Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Nat Commun ; 15(1): 5597, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961064

RESUMO

Cyclin-dependent kinases 4 and 6 (CDK4/6) play a pivotal role in cell cycle and cancer development. Targeting CDK4/6 has demonstrated promising effects against breast cancer. However, resistance to CDK4/6 inhibitors (CDK4/6i), such as palbociclib, remains a substantial challenge in clinical settings. Using high-throughput combinatorial drug screening and genomic sequencing, we find that the microphthalmia-associated transcription factor (MITF) is activated via O-GlcNAcylation by O-GlcNAc transferase (OGT) in palbociclib-resistant breast cancer cells and tumors. Mechanistically, O-GlcNAcylation of MITF at Serine 49 enhances its interaction with importin α/ß, thus promoting its translocation to nuclei, where it suppresses palbociclib-induced senescence. Inhibition of MITF or its O-GlcNAcylation re-sensitizes resistant cells to palbociclib. Moreover, clinical studies confirm the activation of MITF in tumors from patients who are palbociclib-resistant or undergoing palbociclib treatment. Collectively, our studies shed light on the mechanism regulating palbociclib resistance and present clinical evidence for developing therapeutic approaches to treat CDK4/6i-resistant breast cancer patients.


Assuntos
Neoplasias da Mama , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição Associado à Microftalmia , N-Acetilglucosaminiltransferases , Piperazinas , Piridinas , Humanos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Fator de Transcrição Associado à Microftalmia/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Feminino , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Piperazinas/farmacologia , Piridinas/farmacologia , Linhagem Celular Tumoral , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/genética , Animais , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892474

RESUMO

Diabetic retinopathy (DR) is a very serious diabetes complication. Changes in the O-linked N-acetylglucosamine (O-GlcNAc) modification are associated with many diseases. However, its role in DR is not fully understood. In this research, we explored the effect of O-GlcNAc modification regulation by activating AMP-activated protein kinase (AMPK) in DR, providing some evidence for clinical DR treatment in the future. Bioinformatics was used to make predictions from the database, which were validated using the serum samples of diabetic patients. As an in vivo model, diabetic mice were induced using streptozotocin (STZ) injection with/without an AMPK agonist (metformin) or an AMPK inhibitor (compound C) treatment. Electroretinogram (ERG) and H&E staining were used to evaluate the retinal functional and morphological changes. In vitro, 661 w cells were exposed to high-glucose conditions, with or without metformin treatment. Apoptosis was evaluated using TUNEL staining. The protein expression was detected using Western blot and immunofluorescence staining. The angiogenesis ability was detected using a tube formation assay. The levels of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in the serum changed in the DR patients in the clinic. In the diabetic mice, the ERG wave amplitude and retinal thickness decreased. In vitro, the apoptotic cell percentage and Bax expression were increased, and Bcl2 expression was decreased in the 661 w cells under high-glucose conditions. The O-GlcNAc modification was increased in DR. In addition, the expression of GFAT/TXNIP O-GlcNAc was also increased in the 661 w cells after the high-glucose treatment. Additionally, the Co-immunoprecipitation(CO-IP) results show that TXNIP interacted with the O-GlcNAc modification. However, AMPK activation ameliorated this effect. We also found that silencing the AMPKα1 subunit reversed this process. In addition, the conditioned medium of the 661 w cells may have affected the tube formation in vitro. Taken together, O-GlcNAc modification was increased in DR with photoreceptor cell degeneration and neovascularization; however, it was reversed after activating AMPK. The underlying mechanism is linked to the GFAT/TXNIP-O-GlcNAc modification signaling axis. Therefore, the AMPKα1 subunit plays a vital role in the process.


Assuntos
Proteínas Quinases Ativadas por AMP , Acetilglucosamina , Diabetes Mellitus Experimental , Retinopatia Diabética , N-Acetilglucosaminiltransferases , Retinopatia Diabética/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/patologia , Animais , Camundongos , Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Masculino , Apoptose/efeitos dos fármacos , Metformina/farmacologia , beta-N-Acetil-Hexosaminidases/metabolismo , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , Retina/metabolismo , Retina/patologia , Retina/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Linhagem Celular
3.
Bioorg Chem ; 147: 107321, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604018

RESUMO

Finding potent inhibitors of O-GlcNAc transferase (OGT) has proven to be a challenge, especially because the diversity of published inhibitors is low. The large majority of available OGT inhibitors are uridine-based or uridine-like compounds that mimic the main interactions of glycosyl donor UDP-GlcNAc with the enzyme. Until recently, screening of DNA-encoded libraries for discovering hits against protein targets was dedicated to a few laboratories around the world, but has become accessible to wider public with the recent launch of the DELopen platform. Here we report the results and follow-up of a DNA-encoded library screening by using the DELopen platform. This led to the discovery of two new hits with structural features not resembling UDP. Small focused libraries bearing those two scaffolds were made, leading to low micromolar inhibition of OGT and elucidation of their structure-activity relationship.


Assuntos
DNA , Descoberta de Drogas , Inibidores Enzimáticos , N-Acetilglucosaminiltransferases , Bibliotecas de Moléculas Pequenas , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , DNA/química , DNA/metabolismo , Humanos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Estrutura Molecular , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Difosfato de Uridina/metabolismo , Difosfato de Uridina/química
4.
J Biol Chem ; 299(12): 105411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918804

RESUMO

O-GlcNAc is a common modification found on nuclear and cytoplasmic proteins. Determining the catalytic mechanism of the enzyme O-GlcNAcase (OGA), which removes O-GlcNAc from proteins, enabled the creation of potent and selective inhibitors of this regulatory enzyme. Such inhibitors have served as important tools in helping to uncover the cellular and organismal physiological roles of this modification. In addition, OGA inhibitors have been important for defining the augmentation of O-GlcNAc as a promising disease-modifying approach to combat several neurodegenerative diseases including both Alzheimer's disease and Parkinson's disease. These studies have led to development and optimization of OGA inhibitors for clinical application. These compounds have been shown to be well tolerated in early clinical studies and are steadily advancing into the clinic. Despite these advances, the mechanisms by which O-GlcNAc protects against these various types of neurodegeneration are a topic of continuing interest since improved insight may enable the creation of more targeted strategies to modulate O-GlcNAc for therapeutic benefit. Relevant pathways on which O-GlcNAc has been found to exert beneficial effects include autophagy, necroptosis, and processing of the amyloid precursor protein. More recently, the development and application of chemical methods enabling the synthesis of homogenous proteins have clarified the biochemical effects of O-GlcNAc on protein aggregation and uncovered new roles for O-GlcNAc in heat shock response. Here, we discuss the features of O-GlcNAc in neurodegenerative diseases, the application of inhibitors to identify the roles of this modification, and the biochemical effects of O-GlcNAc on proteins and pathways associated with neurodegeneration.


Assuntos
Doença de Alzheimer , N-Acetilglucosaminiltransferases , Doença de Parkinson , Humanos , Acetilglucosamina/metabolismo , Doença de Alzheimer/enzimologia , Precursor de Proteína beta-Amiloide/metabolismo , beta-N-Acetil-Hexosaminidases/genética , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/metabolismo , Doença de Parkinson/enzimologia , Processamento de Proteína Pós-Traducional , Inibidores Enzimáticos/farmacologia
5.
J Med Chem ; 66(18): 13135-13147, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37724542

RESUMO

A series of dihydropyridinone (DHP) compounds was prepared and evaluated for MGAT2 activity. The efforts led to the identification of novel tetrazolones with potent MGAT2 inhibitory activity and favorable in vitro profiles. Further tests of select analogues in mouse models revealed significant reduction in food intake and body weight. Subsequent studies in MGAT2 knockout mice with the lead candidate 12 (BMS-986172) showed on-target- and mechanism-based pharmacology. Moreover, its favorable pharmacokinetic (PK) profile and the lack of species variability in the glucuronidation potential resulted in a greater confidence level in the projection of a low dose for achieving targeted efficacious exposures in humans. Consistent with these projections, PK data from a phase 1 trial confirmed that targeted efficacious exposures could be achieved at a low dose in humans, which supported compound 12 as our second and potentially superior development candidate for the treatment of various metabolic disorders.


Assuntos
Doenças Metabólicas , Piridonas , Animais , Humanos , Camundongos , Peso Corporal , Doenças Metabólicas/tratamento farmacológico , Piridonas/química , Piridonas/farmacologia , N-Acetilglucosaminiltransferases/antagonistas & inibidores
6.
J Biol Chem ; 298(9): 102289, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868563

RESUMO

The protein product of the CDKN1A gene, p21, has been extensively characterized as a negative regulator of the cell cycle. Nevertheless, it is clear that p21 has manifold complex and context-dependent roles that can be either tumor suppressive or oncogenic. Most well studied as a transcriptional target of the p53 tumor suppressor protein, there are other means by which p21 levels can be regulated. In this study, we show that pharmacological inhibition or siRNA-mediated reduction of O-GlcNAc transferase (OGT), the enzyme responsible for glycosylation of intracellular proteins, increases expression of p21 in both p53-dependent and p53-independent manners in nontransformed and cancer cells. In cells harboring WT p53, we demonstrate that inhibition of OGT leads to p53-mediated transactivation of CDKN1A, while in cells that do not express p53, inhibiting OGT leads to increased p21 protein stabilization. p21 is normally degraded by the ubiquitin-proteasome system following ubiquitination by, among others, the E3 ligase Skp-Cullin-F-box complex; however, in this case, we show that blocking OGT causes impairment of the Skp-Cullin-F-box ubiquitin complex as a result of disruption of the FoxM1 transcription factor-mediated induction of Skp2 expression. In either setting, we conclude that p21 levels induced by OGT inhibition correlate with cell cycle arrest and decreased cancer cell proliferation.


Assuntos
Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21 , Proteína Forkhead Box M1 , N-Acetilglucosaminiltransferases , Proteínas Quinases Associadas a Fase S , Proteína Supressora de Tumor p53 , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Proteínas Culina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteína Forkhead Box M1/metabolismo , Humanos , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , RNA Interferente Pequeno , Proteínas Quinases Associadas a Fase S/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo
7.
Cells ; 10(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34943826

RESUMO

The O-GlcNAcylation is a posttranslational modification of proteins regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase. These enzymes regulate the development, proliferation and function of cells, including the immune cells. Herein, we focused on the role of O-GlcNAcylation in human monocyte derived dendritic cells (moDCs). Our study suggests that inhibition of OGT modulates AKT and MEK/ERK pathways in moDCs. Changes were also observed in the expression levels of relevant surface markers, where reduced expression of CD80 and DC-SIGN, and increased expression of CD14, CD86 and HLA-DR occurred. We also noticed decreased IL-10 and increased IL-6 production, along with diminished endocytotic capacity of the cells, indicating that inhibition of O-GlcNAcylation hampers the transition of monocytes into immature DCs. Furthermore, the inhibition of OGT altered the maturation process of immature moDCs, since a CD14medDC-SIGNlowHLA-DRmedCD80lowCD86high profile was noticed when OGT inhibitor, OSMI-1, was present. To evaluate DCs ability to influence T cell differentiation and polarization, we co-cultured these cells. Surprisingly, the observed phenotypic changes of mature moDCs generated in the presence of OSMI-1 led to an increased proliferation of allogeneic T cells, while their polarization was not affected. Taken together, we confirm that shifting the O-GlcNAcylation status due to OGT inhibition alters the differentiation and function of moDCs in in vitro conditions.


Assuntos
Diferenciação Celular , Células Dendríticas/citologia , Células Dendríticas/enzimologia , Monócitos/citologia , Monócitos/enzimologia , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Monócitos/efeitos dos fármacos , N-Acetilglucosaminiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
8.
J Med Chem ; 64(19): 14773-14792, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34613725

RESUMO

MGAT2 inhibition is a potential therapeutic approach for the treatment of metabolic disorders. High-throughput screening of the BMS internal compound collection identified the aryl dihydropyridinone compound 1 (hMGAT2 IC50 = 175 nM) as a hit. Compound 1 had moderate potency against human MGAT2, was inactive vs mouse MGAT2 and had poor microsomal metabolic stability. A novel chemistry route was developed to synthesize aryl dihydropyridinone analogs to explore structure-activity relationship around this hit, leading to the discovery of potent and selective MGAT2 inhibitors 21f, 21s, and 28e that are stable to liver microsomal metabolism. After triaging out 21f due to its inferior in vivo potency, pharmacokinetics, and structure-based liabilities and tetrazole 28e due to its inferior channel liability profile, 21s (BMS-963272) was selected as the clinical candidate following demonstration of on-target weight loss efficacy in the diet-induced obese mouse model and an acceptable safety and tolerability profile in multiple preclinical species.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Doenças Metabólicas/tratamento farmacológico , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Animais , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Humanos , Relação Estrutura-Atividade
10.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681736

RESUMO

Levels of O-GlcNAc transferase (OGT) and hyper-O-GlcNAcylation expression levels are associated with cancer pathogenesis. This study aimed to find conditions that maximize the therapeutic effect of cancer and minimize tissue damage by combining an OGT inhibitor (OSMI-1) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We found that OSMI-1 treatment in HCT116 human colon cancer cells has a potent synergistic effect on TRAIL-induced apoptosis signaling. Interestingly, OSMI-1 significantly increased TRAIL-mediated apoptosis by increasing the expression of the cell surface receptor DR5. ROS-induced endoplasmic reticulum (ER) stress by OSMI-1 not only upregulated CHOP-DR5 signaling but also activated Jun-N-terminal kinase (JNK), resulting in a decrease in Bcl2 and the release of cytochrome c from mitochondria. TRAIL induced the activation of NF-κB and played a role in resistance as an antiapoptotic factor. During this process, O-GlcNAcylation of IκB kinase (IKK) and IκBα degradation occurred, followed by translocation of p65 into the nucleus. However, combination treatment with OSMI-1 counteracted the effect of TRAIL-mediated NF-κB signaling, resulting in a more synergistic effect on apoptosis. Therefore, the combined treatment of OSMI-1 and TRAIL synergistically increased TRAIL-induced apoptosis through caspase-8 activation. Conclusively, OSMI-1 potentially sensitizes TRAIL-induced cell death in HCT116 cells through the blockade of NF-κB signaling and activation of apoptosis through ER stress response.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/genética , Endorribonucleases/metabolismo , Inibidores Enzimáticos/uso terapêutico , Humanos , Camundongos , Camundongos Nus , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Fator de Transcrição CHOP/metabolismo , Transplante Heterólogo
11.
Molecules ; 26(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34500797

RESUMO

Despite significant advances in biological and analytical approaches, a comprehensive portrait of the proteome and its dynamic interactions and modifications remains a challenging goal. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to elucidate protein composition, distribution, and relevant physiological and pharmacological functions. Click chemistry focuses on the development of new combinatorial chemical methods for carbon heteroatom bond (C-X-C) synthesis, which have been utilized extensively in the field of chemical proteomics. Click reactions have various advantages including high yield, harmless by-products, and simple reaction conditions, upon which the molecular diversity can be easily and effectively obtained. This paper reviews the application of click chemistry in proteomics from four aspects: (1) activity-based protein profiling, (2) enzyme-inhibitors screening, (3) protein labeling and modifications, and (4) hybrid monolithic column in proteomic analysis.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteoma/análise , Proteômica , Química Click , Ciclo-Oxigenase 2/metabolismo , Inibidores Enzimáticos/química , Estrutura Molecular , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/metabolismo , Proteínas Quinases/metabolismo , alfa-Glucosidases/metabolismo
12.
J Biol Chem ; 297(2): 100977, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34284059

RESUMO

Many eukaryotic cell-surface proteins are post-translationally modified by a glycosylphosphatidylinositol (GPI) moiety that anchors them to the cell membrane. The biosynthesis of GPI anchors is initiated in the endoplasmic reticulum by transfer of GlcNAc from UDP-GlcNAc to phosphatidylinositol. This reaction is catalyzed by GPI GlcNAc transferase, a multisubunit complex comprising the catalytic subunit Gpi3/PIG-A as well as at least five other subunits, including the hydrophobic protein Gpi2, which is essential for the activity of the complex in yeast and mammals, but the function of which is not known. To investigate the role of Gpi2, we exploited Trypanosoma brucei (Tb), an early diverging eukaryote and important model organism that initially provided the first insights into GPI structure and biosynthesis. We generated insect-stage (procyclic) trypanosomes that lack TbGPI2 and found that in TbGPI2-null parasites, (i) GPI GlcNAc transferase activity is reduced, but not lost, in contrast with yeast and human cells, (ii) the GPI GlcNAc transferase complex persists, but its architecture is affected, with loss of at least the TbGPI1 subunit, and (iii) the GPI anchors of procyclins, the major surface proteins, are underglycosylated when compared with their WT counterparts, indicating the importance of TbGPI2 for reactions that occur in the Golgi apparatus. Immunofluorescence microscopy localized TbGPI2 not only to the endoplasmic reticulum but also to the Golgi apparatus, suggesting that in addition to its expected function as a subunit of the GPI GlcNAc transferase complex, TbGPI2 may have an enigmatic noncanonical role in Golgi-localized GPI anchor modification in trypanosomes.


Assuntos
Retículo Endoplasmático/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Complexo de Golgi/metabolismo , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Polissacarídeos/metabolismo , Trypanosoma brucei brucei/metabolismo , Tripanossomíase/metabolismo , Animais , N-Acetilglucosaminiltransferases/metabolismo , Polissacarídeos/química , Proteínas de Protozoários , Trypanosoma brucei brucei/isolamento & purificação , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase/parasitologia , Tripanossomíase/patologia
13.
Eur J Med Chem ; 221: 113512, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015586

RESUMO

γ-Aminobutyric acid (GABA) neurotransmission has a significant impact on the proper functioning of the central nervous system. Numerous studies have indicated that inhibitors of the GABA transporters mGAT1-4 offer a promising strategy for the treatment of several neurological disorders, including epilepsy, neuropathic pain, and depression. Following our previous results, herein, we report the synthesis, biological evaluation, and structure-activity relationship studies supported by molecular docking and molecular dynamics of a new series of N-benzyl-4-hydroxybutanamide derivatives regarding their inhibitory potency toward mGAT1-4. This study allowed us to identify compound 23a (N-benzyl-4-hydroxybutanamide bearing a dibenzocycloheptatriene moiety), a nonselective GAT inhibitor with a slight preference toward mGAT4 (pIC50 = 5.02 ± 0.11), and compound 24e (4-hydroxy-N-[(4-methylphenyl)-methyl]butanamide bearing a dibenzocycloheptadiene moiety) with relatively high inhibitory activity toward mGAT2 (pIC50 = 5.34 ± 0.09). In a set of in vivo experiments, compound 24e successively showed predominant anticonvulsant activity and antinociception in the formalin model of tonic pain. In contrast, compound 23a showed significant antidepressant-like properties in mice. These results were consistent with the available literature data, which indicates that, apart from seizure control, GABAergic neurotransmission is also involved in the pathophysiology of several psychiatric diseases, however alternative mechanisms underlying this action cannot be excluded. Finally, it is worth noting that the selected compounds showed unimpaired locomotor skills that have been indicated to give reliable results in behavioral assays.


Assuntos
Amidas/farmacologia , Analgésicos/farmacologia , Anticonvulsivantes/farmacologia , Antidepressivos/farmacologia , Desenvolvimento de Medicamentos , Inibidores da Captação de GABA/farmacologia , Amidas/síntese química , Amidas/química , Analgésicos/síntese química , Analgésicos/química , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Antidepressivos/síntese química , Antidepressivos/química , Relação Dose-Resposta a Droga , Inibidores da Captação de GABA/síntese química , Inibidores da Captação de GABA/química , Humanos , Estrutura Molecular , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/metabolismo , Relação Estrutura-Atividade
14.
Bioorg Chem ; 110: 104738, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33667901

RESUMO

Protein O-linked ß-D-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), an essential post-translational as well as cotranslational modification, is the attachment of ß-D-N-acetylglucosamine to serine and threonine residues of nucleocytoplasmic proteins. An aberrant O-GlcNAc profile on certain proteins has been implicated in metabolic diseases such as diabetes and cancer. Inhibitors of O-GlcNAc transferase (OGT) are valuable tools to study the cell biology of protein O-GlcNAc modification. In this study we report novel uridine-peptide conjugate molecules composed of an acceptor peptide covalently linked to a catalytically inactive donor substrate analogue that bears a pyrophosphate bioisostere and explore their inhibitory activities against OGT by a radioactive hOGT assay. Further, we investigate the structural basis of their activities via molecular modelling, explaining their lack of potency towards OGT inhibition.


Assuntos
Difosfatos/química , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Peptídeos/síntese química , Peptídeos/farmacologia , Desenho de Fármacos , Humanos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica
15.
Pharmacol Res ; 165: 105467, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33515704

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death globally. While the major focus of pharmacological and non-pharmacological interventions has been on targeting disease pathophysiology and limiting predisposing factors, our understanding of the cellular and molecular mechanisms underlying the pathogenesis of CVDs remains incomplete. One mechanism that has recently emerged is protein O-GlcNAcylation. This is a dynamic, site-specific reversible post-translational modification of serine and threonine residues on target proteins and is controlled by two enzymes: O-linked ß-N-acetylglucosamine transferase (OGT) and O-linked ß-N-acetylglucosaminidase (OGA). Protein O-GlcNAcylation alters the cellular functions of these target proteins which play vital roles in pathways that modulate vascular homeostasis and cardiac function. Through this review, we aim to give insights on the role of protein O-GlcNAcylation in cardiovascular diseases and identify potential therapeutic targets in this pathway for development of more effective medicines to improve patient outcomes.


Assuntos
Fármacos Cardiovasculares/administração & dosagem , Doenças Cardiovasculares/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Inibidores Enzimáticos/administração & dosagem , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Acetilglucosamina/antagonistas & inibidores , Acetilglucosamina/metabolismo , Acetilglucosaminidase/antagonistas & inibidores , Acetilglucosaminidase/metabolismo , Acilação/efeitos dos fármacos , Acilação/fisiologia , Animais , Antígenos de Neoplasias/metabolismo , Doenças Cardiovasculares/metabolismo , Glicosilação/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Humanos , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/metabolismo , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/metabolismo
16.
ChemMedChem ; 16(3): 477-483, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32991074

RESUMO

The O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is a master regulator of installing O-GlcNAc onto serine or threonine residues on a multitude of target proteins. Numerous nuclear and cytosolic proteins of varying functional classes, including translational factors, transcription factors, signaling proteins, and kinases are OGT substrates. Aberrant O-GlcNAcylation of proteins is implicated in signaling in metabolic diseases such as diabetes and cancer. Selective and potent OGT inhibitors are valuable tools to study the role of OGT in modulating a wide range of effects on cellular functions. We report linear bisubstrate ether-linked uridine-peptide conjugates as OGT inhibitors with micromolar affinity. In vitro evaluation of the compounds revealed the importance of donor substrate, linker and acceptor substrate in the rational design of bisubstrate analogue inhibitors. Molecular dynamics simulations shed light on the binding of this novel class of inhibitors and rationalized the effect of amino acid truncation of acceptor peptide on OGT inhibition.


Assuntos
Inibidores Enzimáticos/farmacologia , Éteres/farmacologia , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Peptídeos/farmacologia , Uridina/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Éteres/química , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , N-Acetilglucosaminiltransferases/metabolismo , Peptídeos/química , Relação Estrutura-Atividade , Especificidade por Substrato , Uridina/química
17.
Chembiochem ; 22(8): 1391-1395, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33259119

RESUMO

O-GlcNAc transferase (OGT) is involved in many cellular processes, and selective OGT inhibitors are valuable tools to investigate O-GlcNAcylation functions, and could potentially lead to therapeutics. However, high-throughput OGT assays that are suitable for large-scale HTS and can identify inhibitors targeting both acceptor, donor sites, and allosteric binding-sites are still lacking. Here, we report the development of a high-throughput "FP-Tag" OGT assay with bovine serum albumin (BSA) as a low-cost and superior "FP-Tag". With this assay, 2-methyleurotinone was identified as a low-micromolar OGT inhibitor. This type of assay with BSA as "FP-Tag" would find more applications with other glycosyltransferases.


Assuntos
Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Alcinos/química , Animais , Biotina/química , Bovinos , Inibidores Enzimáticos/química , Corantes Fluorescentes/química , Humanos , Estrutura Molecular , N-Acetilglucosaminiltransferases/metabolismo , Soroalbumina Bovina/química , Estreptavidina/química
18.
FASEB J ; 34(11): 14473-14489, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32892442

RESUMO

O-GlcNAcylation is a form of posttranslational modification, and serves various functions, including modulation of location, stability, and activity for the modified proteins. O-linked-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential cellular enzyme that posttranslationally modifies the cellular proteins with O-GlcNAc moiety. Early studies reported that the decreased O-GlcNAcylation regulates cellular autophagy, a process relevant for hepatitis B virus replication (HBV) and assembly. Therefore, we addressed the question how O-GlcNAcylation regulates cellular autophagy and HBV replication. Inhibition of OGT activity with a small molecule inhibitor OSMI-1 or silencing OGT significantly enhanced HBV replication and HBsAg production in hepatoma cells and primary human hepatocytes (PHHs). Western blotting analysis showed that inhibition of O-GlcNAcylation-induced endoplasmic reticulum (ER) stress and cellular autophagy, two processes subsequently leading to enhanced HBV replication. Importantly, the numbers of autophagosomes and the levels of autophagic markers LC3-II and SQSTM1/p62 in hepatoma cells were elevated after inhibition of O-GlcNAcylation. Further analysis revealed that inhibition of O-GlcNAcylation blocked autophagosome-lysosome fusion and thereby prevented autophagic degradation of HBV virions and proteins. Moreover, OSMI-1 further promoted HBV replication by inducing autophagosome formation via inhibiting the O-GlcNAcylation of Akt and mTOR. In conclusion, decreased O-GlcNAcylation enhanced HBV replication through increasing autophagosome formation at multiple levels, including triggering ER-stress, Akt/mTOR inhibition, and blockade of autophagosome-lysosome fusion.


Assuntos
Autofagia , Vírus da Hepatite B/fisiologia , N-Acetilglucosaminiltransferases/metabolismo , Replicação Viral , Autofagossomos/metabolismo , Estresse do Retículo Endoplasmático , Glicosilação , Células Hep G2 , Humanos , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Sequestossoma-1/metabolismo , Serina-Treonina Quinases TOR/metabolismo
19.
J Med Chem ; 63(19): 10855-10878, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32886511

RESUMO

Capuramycin displays a narrow spectrum of antibacterial activity by targeting bacterial translocase I (MraY). In our program of development of new N-acetylglucosaminephosphotransferase1 (DPAGT1) inhibitors, we have identified that a capuramycin phenoxypiperidinylbenzylamide analogue (CPPB) inhibits DPAGT1 enzyme with an IC50 value of 200 nM. Despite a strong DPAGT1 inhibitory activity, CPPB does not show cytotoxicity against normal cells and a series of cancer cell lines. However, CPPB inhibits migrations of several solid cancers including pancreatic cancers that require high DPAGT1 expression in order for tumor progression. DPAGT1 inhibition by CPPB leads to a reduced expression level of Snail but does not reduce E-cadherin expression level at the IC50 (DPAGT1) concentration. CPPB displays a strong synergistic effect with paclitaxel against growth-inhibitory action of a patient-derived pancreatic adenocarcinoma, PD002: paclitaxel (IC50: 1.25 µM) inhibits growth of PD002 at 0.0024-0.16 µM in combination with 0.10-2.0 µM CPPB (IC50: 35 µM).


Assuntos
Aminoglicosídeos/farmacologia , Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Neoplasias/patologia , Aminoglicosídeos/química , Antineoplásicos/química , Linhagem Celular Tumoral , Sinergismo Farmacológico , Inibidores Enzimáticos/química , Humanos , Paclitaxel/farmacologia , Fatores de Transcrição da Família Snail/antagonistas & inibidores , Relação Estrutura-Atividade
20.
Int J Toxicol ; 39(6): 586-593, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32851890

RESUMO

Reduction in sensitivity in terms of cytotoxicity is responsible for therapy failure in patients undergoing chemotherapy with first-line anticancer drug molecules. A plethora of literature evidence points out that increased O-linked ß-N-acetylglucosamine transferase (OGT) enzyme level/hyper-O-GlcNAcylation has direct implications in development of cancer and interferes with clinical outcomes of chemotherapy via interaction with oncogenic factors. The aim of this research was to evaluate the combination approach of anticancer drugs with an OGT inhibitor (OSMI-1) as an alternative way to resolve issues in the treatment of prostate cancer and assess the benefits offered by this approach. Effect of combination of doxorubicin and docetaxel with OSMI-1 on drug-induced cell death and synergism/antagonism was investigated using resazurin assay. Reduction in OGT enzyme level was evaluated using ELISA kit. Caspase-3/7 fluorescence assay was performed to detect apoptosis induction in PC-3 cells after treatment with the combinations of doxorubicin and OGT inhibitor to further understand the mechanism of cell death by concomitant treatment. Studies reveal that combination approach is indeed effective in terms of reducing the half-maximum growth inhibition value of doxorubicin when concomitantly treated with OSMI-1 and has synergistic effect in prostate cancer cells. PC-3 cells exhibited elevated levels of OGT enzyme in comparison to WPMY-1, and OSMI-1 has potential to inhibit OGT enzyme significantly. Data show that OSMI-1 alone and in combination with doxorubicin reduces OGT enzyme level significantly accompanied by increased apoptosis in prostate cancer cells. Combination of doxorubicin with OSMI-1 reduced the elevated OGT level which led to a drastic increase in sensitivity of PC-3 cells toward doxorubicin in comparison to doxorubicin alone. This finding provides important insight regarding alternative treatment strategies for effective management of cancer.


Assuntos
Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Docetaxel/farmacologia , Doxorrubicina/farmacologia , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Apoptose , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Neoplasias da Próstata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA