Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Hepatology ; 71(2): 549-568, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31215069

RESUMO

Cancer cells undergo metabolic adaptation to sustain uncontrolled proliferation. Aerobic glycolysis and glutaminolysis are two of the most essential characteristics of cancer metabolic reprogramming. Hyperactivated phosphoinositide 3-kinase (PI3K)/Akt serine/threonine kinase (Akt) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathways play central roles in cancer cell metabolic adaptation given that their downstream effectors, such as Akt and c-Myc, control most of the glycolytic and glutaminolysis genes. Here, we report that the cytosolic flavoprotein, NAD(P)H quinone dehydrogenase 1 (Nqo1), is strongly overexpressed in mouse and human hepatocellular carcinoma (HCC). Knockdown of Nqo1 enhanced activity of the serine/threonine phosphatase, protein phosphatase 2A, which operates at the intersection of the PI3K/Akt and MAPK/ERK pathways and dephosphorylates and inactivates pyruvate dehydrogenase kinase 1, Akt, Raf, mitogen-activated protein kinase kinase, and ERK1/2. Nqo1 ablation also induced the expression of phosphatase and tensin homolog, a dual protein/lipid phosphatase that blocks PI3K/Akt signaling, through the ERK/cAMP-responsive element-binding protein/c-Jun pathway. Together, Nqo1 ablation triggered simultaneous inhibition of the PI3K/Akt and MAPK/ERK pathways, suppressed the expression of glycolysis and glutaminolysis genes and blocked metabolic adaptation in liver cancer cells. Conversely, Nqo1 overexpression caused hyperactivation of the PI3K/Akt and MAPK/ERK pathways and promoted metabolic adaptation. Conclusion: In conclusion, Nqo1 functions as an upstream activator of both the PI3K/Akt and MAPK/ERK pathways in liver cancer cells, and Nqo1 ablation blocked metabolic adaptation and inhibited liver cancer cell proliferation and HCC growth in mice. Therefore, our results suggest that Nqo1 may function as a therapeutic target to inhibit liver cancer cell proliferation and inhibit HCC.


Assuntos
Carcinoma Hepatocelular/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Neoplasias Hepáticas/enzimologia , NAD(P)H Desidrogenase (Quinona)/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Animais , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Transdução de Sinais
2.
Int J Radiat Biol ; 95(8): 1122-1134, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30998083

RESUMO

Purpose:Inula racemosa, a Trans-Himalayan plant is an important medicinal herb. In this study, the radio-modulatory efficacy of aqueous root extract of I. racemosa was investigated. Materials and methods: Normal Kidney Epithelium cells were treated with extract (50-200 µg/ml) and exposed to 3 Gy of γ-radiation, while C57BL/6 mice were administered with extract (300-600 mg/kg BW) intraperitoneally prior to exposure to 7.5 Gy of γ-radiation to assess radiation modulatory efficacy. Results: The administration of extract (30 min and 1 h) prior to radiation exposure improved the survival of NKE cells (as measured by proliferation), restored MMP and ROS levels as compared to radiation-exposed alone cells. These cells showed up-regulated Nrf2 protein levels at 7 h and increased expression of HO-1 and NOQ1 protein at 24 h In mice, the 30 days whole body survival study demonstrated that extract pre-treatment increases survival or delays the onset of radiation-induced mortality as against 70% mortality of 7.5 Gy of γ-radiation. Conclusions: The aqueous extract of roots of I. racemosa enhanced the survival of irradiated NKE cells and rescued C57BL/6 mice against WBI-induced mortality. The radiation modulation efficacy was mediated through cumulative activation of HO-1 and NQO1 downstream of Nrf2 translocation in NKE cells. Abbreviations: ARE: Antioxidant Response Element; FITC: Fluorescein isothiocyanate; GCS: Glutamylcysteine synthase; HO-1: Heme oxygenase-1; LPS: Lipopolysacharide; MRP: Multidrug Resistance-Associated Proteins; NQO1: NAD(P)H Quinone Dehydrogenase 1; NRH: Quinone Oxidoreductase 2 (NQO2); PBS: Phosphate Buffer Saline; PKA: Protein Kinase A; PKC: Protein Kinase C; PI3-kinase: Phosphatidylinositol 3-Kinase; SRB: Sulforhodamine B; UV: Ultra-Violet radiation.


Assuntos
Inula , Fator 2 Relacionado a NF-E2/fisiologia , Extratos Vegetais/farmacologia , Protetores contra Radiação/farmacologia , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , Heme Oxigenase-1/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD(P)H Desidrogenase (Quinona)/fisiologia , Raízes de Plantas , Espécies Reativas de Oxigênio/metabolismo
3.
Biomed Pharmacother ; 111: 527-536, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30597306

RESUMO

Acute liver injury (ALI) is a life-threatening syndrome accompanied by overwhelming inflammation. Amygdalin (AGD) has been reported to possess various biological activities, particularly anti-inflammatory activity. The current study was designed to assess the protective effects and underlying mechanisms of AGD against ALI induced by d-galactosamine (GalN) and lipopolysaccharide (LPS) in mice. The results indicated that AGD treatment effectively reduced the lethality, ameliorated the histopathological liver changes, reduced the malondialdehyde (MDA) and myeloperoxidase (MPO) levels, and decreased the alanine transaminase (ALT) and aspartate aminotransferase (AST) levels resulting from LPS/GalN challenge. Moreover, AGD significantly inhibited LPS/GalN-induced inflammatory responses in mice with ALI by reducing not only the secretion of tumour necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 but also the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Additionally, our results demonstrated that the inhibitory effect of AGD was due to the suppressed activation of nuclear factor-kappa B (NF-κB) and nucleotide-binding domain (NOD-)like receptor protein 3 (NLRP3) inflammasome activity. Furthermore, AGD treatment substantially increased nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and enhanced NAD (P) H: quinoneoxidoreductase 1 protein expression, which was reversed by a Nrf2 inhibitor, in HepG2 cells. In summary, our investigations suggested that the ability of AGD to ameliorate LPS/GalN-induced ALI may involve the inhibition of the NLRP3 inflammasome and NF-κB signalling pathways and the upregulation of the Nrf2/NQO1 signalling pathway.


Assuntos
Amigdalina/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Galactosamina/toxicidade , Fator 2 Relacionado a NF-E2/fisiologia , NF-kappa B/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Amigdalina/farmacologia , Animais , Antineoplásicos Fitogênicos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Relação Dose-Resposta a Droga , Feminino , Células Hep G2 , Humanos , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , NAD(P)H Desidrogenase (Quinona)/fisiologia , NF-kappa B/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
4.
Naunyn Schmiedebergs Arch Pharmacol ; 391(11): 1221-1235, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30062552

RESUMO

Earlier studies on isolated arteries demonstrated that the para-quinone thymoquinone, like acute hypoxia, induces augmentation of contractions, depending on biased activity of soluble guanylyl cyclase (sGC), generating inosine-3',5'-cyclic monophosphate (cyclic IMP) rather than guanosine-3',5'-cyclic monophosphate (cyclic GMP). NAD(P)H:quinone oxidoreductase 1 (NQO-1), the enzyme responsible for biotransformation of quinones into hydroquinones, was examined for its involvement in these endothelium-dependent augmentations, establishing a link between the metabolism of quinones by NQO-1 and biased sGC activity. Isolated arteries of Sprague-Dawley rats (aortae and mesenteric arteries) and farm pigs (coronary arteries) were studied for measurement of changes in tension and collected to measure NQO-1 activity or its protein level. ß-lapachone, an ortho-quinone and hence substrate of NQO-1, increased the activity of the enzyme and augmented contractions in arteries with endothelium. This augmentation was inhibited by endothelium removal and inhibitors of endothelial NO synthase (eNOS), sGC, or NQO-1; in preparations without endothelium or treated with an eNOS inhibitor, it was restored by the NO donor DETA NONOate and by ITP and cyclic IMP, revealing biased sGC activity as the underlying mechanism, as with thymoquinone. Hydroquinone, the end product of quinone metabolism by NQO-1, augmented contractions depending on sGC activation but in an endothelium-independent manner. In coronary arteries, repeated acute hypoxia caused similar augmentations as those to quinones that were inhibited by the NQO-1 inhibitor dicoumarol. Augmentations of contraction observed with different naturally occurring quinones and with acute hypoxia are initiated by quinone metabolism by NQO-1, in turn interfering with the NO/biased sGC pathway, suggesting a possibly detrimental role of this enzyme in ischemic cardiovascular disorders.


Assuntos
Aorta/fisiologia , Vasos Coronários/fisiologia , Hipóxia/fisiopatologia , Artérias Mesentéricas/fisiologia , NAD(P)H Desidrogenase (Quinona)/fisiologia , Guanilil Ciclase Solúvel/fisiologia , Animais , Aorta/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Quinonas/farmacologia , Ratos Sprague-Dawley , Suínos , Vasoconstrição/efeitos dos fármacos
5.
Biochim Biophys Acta Bioenerg ; 1859(9): 909-924, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29746824

RESUMO

Provision of NAD+ for oxidative decarboxylation of alpha-ketoglutarate to succinyl-CoA by the ketoglutarate dehydrogenase complex (KGDHC) is critical for maintained operation of succinyl-CoA ligase yielding high-energy phosphates, a process known as mitochondrial substrate-level phosphorylation (mSLP). We have shown previously that when NADH oxidation by complex I is inhibited by rotenone or anoxia, mitochondrial diaphorases yield NAD+, provided that suitable quinones are present (Kiss G et al., FASEB J 2014, 28:1682). This allows for KGDHC reaction to proceed and as an extension of this, mSLP. NAD(P)H quinone oxidoreductase 1 (NQO1) is an enzyme exhibiting diaphorase activity. Here, by using Nqo1-/- and WT littermate mice we show that in rotenone-treated, isolated liver mitochondria 2-methoxy-1,4-naphtoquinone (MNQ) is preferentially reduced by matrix Nqo1 yielding NAD+ to KGDHC, supporting mSLP. This process was sensitive to inhibition by specific diaphorase inhibitors. Reduction of idebenone and its analogues MRQ-20 and MRQ-56, menadione, mitoquinone and duroquinone were unaffected by genetic disruption of the Nqo1 gene. The results allow for the conclusions that i) MNQ is a Nqo1-preferred substrate, and ii) in the presence of suitable quinones, mitochondrially-localized diaphorases other than Nqo1 support NADH oxidation when complex I is inhibited. Our work confirms that complex I bypass can occur by quinones reduced by intramitochondrial diaphorases oxidizing NADH, ultimately supporting mSLP. Finally, it may help to elucidate structure-activity relationships of redox-active quinones with diaphorase enzymes.


Assuntos
Acil Coenzima A/metabolismo , Mitocôndrias Hepáticas/enzimologia , NAD(P)H Desidrogenase (Quinona)/fisiologia , NAD/metabolismo , Naftoquinonas/química , Animais , Respiração Celular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Fosforilação , Especificidade por Substrato
6.
DNA Cell Biol ; 36(4): 256-263, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28191864

RESUMO

Hepatocellular carcinoma (HCC) is the most common lethal malignancy and a leading cause of malignancy-associated death in many countries, but mainly in Asia. Expression of the NAD(P)H:quinone oxidoreductase 1 (NQO1) protein is involved in the growth of various human cancers, including HCC. NQO1 is considered an inhibitor of cancers. The present study aimed to investigate the function and mechanism of NQO1 in HCC. In this study, we found that NQO1 overexpression decreased HCC cell SK-hep-1 and Hep3B cell proliferation and induced apoptosis. The apoptosis-associated gene Bax, Bcl-2, and caspase-3 expression was also measured, with western blot results showing that NQO1 overexpression inhibits Bcl-2 expression and promotes Bax and caspase-3 expression, whereas NQO1 silencing plays a contrasting role. In addition, NQO1 activated AMP-activated protein kinase (AMPK) and proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and the AMPK inhibitor compound C blocked NQO1-induced PGC-1α activation. Furthermore, the AMPK inhibitor compound C or PGC-1α siRNA partially abolished NQO1-induced cell apoptosis and proliferation inhibition in HCC cells. Taken together, our results demonstrate that NQO1 overexpression induces HCC cell apoptosis and proliferation inhibition through the AMPK/PGC-1α pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Apoptose , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , NAD(P)H Desidrogenase (Quinona)/fisiologia
7.
Planta ; 245(4): 807-817, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28032259

RESUMO

MAIN CONCLUSION: The quinone reductase NQR and the b-type cytochrome AIR12 of the plasma membrane are important for the control of reactive oxygen species in the apoplast. AIR12 and NQR are two proteins attached to the plant plasma membrane which may be important for generating and controlling levels of reactive oxygen species in the apoplast. AIR12 (Auxin Induced in Root culture) is a single gene of Arabidopsis that codes for a mono-heme cytochrome b. The NADPH quinone oxidoreductase NQR is a two-electron-transferring flavoenzyme that contributes to the generation of O 2•- in isolated plasma membranes. A. thaliana double knockout plants of both NQR and AIR12 generated more O 2•- and germinated faster than the single mutant affected in AIR12. To test whether NQR and AIR12 are able to interact functionally, recombinant purified proteins were added to plasma membranes isolated from soybean hypocotyls. In vitro NADH-dependent O 2•- production at the plasma membrane in the presence of NQR was reduced upon addition of AIR12. Electron donation from semi-reduced menadione to AIR12 was shown to take place. Biochemical analysis showed that purified plasma membrane from soybean hypocotyls or roots contained phylloquinone and menaquinone-4 as redox carriers. This is the first report on the occurrence of menaquinone-4 in eukaryotic photosynthetic organisms. We propose that NQR and AIR12 interact via the quinone, allowing an electron transfer from cytosolic NAD(P)H to apoplastic monodehydroascorbate and control thereby the level of reactive oxygen production and the redox state of the apoplast.


Assuntos
Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Grupo dos Citocromos b/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Superóxidos/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Linhagem Celular , Membrana Celular/enzimologia , Grupo dos Citocromos b/fisiologia , Técnicas de Silenciamento de Genes , Germinação/fisiologia , NAD(P)H Desidrogenase (Quinona)/fisiologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Glycine max/metabolismo , Glycine max/fisiologia
8.
Nat Commun ; 7: 13593, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27966538

RESUMO

Overexpression of NQO1 is associated with poor prognosis in human cancers including breast, colon, cervix, lung and pancreas. Yet, the molecular mechanisms underlying the pro-tumorigenic capacities of NQO1 have not been fully elucidated. Here we show a previously undescribed function for NQO1 in stabilizing HIF-1α, a master transcription factor of oxygen homeostasis that has been implicated in the survival, proliferation and malignant progression of cancers. We demonstrate that NQO1 directly binds to the oxygen-dependent domain of HIF-1α and inhibits the proteasome-mediated degradation of HIF-1α by preventing PHDs from interacting with HIF-1α. NQO1 knockdown in human colorectal and breast cancer cell lines suppresses HIF-1 signalling and tumour growth. Consistent with this pro-tumorigenic function for NQO1, high NQO1 expression levels correlate with increased HIF-1α expression and poor colorectal cancer patient survival. These results collectively reveal a function of NQO1 in the oxygen-sensing mechanism that regulates HIF-1α stability in cancers.


Assuntos
Neoplasias da Mama/genética , Neoplasias Colorretais/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , NAD(P)H Desidrogenase (Quinona)/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Técnicas de Silenciamento de Genes , Homeostase , Humanos , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxigênio/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica
9.
J Microbiol Biotechnol ; 26(8): 1446-51, 2016 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-27116994

RESUMO

Clostridium difficile toxin A causes acute gut inflammation in animals and humans. It is known to downregulate the tight junctions between colonic epithelial cells, allowing luminal contents to access body tissues and trigger acute immune responses. However, it is not yet known whether this loss of the barrier function is a critical factor in the progression of toxin A-induced pseudomembranous colitis. We previously showed that NADH:quinone oxidoreductase 1 (NQO1) KO (knockout) mice spontaneously display weak gut inflammation and a marked loss of colonic epithelial tight junctions. Moreover, NQO1 KO mice exhibited highly increased inflammatory responses compared with NQO1 WT (wild-type) control mice when subjected to DSS-induced experimental colitis. Here, we tested whether toxin A could also trigger more severe inflammatory responses in NQO1 KO mice compared with NQO1 WT mice. Indeed, our results show that C. difficile toxin A-mediated enteritis is significantly enhanced in NQO1 KO mice compared with NQO1 WT mice. The levels of fluid secretion, villus disruption, and epithelial cell apoptosis were also higher in toxin A-treated NQO1 KO mice compared with WT mice. The previous and present results collectively show that NQO1 is involved in the formation of tight junctions in the small intestine, and that defects in NQO1 enhance C. difficile toxin A-induced acute inflammatory responses, presumably via the loss of epithelial cell tight junctions.


Assuntos
Toxinas Bacterianas/toxicidade , Enterite/microbiologia , Enterite/fisiopatologia , Enterotoxinas/toxicidade , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/fisiologia , Animais , Apoptose , Toxinas Bacterianas/administração & dosagem , Clostridioides difficile/fisiologia , Enterite/patologia , Enterotoxinas/administração & dosagem , Células Epiteliais/patologia , Humanos , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , NAD(P)H Desidrogenase (Quinona)/deficiência , Junções Íntimas/patologia
10.
Mol Hum Reprod ; 22(1): 57-67, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26612783

RESUMO

STUDY HYPOTHESIS: Dicoumarol (DC) has potential for use as a gonad-safe anticancer agent. STUDY FINDING: DC altered cell proliferation, decreased viability and increased apoptosis in Vero and MCF-7 cell lines but did not show any toxic effect on mouse ovarian tissues and developing oocytes in vitro and in vivo. WHAT IS KNOWN ALREADY: DC suppresses cell proliferation and increases apoptosis in various cancer cells such as breast, urogenital and melanoma. DC has also been reported to alter the anticancer effects of several chemotherapeutics, including cisplatin, gemcitabine and doxorubicin in prostate, liver and uroepithelial cancer cells, respectively. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: Vero (African green monkey kidney epithelial cells) and MCF-7 (human cancerous breast epithelial cells) cell lines and mouse granulosa cells isolated from 21-day-old female BALB/c mice (n = 21) were used to assess the effects of DC (10, 50, 100 and 200 µm) for 24 and 48 h on cell proliferation, viability and apoptotic cell death. In vivo experiments were performed with a single i.p. injection of 32 mg/kg DC in 21-day-old female BALB/c mice (n = 12). Following 48 h, animals were sacrificed by cervical dislocation and histological sections of isolated ovaries were evaluated for apoptosis. Viability assays were based on the trypan blue dye exclusion method and an automated cell counter device was used. Terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling (TUNEL) and Annexin-V immunofluorescence were assessed by 3D confocal microscopy to address apoptotic cell death. We also assessed whether DC inhibits cell proliferation and viability through NQO1 [NAD(P)H Quinone Oxidoreductase 1], an intracellular inhibitor of reactive oxygen species (ROS). The meiotic spindle and chromosomes were studied in mouse oocytes by α-ß-tubulin and 7-aminoactinomycine D (7-AAD) immunostaining in vitro and in vivo. MAIN RESULTS AND THE ROLE OF CHANCE: DC does not block oocyte maturation and no significant alteration was noted in meiotic spindle or chromosome morphology in metaphase-II (M-II) stage oocytes following DC treatment in vitro or in vivo. In contrast, exposure to DC for 24 h suppressed cell proliferation (P = 0.026 at 200 µm), decreased viability (P = 0.002 at 200 µm) and increased apoptosis (P = 0.048 at 100 µm) in Vero and MCF-7 cell lines, compared with controls. These changes were not related to intracellular NQO1 levels. Mouse granulosa cells were unaffected by 50 or 100 µm DC treatment for 24 and 48 h in vitro. DC treatment in vivo did not alter the number of primordial follicles or the ratio of apoptosis in primordial, primary and secondary follicles, as well as in antral follicles, compared with the controls. LIMITATIONS, REASONS FOR CAUTION: DC was tested for ovarian toxicity only in isolated mouse oocytes/ovaries and healthy BALB/c mice. No cancer formation was used as an in vivo test model. The possibility that DC may potentiate ovarian toxicity when combined with traditional chemotherapeutic agents, such as mitomycin-C, cisplatin, gemcitabine and doxorubicin, must be taken into account, as DC is known to alter their effects in some cancer cells. WIDER IMPLICATIONS OF THE FINDINGS: The present study evaluated, for the first time, the effect of DC on ovarian tissue. The results suggested that DC is not toxic to ovarian tissues and developing oocytes; therefore, DC should be assessed further as a potential anticancer agent when female fertility preservation is a concern. LARGE SCALE DATA: N/A. STUDY FUNDING AND COMPETING INTERESTS: This work includes data from dissertation thesis entitled 'Effects of dicoumarol on mitotic and meiotic cells as an anticancer agent' by DA, 2014 and was partly supported by The National Scientific and Technological Research Council of Turkey (SBAG-109S415) to AC, OC and SO. The authors confirm that this article content presents no conflicts of interest.


Assuntos
Antineoplásicos/farmacologia , Dicumarol/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Chlorocebus aethiops , Dicumarol/administração & dosagem , Dicumarol/toxicidade , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células da Granulosa/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Índice Mitótico , NAD(P)H Desidrogenase (Quinona)/biossíntese , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/fisiologia , Oócitos/efeitos dos fármacos , Tratamentos com Preservação do Órgão , Ovário/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/ultraestrutura , Células Vero
11.
Toxicol Appl Pharmacol ; 280(2): 285-95, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25151970

RESUMO

Para-quinones such as 1,4-Benzoquinone (BQ) and menadione (MD) and ortho-quinones including the oxidation products of catecholamines, are derived from xenobiotics as well as endogenous molecules. The effects of quinones on major protein handling systems in cells; the 20/26S proteasome, the ER stress response, autophagy, chaperone proteins and aggresome formation, have not been investigated in a systematic manner. Both BQ and aminochrome (AC) inhibited proteasomal activity and activated the ER stress response and autophagy in rat dopaminergic N27 cells. AC also induced aggresome formation while MD had little effect on any protein handling systems in N27 cells. The effect of NQO1 on quinone induced protein handling changes and toxicity was examined using N27 cells stably transfected with NQO1 to generate an isogenic NQO1-overexpressing line. NQO1 protected against BQ-induced apoptosis but led to a potentiation of AC- and MD-induced apoptosis. Modulation of quinone-induced apoptosis in N27 and NQO1-overexpressing cells correlated only with changes in the ER stress response and not with changes in other protein handling systems. These data suggested that NQO1 modulated the ER stress response to potentiate toxicity of AC and MD, but protected against BQ toxicity. We further demonstrated that NQO1 mediated reduction to unstable hydroquinones and subsequent redox cycling was important for the activation of the ER stress response and toxicity for both AC and MD. In summary, our data demonstrate that quinone-specific changes in protein handling are evident in N27 cells and the induction of the ER stress response is associated with quinone-mediated toxicity.


Assuntos
Proteínas/metabolismo , Quinonas/toxicidade , Animais , Autofagia/efeitos dos fármacos , Benzoquinonas/toxicidade , Células Cultivadas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Indolquinonas/toxicidade , NAD(P)H Desidrogenase (Quinona)/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Ratos , Vitamina K 3/toxicidade
12.
Cancer Res ; 74(19): 5644-55, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25125658

RESUMO

NADPH reductase NAD(P)H: quinone oxidoreductase 1 (NQO1) is needed to maintain a cellular pool of antioxidants, and this enzyme may contribute to tumorigenesis on the basis of studies in NQO1-deficient mice. In this work, we sought deeper insights into how NQO1 contributes to prostate carcinogenesis, a setting in which oxidative stress and inflammation are established contributors to disease development and progression. In the TRAMP mouse model of prostate cancer, NQO1 was highly expressed in tumor cells. NQO1 silencing in prostate cancer cells increased levels of nuclear IKKα and NF-κB while decreasing the levels of p53, leading to interactions between NF-κB and p300 that reinforce survival signaling. Gene expression analysis revealed upregulation of a set of immune-associated transcripts associated with inflammation and tumorigenesis in cells in which NQO1 was attenuated, with IL8 confirmed functionally in cell culture as one key NQO1-supported cytokine. Notably, NQO1-silenced prostate cancer cells were more resistant to androgen deprivation. Furthermore, NQO1 inhibition increased migration, including under conditions of androgen deprivation. These results reveal a molecular link between NQO1 expression and proinflammatory cytokine signaling in prostate cancer. Furthermore, our results suggest that altering redox homeostasis through NQO1 inhibition might promote androgen-independent cell survival via opposing effects on NF-κB and p53 function.


Assuntos
Carcinogênese , Mediadores da Inflamação/fisiologia , NAD(P)H Desidrogenase (Quinona)/fisiologia , NF-kappa B/metabolismo , Neoplasias da Próstata/fisiopatologia , Fatores de Transcrição de p300-CBP/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Interleucina-8/biossíntese , Masculino , NAD(P)H Desidrogenase (Quinona)/genética , Neoplasias da Próstata/patologia , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Proteína Supressora de Tumor p53/metabolismo
13.
Int J Clin Exp Pathol ; 7(4): 1502-13, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24817946

RESUMO

UNLABELLED: Cisplatin resistance is a major problem affecting ovarian carcinoma treatment. NF-E2-related factor 2 (Nrf2), a nuclear transcription factor, plays an important role in chemotherapy resistance. However, the underlying mechanism by which Nrf2 mediates cisplatin chemoresistance is unclear. METHODS: The human ovarian carcinoma cell line, A2780, and its cisplatin-resistant variant, A2780cp were cultivated. Cell viability was determined with WST-8 assay. Western blot was applied to detect the expression of Nrf2, Nrf2 target genes, and autophagy-related proteins. RNA interference was used to knock down target genes. Annexin V and propidium iodide (PI) staining was utilized to quantify apoptosis. The ultrastructural analysis of autophagosomes was performed by transmission electron microscopy (TEM). RESULTS: Nrf2 and its targeting genes, NQO1 and HO-1, are overexpressed in A2780cp cells compared with A2780 cells. Knocking down Nrf2 sensitized A2780cp cells to cisplatin treatment and decreased autophagy-related genes, Atg3, Atg6, Atg12 and p62 in both mRNA and protein levels. Furthermore, we demonstrated that in both cell lines cisplatin could induce the formation of autophagosomes and upregulate the expression of autophagy-related genes Atg3, Atg6 and Atg12. Treatment with an autophagy inhibitor, 3-Methyladenine (3-MA), or beclin 1 siRNA enhanced cisplatin-induced cell death in A2780cp cells, suggesting that inhibition of autophagy renders resistant cells to be more sensitive to cisplatin. Taken together, Nrf2 signaling may regulate cisplatin resistance by activating autophagy. CONCLUSIONS: Nrf2-activated autophagy may function as a novel mechanism causing cisplatin-resistance.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Autofagia/fisiologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Fator 2 Relacionado a NF-E2/fisiologia , Neoplasias Ovarianas/tratamento farmacológico , Adenina/análogos & derivados , Adenina/farmacologia , Adenocarcinoma/fisiopatologia , Autofagia/efeitos dos fármacos , Proteína 12 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Biomarcadores Tumorais/fisiologia , Linhagem Celular Tumoral , Feminino , Heme Oxigenase-1/fisiologia , Humanos , NAD(P)H Desidrogenase (Quinona)/fisiologia , Neoplasias Ovarianas/fisiopatologia , Proteínas de Ligação a RNA/fisiologia , Transdução de Sinais/fisiologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/fisiologia , Enzimas de Conjugação de Ubiquitina/fisiologia
14.
Kidney Int ; 85(3): 496-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24583980

RESUMO

The clinical utility of cisplatin is limited by nephrotoxicity. Oh et al. report that ß-lapachone prevents this nephrotoxicity but not cisplatin's cytotoxicity for cancers. In addition to its potential clinical importance, the beneficial effect of ß-lapachone on cisplatin acute kidney injury may illustrate fundamental processes that ordinarily link alterations in nutrient availability and intracellular reactive oxygen species on the one hand, with inflammation and cell death on the other hand.


Assuntos
Injúria Renal Aguda/prevenção & controle , Antineoplásicos/toxicidade , Cisplatino/toxicidade , NAD(P)H Desidrogenase (Quinona)/fisiologia , NAD/análise , Animais
15.
Biochim Biophys Acta ; 1837(9): 1522-32, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24434028

RESUMO

Fluorescence yield relaxation following a light pulse was studied in various cyanobacteria under aerobic and microaerobic conditions. In Synechocystis PCC 6803 fluorescence yield decays in a monotonous fashion under aerobic conditions. However, under microaerobic conditions the decay exhibits a wave feature showing a dip at 30-50 ms after the flash followed by a transient rise, reaching maximum at ~1s, before decaying back to the initial level. The wave phenomenon can also be observed under aerobic conditions in cells preilluminated with continuous light. Illumination preconditions cells for the wave phenomenon transiently: for few seconds in Synechocystis PCC 6803, but up to one hour in Thermosynechocystis elongatus BP-1. The wave is eliminated by inhibition of plastoquinone binding either to the QB site of Photosystem-II or the Qo site of cytochrome b6f complex by 3-(3',4'-dichlorophenyl)-1,1-dimethylurea or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, respectively. The wave is also absent in mutants, which lack either Photosystem-I or the NAD(P)H-quinone oxidoreductase (NDH-1) complex. Monitoring the redox state of the plastoquinone pool revealed that the dip of the fluorescence wave corresponds to transient oxidation, whereas the following rise to re-reduction of the plastoquinone pool. It is concluded that the unusual wave feature of fluorescence yield relaxation reflects transient oxidation of highly reduced plastoquinone pool by Photosystem-I followed by its re-reduction from stromal components via the NDH-1 complex, which is transmitted back to the fluorescence yield modulator primary quinone electron acceptor via charge equilibria. Potential applications of the wave phenomenon in studying photosynthetic and respiratory electron transport are discussed. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.


Assuntos
Clorofila/química , Cianobactérias/metabolismo , Transporte de Elétrons , NAD(P)H Desidrogenase (Quinona)/fisiologia , Complexo de Proteína do Fotossistema II/química , Plastoquinona/química , Synechocystis/metabolismo
16.
Kidney Int ; 85(3): 547-60, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24025646

RESUMO

Cisplatin is a widely used chemotherapeutic agent for the treatment of various tumors. In addition to its antitumor activity, cisplatin affects normal cells and may induce adverse effects, such as ototoxicity, nephrotoxicity, and neuropathy. Various mechanisms, such as DNA adduct formation, mitochondrial dysfunction, oxidative stress, and inflammatory responses, are critically involved in cisplatin-induced adverse effects. As NAD(+) is a cofactor for various enzymes associated with cellular homeostasis, we studied the effects of increased NAD(+) levels by means of NAD(P)H: quinone oxidoreductase 1 (NQO1) activation using a known pharmacological activator (ß-lapachone) in wild-type and NQO1(-/-) mice on cisplatin-induced renal dysfunction in vivo. The intracellular NAD(+)/NADH ratio in renal tissues was significantly increased in wild-type mice co-treated with cisplatin and ß-lapachone compared with the ratio in mice treated with cisplatin alone. Inflammatory cytokines and biochemical markers for renal damage were significantly attenuated by ß-lapachone co-treatment compared with those in the cisplatin alone group. Notably, the protective effects of ß-lapachone in wild-type mice were completely abrogated in NQO1(-/-) mice. Moreover, ß-lapachone enhanced the tumoricidal action of cisplatin in a xenograft tumor model. Thus, intracellular regulation of NAD(+) levels through NQO1 activation might be a promising therapeutic target for the protection of cisplatin-induced acute kidney injury.


Assuntos
Injúria Renal Aguda/prevenção & controle , Antineoplásicos/toxicidade , Cisplatino/toxicidade , NAD(P)H Desidrogenase (Quinona)/fisiologia , NAD/análise , Injúria Renal Aguda/induzido quimicamente , Animais , Camundongos Endogâmicos C57BL , Naftoquinonas/farmacologia , Sirtuína 1/metabolismo , Fator de Transcrição RelA/metabolismo
17.
Cardiovasc Res ; 99(4): 743-50, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23749777

RESUMO

AIMS: Angiotensin-converting enzyme (ACE) plays a key role in blood pressure (BP) homeostasis via regulation of angiotensin II. Active ACE ectodomain is enzymatically cleaved and released into body fluids, including plasma, and elevated plasma ACE levels are associated with increased BP. ß-lapachone (ßL) has been shown to increase cellular NAD(+)/NADH ratio via activation of NAD(P)H:quinone oxidoreductase 1 (NQO1). In this study, we evaluated whether NQO1 activation by ßL modulates BP through regulation of ACE shedding in an animal model of hypertension. METHODS AND RESULTS: Spontaneously hypertensive rats (SHR) and a human ACE-overexpressing rat lung microvascular endothelial cell line (RLMVEC-hACE) were used to investigate the mechanism by which ßL exerts a hypotensive effect. In vitro studies revealed that ßL significantly increased intracellular Ca(2+) ([Ca(2+)]i) levels and CaMKII Thr(286) phosphorylation, followed by diminished ACE cleavage secretion into culture media. Inhibition of ßL-induced [Ca(2+)]i level changes through intracellular Ca(2+) chelation, Nqo1-specific siRNA or ryanodine receptor blockade abolished not only ßL-induced increase in [Ca(2+)]i levels and CaMKII phosphorylation, but also ßL-mediated decrease in ACE shedding. The effect of ßL on ACE shedding was also blocked by inhibition of CaMKII. In SHR, ßL reduced BP following increase of CaMKII Thr(286) phosphorylation in the lung and decrease of ACE activity and angiotensin II levels in plasma. CONCLUSION: This is the first study demonstrating that ACE shedding is regulated by NQO1 activation, which is possibly correlated with relieving hypertension in SHR. These findings provide strong evidence suggesting that NQO1 might be a new target for ACE modulation and BP control.


Assuntos
Hipertensão/fisiopatologia , NAD(P)H Desidrogenase (Quinona)/fisiologia , Naftoquinonas/farmacologia , Peptidil Dipeptidase A/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Humanos , Hipertensão/enzimologia , Masculino , Fosforilação , Ratos , Ratos Endogâmicos SHR
18.
Toxicol Lett ; 219(3): 254-61, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23535287

RESUMO

Cajaninstilbene acid (CSA), an active compound separated from pigeon pea leaves, possesses the highly efficient antioxidant activities. Transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) is an important regulator of cellular oxidative stress. This study examined the role of Nrf2 in CSA-mediated antioxidant effects on human hepatocarcinoma (HepG2) cell line. The generation of reactive oxygen species (ROS) upon H2O2 and CSA treatment was lower than that of H2O2 alone. CSA activated Nrf2 as evaluated by Western blotting. A luciferase reporter assay also demonstrated that CSA-activated signaling resulted in the increased transcriptional activity of Nrf2 through binding to the antioxidant response element (ARE) enhancer sequence. Our study indicated that treatment of HepG2 cells with CSA induces Nrf2-dependent ARE activity and gene expression of heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), and glutamate-cysteine ligase modifier subunits by activation of PI3K/AKT, ERK and JNK signaling pathways. Inhibition of Nrf2 by siRNA reduced CSA-induced upregulation of these Nrf2-related enzymes. These results suggest that the Nrf2/ARE pathway plays an important role in the regulation of CSA-mediated antioxidant effects in HepG2 cells.


Assuntos
Antioxidantes/farmacologia , Citoproteção/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Salicilatos/farmacologia , Estilbenos/farmacologia , Elementos de Resposta Antioxidante/fisiologia , Western Blotting , Heme Oxigenase-1/fisiologia , Células Hep G2/efeitos dos fármacos , Células Hep G2/metabolismo , Humanos , NAD(P)H Desidrogenase (Quinona)/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
19.
J Nat Prod ; 76(4): 510-5, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23425216

RESUMO

Natural products have contributed to the elucidation of biological mechanisms as well as drug discovery research. Even now, the expectation for natural products is undiminished. We screened prostaglandin release inhibitors that had no effect on in vitro cyclooxygenase activity derived from natural product sources and discovered pronqodine A. Using spectral analysis and total synthesis, the structure of pronqodine A was shown to be a benzo[d]isothiazole-4,7-dione analogue. Evaluation of the biological activity of pronqodine A revealed that the NAD(P)H dehydrogenase quinone 1 (NQO1) converted pronqodine A into a two-electron reductive form. The reductive form underwent autoxidation and reversed to its native form immediately with the generation of reactive oxygen species. Further investigations proved that pronqodine A inhibited cyclooxygenase enzyme activity only in the presence of NQO1. Pronqodine A acts as a potential bioreductive compound, inhibiting prostaglandin release in selectively activated NQO1-expressing cells.


Assuntos
Benzoquinonas/farmacologia , Prostaglandinas/metabolismo , Tiazóis/farmacologia , Benzoquinonas/química , Humanos , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/fisiologia , Oxirredução , Prostaglandinas/genética , Espécies Reativas de Oxigênio , Sarcoma Sinovial/metabolismo , Tiazóis/química
20.
J Biol Chem ; 288(7): 4681-91, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23275341

RESUMO

NADPH:quinone oxidoreductase 1 (NQO1) is recognized as a major susceptibility gene for ozone-induced pulmonary toxicity. In the absence of NQO1 as can occur by genetic mutation, the human airway is protected from harmful effects of ozone. We recently reported that NQO1-null mice are protected from airway hyperresponsiveness and pulmonary inflammation following ozone exposure. However, NQO1 regenerates intracellular antioxidants and therefore should protect the individual from oxidative stress. To explain this paradox, we tested whether in the absence of NQO1 ozone exposure results in increased generation of A(2)-isoprostane, a cyclopentenone isoprostane that blunts inflammation. Using GC-MS, we found that NQO1-null mice had greater lung tissue levels of D(2)- and E(2)-isoprostanes, the precursors of J(2)- and A(2)-isoprostanes, both at base line and following ozone exposure compared with congenic wild-type mice. We confirmed in primary cultures of normal human bronchial epithelial cells that A(2)-isoprostane inhibited ozone-induced NF-κB activation and IL-8 regulation. Furthermore, we determined that A(2)-isoprostane covalently modified the active Cys(179) domain in inhibitory κB kinase in the presence of ozone in vitro, thus establishing the biochemical basis for A(2)-isoprostane inhibition of NF-κB. Our results demonstrate that host factors may regulate pulmonary susceptibility to ozone by regulating the generation of A(2)-isoprostanes in the lung. These observations provide the biochemical basis for the epidemiologic observation that NQO1 regulates pulmonary susceptibility to ozone.


Assuntos
Isoprostanos/química , NAD(P)H Desidrogenase (Quinona)/fisiologia , Ozônio/química , Animais , Linhagem Celular , Cisteína/genética , Humanos , Inflamação , Interleucina-8/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , NAD(P)H Desidrogenase (Quinona)/metabolismo , NF-kappa B/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA