Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.999
Filtrar
1.
J Headache Pain ; 25(1): 152, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289629

RESUMO

BACKGROUND: Migraine is among the most prevalent and burdensome neurological disorders in the United States based on disability-adjusted life years. Cortical spreading depolarization (SD) is the most likely electrophysiological cause of migraine aura and may be linked to trigeminal nociception. We previously demonstrated, using a minimally invasive optogenetic approach of SD induction (opto-SD), that opto-SD triggers acute periorbital mechanical allodynia that is reversed by 5HT1B/1D receptor agonists, supporting SD-induced activation of migraine-relevant trigeminal pain pathways in mice. Recent data highlight hypothalamic neural circuits in migraine, and SD may activate hypothalamic neurons. Furthermore, neuroanatomical, electrophysiological, and behavioral data suggest a homeostatic analgesic function of hypothalamic neuropeptide hormone, oxytocin. We, therefore, examined the role of hypothalamic paraventricular nucleus (PVN) and oxytocinergic (OXT) signaling in opto-SD-induced trigeminal pain behavior. METHODS: We induced a single opto-SD in adult male and female Thy1-ChR2-YFP transgenic mice and quantified fos immunolabeling in the PVN and supraoptic nucleus (SON) compared with sham controls. Oxytocin expression was also measured in fos-positive neurons in the PVN. Periorbital mechanical allodynia was tested after treatment with selective OXT receptor antagonist L-368,899 (5 to 25 mg/kg i.p.) or vehicle at 1, 2, and 4 h after opto-SD or sham stimulation using von Frey monofilaments. RESULTS: Opto-SD significantly increased the number of fos immunoreactive cells in the PVN and SON as compared to sham stimulation (p < 0.001, p = 0.018, respectively). A subpopulation of fos-positive neurons also stained positive for oxytocin. Opto-SD evoked periorbital mechanical allodynia 1 h after SD (p = 0.001 vs. sham), which recovered quickly within 2 h (p = 0.638). OXT receptor antagonist L-368,899 dose-dependently prolonged SD-induced periorbital allodynia (p < 0.001). L-368,899 did not affect mechanical thresholds in the absence of opto-SD. CONCLUSIONS: These data support an SD-induced activation of PVN neurons and a role for endogenous OXT in alleviating acute SD-induced trigeminal allodynia by shortening its duration.


Assuntos
Hiperalgesia , Camundongos Transgênicos , Ocitocina , Animais , Ocitocina/metabolismo , Masculino , Feminino , Camundongos , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Receptores de Ocitocina/metabolismo , Núcleo Supraóptico/metabolismo , Núcleo Supraóptico/efeitos dos fármacos , Modelos Animais de Doenças , Canfanos , Piperazinas
2.
Hypertens Res ; 47(9): 2393-2404, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39039283

RESUMO

Chronic hypertensive pregnancy (CHP) is a growing health issue with unknown etiology. Vasopressin (VP), a nonapeptide synthesized in paraventricular (PVN) and supraoptic nucleus (SON), is a well-known neuroendocrine and autonomic modulator of the cardiovascular system, related to hypertension development. We quantified gene expression of VP and its receptors, V1aR and V1bR, within the PVN and SON in CHP and normal pregnancy, and assessed levels of secreted plasma VP. Also, we evaluated autonomic cardiovascular adaptations to CHP using spectral indices of blood pressure (BPV) and heart rate (HRV) short-term variability, and spontaneous baroreflex sensitivity (BRS). Experiments were performed in female spontaneously hypertensive rats (SHRs) and in normotensive Wistar rats (WRs). Animals were equipped with a radiotelemetry probe for continuous hemodynamic recordings before and during pregnancy. BPV, HRV and BRS were assessed using spectral analysis and the sequence method, respectively. Plasma VP was determined by ELISA whilst VP, V1aR, and V1bR gene expression was analyzed by real-time-quantitative PCR (RT-qPCR). The results show that non-pregnant SHRs exhibit greater VP, V1aR, and V1bR gene expression in both PVN and SON respectively, compared to Wistar dams. Pregnancy decreased VP gene expression in the SON of SHRs but increased it in the PVN and SON of WRs. Pregnant SHRs exhibited a marked drop in plasma VP concentration associated with BP normalization. This triggered marked tachycardia, heart rate variability increase, and BRS increase in pregnant SHRs. It follows that regardless of BP normalization in late pregnancy, SHRs exhibit cardiovascular vulnerability and compensate by recruiting vagal mechanisms. Pregnant SHR dams have reduced expression of VP in SON associated with increased V1bR expression, lower plasma VP, normal BP during late pregnancy and marked signs of enhanced sympathetic cardiac stimulation (increased HR and LFHR variability) and recruitment of vagal mechanisms (enhancement of BRS and HFHR variability).


Assuntos
Barorreflexo , Pressão Sanguínea , Frequência Cardíaca , Vasopressinas , Animais , Feminino , Gravidez , Ratos , Sistema Nervoso Autônomo/fisiopatologia , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Hipertensão Induzida pela Gravidez/fisiopatologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR , Ratos Wistar , Receptores de Vasopressinas/metabolismo , Núcleo Supraóptico/metabolismo , Vasopressinas/sangue , Vasopressinas/metabolismo
3.
Peptides ; 179: 171269, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38960286

RESUMO

bZIP transcription factors can function as homodimers or heterodimers through interactions with their disordered coiled-coil domain. Such dimer assemblies are known to influence DNA-binding specificity and/or the recruitment of binding partners, which can cause a functional switch of a transcription factor from being an activator to a repressor. We recently identified the genomic targets of a bZIP transcription factor called CREB3L1 in rat hypothalamic supraoptic nucleus by ChIP-seq. The objective of this study was to investigate the CREB3L1 protein-to-protein interactome of which little is known. For this approach, we created and screened a rat supraoptic nucleus yeast two-hybrid prey library with the bZIP region of rat CREB3L1 as the bait. Our yeast two-hybrid approach captured five putative CREB3L1 interacting prey proteins in the supraoptic nucleus. One interactor was selected by bioinformatic analyses for more detailed investigation by co-immunoprecipitation, immunofluorescent cellular localisation, and reporter assays in vitro. Here we identify dimerisation hub protein Dynein Light Chain LC8-Type 1 as a CREB3L1 interacting protein that in vitro enhances CREB3L1 activation of target genes.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Dineínas do Citoplasma , Proteínas do Tecido Nervoso , Ativação Transcricional , Animais , Humanos , Ratos , Arginina Vasopressina/metabolismo , Arginina Vasopressina/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Dineínas do Citoplasma/metabolismo , Dineínas do Citoplasma/genética , Multimerização Proteica , Núcleo Supraóptico/metabolismo , Ativação Transcricional/genética , Técnicas do Sistema de Duplo-Híbrido
4.
Pharmacol Biochem Behav ; 243: 173839, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39079561

RESUMO

Puberty is a critical period of emotional development and neuroplasticity. However, most studies have focused on early development, with limited research on puberty, particularly the parental presence. In this study, four groups were established, and pubertal maternal presence (PMP) was assessed until postnatal days 21 (PD21), 28 (PD28), 35 (PD35), and 42 (PD42), respectively. The social interaction and anxiety behaviors, as well as the expression of oxytocin (OT) in the paraventricular nucleus (PVN) and supraoptic nucleus (SON), and the number of new generated neurons and the expression of estrogen receptor alpha (ERα) in the dentate gyrus (DG) were assessed. The results suggest that there is a lot of physical contact between the mother and offspring from 21 to 42 days of age, which reduces anxiety in both female and male offspring in adulthood; for example, the PMP increased the amount of time mice spent in the center area in the open field experiment and in the bright area in the light-dark box experiment. PMP increased OT expression in the PVN and SON and the number of newly generated neurons in the DG. However, there was a sexual difference in ERα, with ERα increasing in females but decreasing in males. In conclusion, PMP reduces the anxiety of offspring in adulthood, increases OT in the PVN and SON, and adult neurogenesis; ERα in the DG may be involved in this process.


Assuntos
Ansiedade , Giro Denteado , Receptor alfa de Estrogênio , Neurogênese , Ocitocina , Núcleo Hipotalâmico Paraventricular , Animais , Ansiedade/metabolismo , Camundongos , Masculino , Feminino , Receptor alfa de Estrogênio/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Giro Denteado/metabolismo , Maturidade Sexual , Núcleo Supraóptico/metabolismo , Comportamento Materno/fisiologia , Comportamento Animal , Interação Social
5.
J Neurosci ; 44(30)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38937101

RESUMO

Many neurons including vasopressin (VP) magnocellular neurosecretory cells (MNCs) of the hypothalamic supraoptic nucleus (SON) generate afterhyperpolarizations (AHPs) during spiking to slow firing, a phenomenon known as spike frequency adaptation. The AHP is underlain by Ca2+-activated K+ currents, and while slow component (sAHP) features are well described, its mechanism remains poorly understood. Previous work demonstrated that Ca2+ influx through N-type Ca2+ channels is a primary source of sAHP activation in SON oxytocin neurons, but no obvious channel coupling was described for VP neurons. Given this, we tested the possibility of an intracellular source of sAHP activation, namely, the Ca2+-handling organelles endoplasmic reticulum (ER) and mitochondria in male and female Wistar rats. We demonstrate that ER Ca2+ depletion greatly inhibits sAHPs without a corresponding decrease in Ca2+ signal. Caffeine sensitized AHP activation by Ca2+ In contrast to ER, disabling mitochondria with CCCP or blocking mitochondria Ca2+ uniporters (MCUs) enhanced sAHP amplitude and duration, implicating mitochondria as a vital buffer for sAHP-activating Ca2+ Block of mitochondria Na+-dependent Ca2+ release via triphenylphosphonium (TPP+) failed to affect sAHPs, indicating that mitochondria Ca2+ does not contribute to sAHP activation. Together, our results suggests that ER Ca2+-induced Ca2+ release activates sAHPs and mitochondria shape the spatiotemporal trajectory of the sAHP via Ca2+ buffering in VP neurons. Overall, this implicates organelle Ca2+, and specifically ER-mitochondria-associated membrane contacts, as an important site of Ca2+ microdomain activity that regulates sAHP signaling pathways. Thus, this site plays a major role in influencing VP firing activity and systemic hormonal release.


Assuntos
Cálcio , Retículo Endoplasmático , Mitocôndrias , Neurônios , Ratos Wistar , Núcleo Supraóptico , Vasopressinas , Animais , Ratos , Vasopressinas/metabolismo , Masculino , Feminino , Neurônios/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Cálcio/metabolismo , Núcleo Supraóptico/metabolismo , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos dos fármacos , Sinalização do Cálcio/fisiologia
6.
J Reprod Dev ; 70(4): 213-222, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38684411

RESUMO

Understanding of central nervous system mechanisms underlying age-related infertility remains limited. Fibril α-synuclein, distinct from its monomeric form, is implicated in age-related diseases. Notably, fibril α-synuclein spreads among neurons, similar to prions, from damaged old neurons in cortex and hippocampus to healthy neurons. However, less is known whether α-synuclein propagates into oxytocin neurons, which play crucial roles in reproduction. We compared α-synuclein expression in the oxytocin neurons in suprachiasmatic nucleus (SCN), supraoptic nucleus (SON), paraventricular hypothalamic nucleus (PVN), and posterior pituitary (PP) gland of healthy heifers and aged cows to determine its role in age-related infertility. We analyzed mRNA and protein expression, along with Congo red histochemistry and fluorescent immunohistochemistry for oxytocin and α-synuclein, followed by confocal microscopy with Congo red staining. Both mRNA and protein expressions of α-synuclein were confirmed in the bovine cortex, hippocampus, SCN, SON, PVN, and PP tissues. Significant differences in α-synuclein mRNA expressions were observed in the cortex and hippocampus between young heifers and old cows. Western blots showed five bands of α-synuclein, probably reflecting monomers, dimers, and oligomers, in the cortex, hippocampus, SCN, SON, PVN, and PP tissues, and there were significant differences in some bands between the young heifers and old cows. Bright-field and polarized light microscopy did not detect obvious amyloid deposition in the aged hypothalami; however, higher-sensitive confocal microscopy unveiled strong positive signals for Congo red and α-synuclein in oxytocin neurons in the aged hypothalami. α-synuclein was expressed in oxytocin neurons, and some differences were observed between young and old hypothalami.


Assuntos
Encéfalo , Neurônios , Ocitocina , Núcleo Hipotalâmico Paraventricular , alfa-Sinucleína , Animais , Ocitocina/metabolismo , Bovinos , Neurônios/metabolismo , alfa-Sinucleína/metabolismo , Feminino , Núcleo Hipotalâmico Paraventricular/metabolismo , Encéfalo/metabolismo , Envelhecimento/metabolismo , Núcleo Supraóptico/metabolismo , Núcleo Supraquiasmático/metabolismo , RNA Mensageiro/metabolismo , Hipocampo/metabolismo , Neuro-Hipófise/metabolismo
7.
Biotech Histochem ; 99(3): 125-133, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533595

RESUMO

The adipocyte-derived hormone, leptin, plays a key role in the maintenance of energy homeostasis. Leptin binds to the long form of its receptor, which is predominantly expressed in various hypothalamic regions, including the lateral hypothalamic area (LH) and supraoptic nucleus (SO). Several studies have suggested that leptin directly activates neuronal nitric oxide synthase, leading to increased nitric oxide production. We used histochemistry for nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) as a marker for nitric oxide synthase activity and assessed the effect of leptin on nitrergic neurons in the LH and SO of rats. We found that intraperitoneal administration of leptin led to a significant increase in the number of NADPH-d-positive neurons in the LH and SO. In addition, the intensity (optical density) of NADPH-d staining in LH and SO neurons was significantly elevated in rats that received leptin compared with saline-treated rats. These findings suggest that nitrergic neurons in the LH and SO may be implicated in mediating the central effects of leptin.


Assuntos
Região Hipotalâmica Lateral , Leptina , Neurônios Nitrérgicos , Núcleo Supraóptico , Animais , Leptina/farmacologia , Leptina/metabolismo , Masculino , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Ratos , Núcleo Supraóptico/efeitos dos fármacos , Núcleo Supraóptico/metabolismo , Neurônios Nitrérgicos/efeitos dos fármacos , Neurônios Nitrérgicos/metabolismo , NADPH Desidrogenase/metabolismo , Ratos Wistar , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Sprague-Dawley
8.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176904

RESUMO

NMDA receptors (NMDARs) modulate glutamatergic excitatory tone in the brain via two complementary modalities: a phasic excitatory postsynaptic current and a tonic extrasynaptic modality. Here, we demonstrated that the tonic NMDAR-current (I NMDA) mediated by NR2A-containing NMDARs is an efficient biosensor detecting the altered ambient glutamate level in the supraoptic nucleus (SON). I NMDA of magnocellular neurosecretory cells (MNCs) measured by nonselective NMDARs antagonist, AP5, at holding potential (V holding) -70 mV in low concentration of ECF Mg2+ ([Mg2+]o) was transiently but significantly increased 1-week post induction of a DOCA salt hypertensive model rat which was compatible with that induced by a NR2A-selective antagonist, PEAQX (I PEAQX) in both DOCA-H2O and DOCA-salt groups. In agreement, NR2B antagonist, ifenprodil, or NR2C/D antagonist, PPDA, did not affect the holding current (I holding) at V holding -70 mV. Increased ambient glutamate by exogenous glutamate (10 mM) or excitatory amino acid transporters (EAATs) antagonist (TBOA, 50 mM) abolished the I PEAQX difference between two groups, suggesting that attenuated EAATs activity increased ambient glutamate concentration, leading to the larger I PEAQX in DOCA-salt rats. In contrast, only ifenprodil but not PEAQX and PPDA uncovered I NMDA at V holding +40 mV under 1.2 mM [Mg2+]o condition. I ifenprodil was not different in DOCA-H2O and DOCA-salt groups. Finally, NR2A, NR2B, and NR2D protein expression were not different in the SON of the two groups. Taken together, NR2A-containing NMDARs efficiently detected the increased ambient glutamate concentration in the SON of DOCA-salt hypertensive rats due to attenuated EAATs activity.


Assuntos
Acetato de Desoxicorticosterona , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Ácido Glutâmico/metabolismo , Núcleo Supraóptico/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia
9.
Nature ; 626(7998): 347-356, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267576

RESUMO

To survive in a complex social group, one needs to know who to approach and, more importantly, who to avoid. In mice, a single defeat causes the losing mouse to stay away from the winner for weeks1. Here through a series of functional manipulation and recording experiments, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin-receptor-expressing cells in the anterior subdivision of the ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance. Before defeat, aVMHvlOXTR cells minimally respond to aggressor cues. During defeat, aVMHvlOXTR cells are highly activated and, with the help of an exclusive oxytocin supply from the SOR, potentiate their responses to aggressor cues. After defeat, strong aggressor-induced aVMHvlOXTR cell activation drives the animal to avoid the aggressor and minimizes future defeat. Our study uncovers a neural process that supports rapid social learning caused by defeat and highlights the importance of the brain oxytocin system in social plasticity.


Assuntos
Agressão , Aprendizagem da Esquiva , Hipotálamo , Vias Neurais , Neurônios , Ocitocina , Aprendizado Social , Animais , Camundongos , Agressão/fisiologia , Aprendizagem da Esquiva/fisiologia , Sinais (Psicologia) , Medo/fisiologia , Hipotálamo/citologia , Hipotálamo/metabolismo , Vias Neurais/fisiologia , Neurônios/metabolismo , Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Comportamento Social , Aprendizado Social/fisiologia , Núcleo Supraóptico/citologia , Núcleo Supraóptico/metabolismo , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/metabolismo , Plasticidade Neuronal
10.
J Neurosci ; 43(49): 8306-8316, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37783507

RESUMO

The Scn7A gene encodes NaX, an atypical noninactivating Na+ channel, whose expression in sensory circumventricular organs is essential to maintain homeostatic responses for body fluid balance. However, NaX has also been detected in homeostatic effector neurons, such as vasopressin (VP)-releasing magnocellular neurosecretory cells (MNCVP) that secrete VP (antidiuretic hormone) into the bloodstream in response to hypertonicity and hypernatremia. Yet, the physiological relevance of NaX expression in these effector cells remains unclear. Here, we show that rat MNCVP in males and females is depolarized and excited in proportion with isosmotic increases in [Na+]. These responses were caused by an inward current resulting from a cell-autonomous increase in Na+ conductance. The Na+-evoked current was unaffected by blockers of other Na+-permeable ion channels but was significantly reduced by shRNA-mediated knockdown of Scn7A expression. Furthermore, reducing the density of NaX channels selectively impaired the activation of MNCVP by systemic hypernatremia without affecting their responsiveness to hypertonicity in vivo These results identify NaX as a physiological Na+ sensor, whose expression in MNCVP contributes to the generation of homeostatic responses to hypernatremia.SIGNIFICANCE STATEMENT In this study, we provide the first direct evidence showing that the sodium-sensing channel encoded by the Scn7A gene (NaX) mediates cell-autonomous sodium detection by MNCs in the low millimolar range and that selectively reducing the expression of these channels in MNCs impairs their activation in response to a physiologically relevant sodium stimulus in vitro and in vivo These data reveal that NaX operates as a sodium sensor in these cells and that the endogenous sensory properties of osmoregulatory effector neurons contribute to their homeostatic activation in vivo.


Assuntos
Hipernatremia , Núcleo Supraóptico , Canais de Sódio Disparados por Voltagem , Animais , Feminino , Masculino , Ratos , Hipernatremia/metabolismo , Ocitocina/metabolismo , Sódio/metabolismo , Núcleo Supraóptico/metabolismo , Vasopressinas/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/fisiologia
11.
Biol Sex Differ ; 14(1): 71, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858270

RESUMO

BACKGROUND: The supraoptic nucleus (SON) of the hypothalamus contains magnocellular neurosecretory cells that secrete the hormones vasopressin and oxytocin. Sex differences in SON gene expression have been relatively unexplored. Our study used spatially resolved transcriptomics to visualize gene expression profiles in the SON of adult male (n = 4) and female (n = 4) Sprague-Dawley rats using Visium Spatial Gene Expression (10x Genomics). METHODS: Briefly, 10-µm coronal sections (~ 4 × 4 mm) containing the SON were collected from each rat and processed using Visium slides and recommended protocols. Data were analyzed using 10x Genomics' Space Ranger and Loupe Browser applications and other bioinformatic tools. Two unique differential expression (DE) analysis methods, Loupe Browser and DESeq2, were used. RESULTS: Loupe Browser DE analysis of the SON identified 116 significant differentially expressed genes (DEGs) common to both sexes (e.g., Avp and Oxt), 31 significant DEGs unique to the males, and 73 significant DEGs unique to the females. DESeq2 analysis revealed 183 significant DEGs between the two groups. Gene Ontology (GO) enrichment and pathway analyses using significant genes identified via Loupe Browser revealed GO terms and pathways related to (1) neurohypophyseal hormone activity, regulation of peptide hormone secretion, and regulation of ion transport for the significant genes common to both males and females, (2) Gi signaling/G-protein mediated events for the significant genes unique to males, and (3) potassium ion transport/voltage-gated potassium channels for the significant genes unique to females, as some examples. GO/pathway analyses using significant genes identified via DESeq2 comparing female vs. male groups revealed GO terms/pathways related to ribosomal structure/function. Ingenuity Pathway Analysis (IPA) identified additional sex differences in canonical pathways (e.g., 'Mitochondrial Dysfunction', 'Oxidative Phosphorylation') and upstream regulators (e.g., CSF3, NFKB complex, TNF, GRIN3A). CONCLUSION: There was little overlap in the IPA results for the two different DE methods. These results suggest sex differences in SON gene expression that are associated with cell signaling and ribosomal pathways.


The brain releases the hormones oxytocin and vasopressin from the supraoptic nucleus. Oxytocin is involved in maternal behaviors, lactation, and childbirth. Vasopressin is involved in sex-based differences in social behavior and body fluid regulation. However, how the brain contributes to sex-based differences in vasopressin and oxytocin release is poorly understood. This study aimed to address this knowledge gap using spatial transcriptomics to test for sex-based differences in gene expression in the supraoptic nucleus. Spatial transcriptomics combines anatomy with gene sequencing technology, allowing us to identify groups of genes that are expressed in specific locations in the brain. We applied this approach to brain sections containing the supraoptic nucleus from four adult male and four adult female rats. Using a data analysis workflow specifically for spatial transcriptomics, we identified genes that are significantly expressed in the supraoptic nuclei of both males and females (116 genes), primarily males (31 genes), and primarily females (73 genes). Genes enriched in the supraoptic nucleus of both males and females are related to the synthesis and release of peptides like vasopressin and oxytocin. Genes specific to the male supraoptic nucleus are broadly related to cell signaling, while the female-specific genes are related to ion transporters/channels. Results from a more traditional data analysis workflow identified sex-based differences in the expression of genes related to cell metabolism and protein synthesis. Together these results may provide a mechanistic foundation that can be used to better understand how differences in gene expression related to biological sex influence brain function.


Assuntos
Caracteres Sexuais , Núcleo Supraóptico , Ratos , Feminino , Masculino , Animais , Núcleo Supraóptico/química , Núcleo Supraóptico/metabolismo , Ratos Sprague-Dawley , Transcriptoma , Ocitocina/análise , Ocitocina/genética , Ocitocina/metabolismo , Transdução de Sinais
12.
Cells ; 12(13)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37443757

RESUMO

We assessed interactions between the astrocytic volume-regulated anion channel (VRAC) and aquaporin 4 (AQP4) in the supraoptic nucleus (SON). Acute SON slices and cultures of hypothalamic astrocytes prepared from rats received hyposmotic challenge (HOC) with/without VRAC or AQP4 blockers. In acute slices, HOC caused an early decrease with a late rebound in the neuronal firing rate of vasopressin neurons, which required activity of astrocytic AQP4 and VRAC. HOC also caused a persistent decrease in the excitatory postsynaptic current frequency, supported by VRAC and AQP4 activity in early HOC; late HOC required only VRAC activity. These events were associated with the dynamics of glial fibrillary acidic protein (GFAP) filaments, the late retraction of which was mediated by VRAC activity; this activity also mediated an HOC-evoked early increase in AQP4 expression and late subside in GFAP-AQP4 colocalization. AQP4 activity supported an early HOC-evoked increase in VRAC levels and its colocalization with GFAP. In cultured astrocytes, late HOC augmented VRAC currents, the activation of which depended on AQP4 pre-HOC/HOC activity. HOC caused an early increase in VRAC expression followed by a late rebound, requiring AQP4 and VRAC, or only AQP4 activity, respectively. Astrocytic swelling in early HOC depended on AQP4 activity, and so did the early extension of GFAP filaments. VRAC and AQP4 activity supported late regulatory volume decrease, the retraction of GFAP filaments, and subside in GFAP-VRAC colocalization. Taken together, astrocytic morphological plasticity relies on the coordinated activities of VRAC and AQP4, which are mutually regulated in the astrocytic mediation of HOC-evoked modulation of vasopressin neuronal activity.


Assuntos
Aquaporina 4 , Núcleo Supraóptico , Ratos , Animais , Aquaporina 4/metabolismo , Núcleo Supraóptico/metabolismo , Astrócitos/metabolismo , Vasopressinas/farmacologia , Vasopressinas/metabolismo , Ânions/metabolismo , Neurônios/metabolismo
13.
J Neuroendocrinol ; 35(6): e13303, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37316906

RESUMO

In the present experiments, we tested the conclusion from previous electrophysiological experiments that gavage of sweet food and systemically applied insulin both stimulate oxytocin secretion. To do so, we measured oxytocin secretion from urethane-anaesthetised male rats, and demonstrated a significant increase in secretion in response to gavage of sweetened condensed milk but not isocaloric cream, and a significant increase in response to intravenous injection of insulin. We compared the measurements made in response to sweetened condensed milk with the predictions from a computational model, which we used to predict plasma concentrations of oxytocin from the published electrophysiological responses of oxytocin cells. The prediction from the computational model was very closely aligned to the levels of oxytocin measured in rats in response to gavage.


Assuntos
Insulinas , Ocitocina , Ratos , Masculino , Animais , Ocitocina/fisiologia , Núcleo Supraóptico/fisiologia , Uretana , Simulação por Computador
14.
J Neuroendocrinol ; 35(6): e13312, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37337093

RESUMO

Dilutional hyponatremia due to increased plasma arginine vasopressin (AVP) is associated with liver cirrhosis. However, plasma AVP remains elevated despite progressive hypoosmolality. This study investigated changes to inhibitory control of supraoptic nucleus (SON) AVP neurons during liver cirrhosis. Experiments were conducted with adult male Sprague-Dawley rats. Bile duct ligation was used as a model of chronic liver cirrhosis. An adeno-associated virus containing a construct with an AVP promoter and either green fluorescent protein (GFP) or a ratiometric chloride indicator, ClopHensorN, was bilaterally injected into the SON of rats. After 2 weeks, rats received either BDL or sham surgery, and liver cirrhosis was allowed to develop for 4 weeks. In vitro, loose patch recordings of action potentials were obtained from GFP-labeled and unlabeled SON neurons in response to a brief focal application of the GABAA agonist muscimol (100 µM). Changes to intracellular chloride ([Cl]i) following muscimol application were determined by changes to the fluorescence ratio of ClopHensorN. The contribution of cation chloride cotransporters NKCC1 and KCC2 to changes in intracellular chloride was investigated using their respective antagonists, bumetanide (BU, 10 µM) and VU0240551 (10 µM). Plasma osmolality and hematocrit were measured as a marker of dilutional hyponatremia. The results showed reduced or absent GABAA -mediated inhibition in a greater proportion of AVP neurons from BDL rats as compared to sham rats (100% inhibition in sham vs. 47% in BDL, p = .001). Muscimol application was associated with increased [Cl]i in most cells from BDL as compared to cells from sham rats (χ2 = 30.24, p < .001). NKCC1 contributed to the impaired inhibition observed in BDL rats (p < .001 BDL - BU vs. BDL + BU). The results show that impaired inhibition of SON AVP neurons and increased intracellular chloride contribute to the sustained dilutional hyponatremia in liver cirrhosis.


Assuntos
Hiponatremia , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Hiponatremia/metabolismo , Hiponatremia/patologia , Cloretos/metabolismo , Cloretos/farmacologia , Muscimol/metabolismo , Muscimol/farmacologia , Vasopressinas/metabolismo , Arginina Vasopressina/metabolismo , Neurônios/metabolismo , Núcleo Supraóptico/metabolismo , Ductos Biliares/cirurgia , Ductos Biliares/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Proteínas de Fluorescência Verde/metabolismo , Ácido gama-Aminobutírico/metabolismo
15.
Neuroendocrinology ; 113(10): 1008-1023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37271138

RESUMO

INTRODUCTION: Despite the widespread use of general anaesthetics, the mechanisms mediating their effects are still not understood. Although suppressed in most parts of the brain, neuronal activity, as measured by FOS activation, is increased in the hypothalamic supraoptic nucleus (SON) by numerous general anaesthetics, and evidence points to this brain region being involved in the induction of general anaesthesia (GA) and natural sleep. Posttranslational modifications of proteins, including changes in phosphorylation, enable fast modulation of protein function which could be underlying the rapid effects of GA. In order to identify potential phosphorylation events in the brain-mediating GA effects, we have explored the phosphoproteome responses in the rat SON and compared these to cingulate cortex (CC) which displays no FOS activation in response to general anaesthetics. METHODS: Adult Sprague-Dawley rats were treated with isoflurane for 15 min. Proteins from the CC and SON were extracted and processed for nano-LC mass spectrometry (LC-MS/MS). Phosphoproteomic determinations were performed by LC-MS/MS. RESULTS: We found many changes in the phosphoproteomes of both the CC and SON in response to 15 min of isoflurane exposure. Pathway analysis indicated that proteins undergoing phosphorylation adaptations are involved in cytoskeleton remodelling and synaptic signalling events. Importantly, changes in protein phosphorylation appeared to be brain region specific suggesting that differential phosphorylation adaptations might underlie the different neuronal activity responses to GA between the CC and SON. CONCLUSION: In summary, these data suggest that rapid posttranslational modifications in proteins involved in cytoskeleton remodelling and synaptic signalling events might mediate the central mechanisms mediating GA.


Assuntos
Anestésicos Gerais , Isoflurano , Ratos , Animais , Núcleo Supraóptico/metabolismo , Isoflurano/farmacologia , Isoflurano/metabolismo , Cromatografia Líquida , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-fos/metabolismo , Espectrometria de Massas em Tandem , Hipotálamo/metabolismo , Anestésicos Gerais/metabolismo , Anestésicos Gerais/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo
16.
PLoS One ; 18(5): e0285589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37163565

RESUMO

Breastfeeding, which is essential for the survival of mammalian infants, is critically mediated by pulsatile secretion of the pituitary hormone oxytocin from the central oxytocin neurons located in the paraventricular and supraoptic hypothalamic nuclei of mothers. Despite its importance, the molecular and neural circuit mechanisms of the milk ejection reflex remain poorly understood, in part because a mouse model to study lactation was only recently established. In our previous study, we successfully introduced fiber photometry-based chronic imaging of the pulsatile activities of oxytocin neurons during lactation. However, the necessity of Cre recombinase-based double knock-in mice substantially compromised the use of various Cre-dependent neuroscience toolkits. To overcome this obstacle, we developed a simple Cre-free method for monitoring oxytocin neurons by an adeno-associated virus vector driving GCaMP6s under a 2.6 kb mouse oxytocin mini-promoter. Using this method, we monitored calcium ion transients of oxytocin neurons in the paraventricular nucleus in wild-type C57BL/6N and ICR mothers without genetic crossing. By combining this method with video recordings of mothers and pups, we found that the pulsatile activities of oxytocin neurons require physical mother-pup contact for the milk ejection reflex. Notably, the frequencies of photometric signals were dynamically modulated by mother-pup reunions after isolation and during natural weaning stages. Collectively, the present study illuminates the temporal dynamics of pulsatile activities of oxytocin neurons in wild-type mice and provides a tool to characterize maternal oxytocin functions.


Assuntos
Lactação , Ocitocina , Feminino , Camundongos , Animais , Lactação/fisiologia , Ocitocina/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Neurônios/fisiologia , Núcleo Supraóptico/fisiologia , Núcleo Hipotalâmico Paraventricular , Mamíferos
17.
Mol Cell Proteomics ; 22(5): 100544, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030596

RESUMO

The cell bodies of hypothalamic magnocellular neurones are densely packed in the hypothalamic supraoptic nucleus, whereas their axons project to the anatomically discrete posterior pituitary gland. We have taken advantage of this unique anatomical structure to establish proteome and phosphoproteome dynamics in neuronal cell bodies and axonal terminals in response to physiological stimulation. We have found that proteome and phosphoproteome responses to neuronal stimulation are very different between somatic and axonal neuronal compartments, indicating the need of each cell domain to differentially adapt. In particular, changes in the phosphoproteome in the cell body are involved in the reorganization of the cytoskeleton and in axonal terminals the regulation of synaptic and secretory processes. We have identified that prohormone precursors including vasopressin and oxytocin are phosphorylated in axonal terminals and are hyperphosphorylated following stimulation. By multiomic integration of transcriptome and proteomic data, we identify changes to proteins present in afferent inputs to this nucleus.


Assuntos
Proteoma , Proteômica , Proteoma/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Núcleo Supraóptico/metabolismo
18.
Nat Commun ; 14(1): 1492, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932080

RESUMO

Visual input to the hypothalamus from intrinsically photosensitive retinal ganglion cells (ipRGCs) influences several functions including circadian entrainment, body temperature, and sleep. ipRGCs also project to nuclei such as the supraoptic nucleus (SON), which is involved in systemic fluid homeostasis, maternal behavior, social behaviors, and appetite. However, little is known about the SON-projecting ipRGCs or their relationship to well-characterized ipRGC subtypes. Using a GlyT2Cre mouse line, we show a subtype of ipRGCs restricted to the dorsal retina that selectively projects to the SON. These ipRGCs tile a dorsal region of the retina, forming a substrate for encoding ground luminance. Optogenetic activation of their axons demonstrates they release the neurotransmitter glutamate in multiple regions, including the suprachiasmatic nucleus (SCN) and SON. Our results challenge the idea that ipRGC dendrites overlap to optimize photon capture and suggests non-image forming vision operates to sample local regions of the visual field to influence diverse behaviors.


Assuntos
Retina , Núcleo Supraóptico , Feminino , Camundongos , Animais , Núcleo Supraóptico/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Opsinas de Bastonetes/genética
19.
PLoS One ; 18(3): e0283152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36930664

RESUMO

The hormone oxytocin, secreted from oxytocin neurons in the paraventricular (PVH) and supraoptic (SO) hypothalamic nuclei, promotes parturition, milk ejection, and maternal caregiving behaviors. Previous experiments with whole-body oxytocin knockout mice showed that milk ejection was the unequivocal function of oxytocin, whereas parturition and maternal behaviors were less dependent on oxytocin. Whole-body knockout, however, could induce the enhancement of expression of related gene(s), a phenomenon called genetic compensation, which may hide the actual functions of oxytocin. In addition, the relative contributions of oxytocin neurons in the PVH and SO have not been well documented. Here, we show that females with conditional knockout of oxytocin gene in both the PVH and SO undergo grossly normal parturition and maternal caregiving behaviors, while dams with a smaller number of remaining oxytocin-expressing neurons exhibit severe impairments in breastfeeding, leading to the death of their pups within 24 hours after birth. We also found that the growth of pups is normal even under oxytocin conditional knockout in PVH and SO as long as pups survive the next day of delivery, suggesting that the reduced oxytocin release affects the onset of lactation most severely. These phenotypes are largely recapitulated by SO-specific oxytocin conditional knockout, indicating the unequivocal role of oxytocin neurons in the SO in successful breastfeeding. Given that oxytocin neurons not only secrete oxytocin but also non-oxytocin neurotransmitters or neuropeptides, we further performed cell ablation of oxytocin neurons in the PVH and SO. We found that cell ablation of oxytocin neurons leads to no additional abnormalities over the oxytocin conditional knockout, suggesting that non-oxytocin ligands expressed by oxytocin neurons have negligible functions on the responses measured in this study. Collectively, our findings confirm the dispensability of oxytocin for parturition or maternal behaviors, as well as the importance of SO-derived oxytocin for breastfeeding.


Assuntos
Ocitocina , Núcleo Supraóptico , Feminino , Camundongos , Animais , Ocitocina/farmacologia , Núcleo Supraóptico/metabolismo , Neurônios/metabolismo , Hipotálamo/metabolismo , Lactação/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo
20.
Exp Brain Res ; 241(3): 851-864, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36757564

RESUMO

We demonstrated previously that the hypothalamic supraoptic nucleus (SON) undergoes an axonal sprouting response following a unilateral lesion of the hypothalamo-neurohypophysial tract in a 35-day-old rat to repopulate the partially denervated neural lobe (NL). However, no sprouting occurs following the same injury in a 125-day-old rat. We previously reported a significant increase in Thy-1 protein in the SON of a 125-day-old rat compared to a 35-day-old rat in the absence of injury. Thy-1 is a cell surface glycoprotein shown to inhibit axonal outgrowth following injury; however, we did not look at axotomy's effect on Thy-1 in the SON. Therefore, we sought to determine the integrin ligands that bind Thy-1 in the SON and how axotomy impacts Thy-1. Like what others have shown, the co-immunoprecipitation analysis demonstrated that Thy-1 interacts with αvß3 and αvß5 integrin dimers in the SON. We used western blot analysis to examine protein levels of Thy-1 and integrin subunits following injury in the 35- and 125-day-old rat SON and NL. Our results demonstrated that Thy-1 protein levels increase in the lesion SON in a 35-day-old rat. The quantitative dual-fluorescent analysis showed that the increase in Thy-1 in the lesion SON occurred in astrocytes. There was no change in Thy-1 or integrin protein levels following injury in the 125-day-old following injury. Furthermore, the axotomy significantly decreased Thy-1 protein levels in the NL of both 35- and 125-day-old rats. These results provide evidence that Thy-1 protein levels are injury dependent in the magnocellular neurosecretory system.


Assuntos
Núcleo Supraóptico , Ratos , Animais , Núcleo Supraóptico/metabolismo , Axotomia/métodos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA