dSTR when compared to the NAcc shell, while blocking glycolysis caused a more significant decrease in evoked DA release in the NAcc shell than in the dSTR. Furthermore, when glycolysis was bypassed in favor of direct OxPhos, evoked DA release in the NAcc shell decreased by approximately 50% over 40 min, whereas evoked DA release in the dSTR was largely unaffected. These results demonstrate that the dSTR relies primarily on OxPhos for energy production to maintain evoked DA release, whereas the NAcc shell depends more on glycolysis. Consistently, two-photon imaging revealed higher oxidation levels of DA terminals in the dSTR than in the NAcc shell. Together, these findings partly explain the selective vulnerability of DA terminals in the dSTR to degeneration in PD.


Assuntos
Corpo Estriado , Dopamina , Glicólise , Fosforilação Oxidativa , Animais , Dopamina/metabolismo , Camundongos , Corpo Estriado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios Dopaminérgicos/metabolismo , Núcleo Accumbens/metabolismo
9.
Nat Commun ; 15(1): 4233, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762463

RESUMO

The ventral pallidum (VP) contains GABA and glutamate neurons projecting to ventral tegmental area (VTA) whose stimulation drives approach and avoidance, respectively. Yet little is known about the mechanisms by which VP cell types shape VTA activity and drive behavior. Here, we found that both VP GABA and glutamate neurons were activated during approach to reward or by delivery of an aversive stimulus. Stimulation of VP GABA neurons inhibited VTA GABA, but activated dopamine and glutamate neurons. Remarkably, stimulation-evoked activation was behavior-contingent such that VTA recruitment was inhibited when evoked by the subject's own action. Conversely, VP glutamate neurons activated VTA GABA, as well as dopamine and glutamate neurons, despite driving aversion. However, VP glutamate neurons evoked dopamine in aversion-associated ventromedial nucleus accumbens (NAc), but reduced dopamine release in reward-associated dorsomedial NAc. These findings show how heterogeneous VP projections to VTA can be engaged to shape approach and avoidance behaviors.


Assuntos
Aprendizagem da Esquiva , Prosencéfalo Basal , Neurônios GABAérgicos , Ácido Glutâmico , Recompensa , Área Tegmentar Ventral , Área Tegmentar Ventral/fisiologia , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/citologia , Animais , Ácido Glutâmico/metabolismo , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiologia , Masculino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Aprendizagem da Esquiva/fisiologia , Camundongos , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/citologia , Núcleo Accumbens/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Ácido gama-Aminobutírico/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Camundongos Endogâmicos C57BL , Comportamento Animal/fisiologia
10.
Sci Adv ; 10(17): eadl6554, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657057

RESUMO

MDMA (3,4-methylenedioxymethamphetamine) is a psychoactive drug with powerful prosocial effects. While MDMA is sometimes termed an "empathogen," empirical studies have struggled to clearly demonstrate these effects or pinpoint underlying mechanisms. Here, we paired the social transfer of pain and analgesia-behavioral tests modeling empathy in mice-with region-specific neuropharmacology, optogenetics, and transgenic manipulations to explore MDMA's action as an empathogen. We report that MDMA, given intraperitoneally or infused directly into the nucleus accumbens (NAc), robustly enhances the social transfer of pain and analgesia. Optogenetic stimulation of 5-HT release in the NAc recapitulates the effects of MDMA, implicating 5-HT signaling as a core mechanism. Last, we demonstrate that systemic MDMA or optogenetic stimulation of NAc 5-HT inputs restores deficits in empathy-like behaviors in the Shank3-deficient mouse model of autism. These findings demonstrate enhancement of empathy-related behaviors by MDMA and implicate 5-HT signaling in the NAc as a core mechanism mediating MDMA's empathogenic effects.


Assuntos
Empatia , Proteínas dos Microfilamentos , N-Metil-3,4-Metilenodioxianfetamina , Núcleo Accumbens , Optogenética , Serotonina , Animais , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Empatia/efeitos dos fármacos , Serotonina/metabolismo , Camundongos , Masculino , Comportamento Animal/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Transtorno Autístico/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
11.
Nat Commun ; 15(1): 3661, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688901

RESUMO

Optochemistry, an emerging pharmacologic approach in which light is used to selectively activate or deactivate molecules, has the potential to alleviate symptoms, cure diseases, and improve quality of life while preventing uncontrolled drug effects. The development of in-vivo applications for optochemistry to render brain cells photoresponsive without relying on genetic engineering has been progressing slowly. The nucleus accumbens (NAc) is a region for the regulation of slow-wave sleep (SWS) through the integration of motivational stimuli. Adenosine emerges as a promising candidate molecule for activating indirect pathway neurons of the NAc expressing adenosine A2A receptors (A2ARs) to induce SWS. Here, we developed a brain-permeable positive allosteric modulator of A2ARs (A2AR PAM) that can be rapidly photoactivated with visible light (λ > 400 nm) and used it optoallosterically to induce SWS in the NAc of freely behaving male mice by increasing the activity of extracellular adenosine derived from astrocytic and neuronal activity.


Assuntos
Adenosina , Núcleo Accumbens , Receptor A2A de Adenosina , Sono de Ondas Lentas , Animais , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Masculino , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/genética , Camundongos , Adenosina/metabolismo , Adenosina/farmacologia , Regulação Alostérica , Sono de Ondas Lentas/fisiologia , Sono de Ondas Lentas/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Luz , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Humanos , Agonistas do Receptor A2 de Adenosina/farmacologia
12.
Science ; 384(6693): eadk6742, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38669575

RESUMO

Drugs of abuse are thought to promote addiction in part by "hijacking" brain reward systems, but the underlying mechanisms remain undefined. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we found that drugs of abuse augment dopaminoceptive ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell type-specific manner. Combining FOS-Seq, CRISPR-perturbation, and single-nucleus RNA sequencing, we identified Rheb as a molecular substrate that regulates cell type-specific signal transduction in NAc while enabling drugs to suppress natural reward consumption. Mapping NAc-projecting regions activated by drugs of abuse revealed input-specific effects on natural reward consumption. These findings characterize the dynamic, molecular and circuit basis of a common reward pathway, wherein drugs of abuse interfere with the fulfillment of innate needs.


Assuntos
Homeostase , Núcleo Accumbens , Recompensa , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Animais , Camundongos , Neurônios/metabolismo , Drogas Ilícitas/efeitos adversos , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Masculino , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Transdução de Sinais , Transtornos Relacionados ao Uso de Substâncias , Análise de Célula Única , Cocaína/farmacologia , Cálcio/metabolismo
13.
Life Sci ; 348: 122673, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679193

RESUMO

AIMS: Glycine receptors (GlyRs) are potentiated by physiologically relevant concentrations of ethanol, and mutations in the intracellular loop of α1 and α2 subunits reduced the effect of the drug. Knock-in (KI) mice having these individual mutations revealed that α1 and α2 subunits played a role in ethanol-induced sedation and ethanol intake. In this study, we wanted to examine if the effects of stacking both mutations in a 2xKI mouse model (α1/α2) generated by a selective breeding strategy further impacted cellular and behavioral responses to ethanol. MAIN METHODS: We used electrophysiological recordings to examine ethanol's effect on GlyRs and evaluated ethanol-induced neuronal activation using c-Fos immunoreactivity and the genetically encoded calcium indicator GCaMP6s in the nucleus accumbens (nAc). We also examined ethanol-induced behavior using open field, loss of the righting response, and drinking in the dark (DID) paradigm. KEY FINDINGS: Ethanol did not potentiate GlyRs nor affect neuronal excitability in the nAc from 2xKI. Moreover, ethanol decreased the Ca2+ signal in WT mice, whereas there were no changes in the signal in 2xKI mice. Interestingly, there was an increase in c-Fos baseline in the 2xKI mice in the absence of ethanol. Behavioral assays showed that 2xKI mice recovered faster from a sedative dose of ethanol and had higher ethanol intake on the first test day of the DID test than WT mice. Interestingly, an open-field assay showed that 2xKI mice displayed less anxiety-like behavior than WT mice. SIGNIFICANCE: The results indicate that α1 and α2 subunits are biologically relevant targets for regulating sedative effects and ethanol consumption.


Assuntos
Etanol , Técnicas de Introdução de Genes , Receptores de Glicina , Animais , Etanol/farmacologia , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Camundongos , Masculino , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos Transgênicos , Receptores de GABA-A
14.
Behav Brain Res ; 466: 114983, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38580200

RESUMO

Humans and other animals exhibit aversive behavioral and emotional responses to unequal reward distributions compared with their conspecifics. Despite the significance of this phenomenon, experimental animal models designed to investigate social inequity aversion and delve into the underlying neurophysiological mechanisms are limited. In this study, we developed a rat model to determine the effects of socially equal or unequal reward and stress on emotional changes in male rats. During the training session, the rats were trained to escape when a sound cue was presented, and they were assigned to one of the following groups: all escaping rats [advantageous equity (AE)], freely moving rats alongside a restrained rat [advantageous inequity (AI)], all restrained rats [disadvantageous equity (DE)], and a rat restrained in the presence of freely moving companions [disadvantageous inequity (DI)]. During the test session, rats in the advantageous group (AE and AI) escaped after the cue sound (expected reward acquisition), whereas rats in the disadvantageous group (DE and DI) could not escape despite the cue being presented (expected reward deprivation). Emotional alteration induced by exposure to restraint stress under various social interaction circumstances was examined using an open field test. Notably, the DI group displayed reduced exploration of the center zone during the open field tests compared with the other groups, indicating heightened anxiety-like behaviors in response to reward inequity. Immunohistochemical analysis revealed increased c-Fos expression in the medial prefrontal and orbitofrontal cortices, coupled with reduced c-Fos expression in the striatum and nucleus accumbens under DI conditions, in contrast to the other experimental conditions. These findings provide compelling evidence that rats are particularly sensitive to reward inequity, shedding light on the neurophysiological basis for distinct cognitive processes that manifest when individuals are exposed to social equity and inequity situations.


Assuntos
Comportamento Animal , Emoções , Proteínas Proto-Oncogênicas c-fos , Estresse Psicológico , Animais , Masculino , Ratos , Comportamento Animal/fisiologia , Sinais (Psicologia) , Emoções/fisiologia , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Recompensa , Comportamento Social , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
15.
Behav Pharmacol ; 35(4): 193-200, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38567425

RESUMO

Prepulse inhibition (PPI) is a crucial indicator of sensorimotor gating that is often impaired in neuropsychiatric diseases. Although dopamine D1 receptor agonists have been found to disrupt PPI in mice, the underlying mechanisms are not fully understood. In this study, we aimed to identify the brain regions responsible for the PPI-disruptive effect of the D1 agonist in mice. Results demonstrated that intraperitoneal administration of the selective dopamine D1 receptor agonist SKF82958 dramatically inhibited PPI, while the dopamine D1 receptor antagonist SCH23390 enhanced PPI. Additionally, local infusion of SKF82958 into the nucleus accumbens and medial prefrontal cortex disrupted PPI, but not in the ventral hippocampus. Infusion of SCH23390 into these brain regions also failed to enhance PPI. Overall, the study suggests that the nucleus accumbens and medial prefrontal cortex are responsible for the PPI-disruptive effect of dopamine D1 receptor agonists. These findings provide essential insights into the cellular and neural circuit mechanisms underlying the disruptive effects of dopamine D1 receptor agonists on PPI and may contribute to the development of novel treatments for neuropsychiatric diseases.


Assuntos
Benzazepinas , Agonistas de Dopamina , Camundongos Endogâmicos C57BL , Núcleo Accumbens , Córtex Pré-Frontal , Inibição Pré-Pulso , Receptores de Dopamina D1 , Animais , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Agonistas de Dopamina/farmacologia , Camundongos , Benzazepinas/farmacologia , Masculino , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Inibição Pré-Pulso/efeitos dos fármacos , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/efeitos dos fármacos , Filtro Sensorial/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia
16.
J Neuroendocrinol ; 36(5): e13389, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599683

RESUMO

Hunger increases the motivation for calorie consumption, often at the expense of low-taste appeal. However, the neural mechanisms integrating calorie-sensing with increased motivation for calorie consumption remain unknown. Agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus sense hunger, and the ingestion of caloric solutions promotes dopamine release in the absence of sweet taste perception. Therefore, we hypothesised that metabolic-sensing of hunger by AgRP neurons would be essential to promote dopamine release in the nucleus accumbens in response to caloric, but not non-caloric solutions. Moreover, we examined whether metabolic sensing in AgRP neurons affected taste preference for bitter solutions under conditions of energy need. Here we show that impaired metabolic sensing in AgRP neurons attenuated nucleus accumbens dopamine release in response to sucrose, but not saccharin, consumption. Furthermore, metabolic sensing in AgRP neurons was essential to distinguish nucleus accumbens dopamine response to sucrose consumption when compared with saccharin. Under conditions of hunger, metabolic sensing in AgRP neurons increased the preference for sucrose solutions laced with the bitter tastant, quinine, to ensure calorie consumption, whereas mice with impaired metabolic sensing in AgRP neurons maintained a strong aversion to sucrose/quinine solutions despite ongoing hunger. In conclusion, we demonstrate normal metabolic sensing in AgRP neurons drives the preference for calorie consumption, primarily when needed, by engaging dopamine release in the nucleus accumbens.


Assuntos
Proteína Relacionada com Agouti , Dopamina , Núcleo Accumbens , Sacarose , Núcleo Accumbens/metabolismo , Animais , Dopamina/metabolismo , Proteína Relacionada com Agouti/metabolismo , Camundongos , Masculino , Preferências Alimentares/fisiologia , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fome/fisiologia , Percepção Gustatória/fisiologia
17.
J Affect Disord ; 356: 672-680, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657771

RESUMO

BACKGROUND: Depression is a chronic psychiatric disorder related to diminished dopaminergic neurotransmission. Deep brain stimulation (DBS) has shown effectiveness in treating patients with treatment-refractory depression (TRD). This study aimed to evaluate the effect of DBS on dopamine D2 receptor binding in patients with TRD. METHODS: Six patients with TRD were treated with bed nucleus of the stria terminalis (BNST)-nucleus accumbens (NAc) DBS were recruited. Ultra-high sensitivity [11C]raclopride dynamic total-body positron emission tomography (PET) imaging was used to assess the brain D2 receptor binding. Each patient underwent a [11C]raclopride PET scan for 60-min under DBS OFF and DBS ON, respectively. A simplified reference tissue model was used to generate parametric images of binding potential (BPND) with the cerebellum as reference tissue. RESULTS: Depression and anxiety symptoms improved after 3-6 months of DBS treatment. Compared with two-day-nonstimulated conditions, one-day BNST-NAc DBS decreased [11C]raclopride BPND in the amygdala (15.9 %, p < 0.01), caudate nucleus (15.4 %, p < 0.0001) and substantia nigra (10.8 %, p < 0.01). LIMITATIONS: This study was limited to the small sample size and lack of a healthy control group. CONCLUSIONS: Chronic BNST-NAc DBS improved depression and anxiety symptoms, and short-term stimulation decreased D2 receptor binding in the amygdala, caudate nucleus, and substantia nigra. The findings suggest that DBS relieves depression and anxiety symptoms possibly by regulating the dopaminergic system.


Assuntos
Estimulação Encefálica Profunda , Transtorno Depressivo Resistente a Tratamento , Núcleo Accumbens , Tomografia por Emissão de Pósitrons , Racloprida , Receptores de Dopamina D2 , Humanos , Receptores de Dopamina D2/metabolismo , Estimulação Encefálica Profunda/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Transtorno Depressivo Resistente a Tratamento/terapia , Transtorno Depressivo Resistente a Tratamento/metabolismo , Transtorno Depressivo Resistente a Tratamento/diagnóstico por imagem , Núcleo Accumbens/metabolismo , Núcleo Accumbens/diagnóstico por imagem , Adulto , Núcleos Septais/metabolismo , Núcleos Septais/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Resultado do Tratamento
18.
Biomolecules ; 14(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38672476

RESUMO

The recent approval of formulations of the endogenous neurosteroid allopregnanolone (brexanolone) and the synthetic neuroactive steroid SAGE-217 (zuranolone) to treat postpartum depression (PPD) has encouraged further research to elucidate why these potent enhancers of GABAAR function are clinically effective in this condition. Dopaminergic projections from the ventral tegmental area (VTA) to the nucleus accumbens are associated with reward/motivation and brain imaging studies report that individuals with PPD show reduced activity of this pathway in response to reward and infant engagement. However, the influence of neurosteroids on GABA-ergic transmission in the nucleus accumbens has received limited attention. Here, we investigate, in the medium spiny neurons (MSNs) of the mouse nucleus accumbens core, the effect of allopregnanolone, SAGE-217 and other endogenous and synthetic steroids of interest on fast phasic and tonic inhibition mediated by synaptic (α1/2ßγ2) and extrasynaptic (α4ßδ) GABAARs, respectively. We present evidence suggesting the resident tonic current results from the spontaneous opening of δ-GABAARs, where the steroid-enhanced tonic current is GABA-dependent. Furthermore, we demonstrate local neurosteroid synthesis in the accumbal slice preparation and reveal that GABA-ergic neurotransmission of MSNs is influenced by an endogenous neurosteroid tone. Given the dramatic fluctuations in allopregnanolone levels during pregnancy and postpartum, this neurosteroid-mediated local fine-tuning of GABAergic transmission in the MSNs will probably be perturbed.


Assuntos
Neuroesteroides , Núcleo Accumbens , Pregnanolona , Receptores de GABA-A , Animais , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Camundongos , Receptores de GABA-A/metabolismo , Neuroesteroides/metabolismo , Pregnanolona/farmacologia , Pregnanolona/metabolismo , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Feminino , Masculino , Transmissão Sináptica/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
19.
Immunity ; 57(4): 837-839, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599175

RESUMO

Activation of the peripheral immune system contributes to stress-related neuropsychiatric symptoms. Recently in Nature, Cathomas et al. demonstrate that stress-induced social avoidance is mediated by monocyte-derived MMP8 that remodels the extracellular space of the nucleus accumbens.


Assuntos
Depressão , Monócitos , Estresse Psicológico , Núcleo Accumbens
20.
ACS Chem Neurosci ; 15(9): 1738-1754, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613458

RESUMO

Iboga alkaloids, also known as coronaridine congeners, have shown promise in the treatment of alcohol and opioid use disorders. The objective of this study was to evaluate the effects of catharanthine and 18-methoxycoronaridine (18-MC) on dopamine (DA) transmission and cholinergic interneurons in the mesolimbic DA system, nicotine-induced locomotor activity, and nicotine-taking behavior. Utilizing ex vivo fast-scan cyclic voltammetry (FSCV) in the nucleus accumbens core of male mice, we found that catharanthine or 18-MC differentially inhibited evoked DA release. Catharanthine inhibition of evoked DA release was significantly reduced by both α4 and α6 nicotinic acetylcholine receptors (nAChRs) antagonists. Additionally, catharanthine substantially increased DA release more than vehicle during high-frequency stimulation, although less potently than an α4 nAChR antagonist, which confirms previous work with nAChR antagonists. Interestingly, while catharanthine slowed DA reuptake measured via FSCV ex vivo, it also increased extracellular DA in striatal dialysate from anesthetized mice in vivo in a dose-dependent manner. Superfusion of catharanthine or 18-MC inhibited the firing rate of striatal cholinergic interneurons in a concentration dependent manner, which are known to potently modulate presynaptic DA release. Catharanthine or 18-MC suppressed acetylcholine currents in oocytes expressing recombinant rat α6/α3ß2ß3 or α6/α3ß4 nAChRs. In behavioral experiments using male Sprague-Dawley rats, systemic administration of catharanthine or 18-MC blocked nicotine enhancement of locomotor activity. Importantly, catharanthine attenuated nicotine self-administration in a dose-dependent manner while having no effect on food reinforcement. Lastly, administration of catharanthine and nicotine together greatly increased head twitch responses, indicating a potential synergistic hallucinogenic effect. These findings demonstrate that catharanthine and 18-MC have similar, but not identical effects on striatal DA dynamics, striatal cholinergic interneuron activity and nicotine psychomotor effects.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Ibogaína , Ibogaína/análogos & derivados , Nicotina , Receptores Nicotínicos , Animais , Dopamina/metabolismo , Masculino , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Nicotina/farmacologia , Ibogaína/farmacologia , Camundongos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Camundongos Endogâmicos C57BL , Antagonistas Nicotínicos/farmacologia , Oócitos/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Autoadministração , Xenopus laevis , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Relação Dose-Resposta a Droga , Atividade Motora/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA