Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 729
Filtrar
1.
Sensors (Basel) ; 24(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38793849

RESUMO

The origin of agricultural products is crucial to their quality and safety. This study explored the differences in chemical composition and structure of rice from different origins using fluorescence detection technology. These differences are mainly affected by climate, environment, geology and other factors. By identifying the fluorescence characteristic absorption peaks of the same rice seed varieties from different origins, and comparing them with known or standard samples, this study aims to authenticate rice, protect brands, and achieve traceability. The study selected the same variety of rice seed planted in different regions of Jilin Province in the same year as samples. Fluorescence spectroscopy was used to collect spectral data, which was preprocessed by normalization, smoothing, and wavelet transformation to remove noise, scattering, and burrs. The processed spectral data was used as input for the long short-term memory (LSTM) model. The study focused on the processing and analysis of rice spectra based on NZ-WT-processed data. To simplify the model, uninformative variable elimination (UVE) and successive projections algorithm (SPA) were used to screen the best wavelengths. These wavelengths were used as input for the support vector machine (SVM) prediction model to achieve efficient and accurate predictions. Within the fluorescence spectral range of 475-525 nm and 665-690 nm, absorption peaks of nicotinamide adenine dinucleotide (NADPH), riboflavin (B2), starch, and protein were observed. The origin tracing prediction model established using SVM exhibited stable performance with a classification accuracy of up to 99.5%.The experiment demonstrated that fluorescence spectroscopy technology has high discrimination accuracy in tracing the origin of rice, providing a new method for rapid identification of rice origin.


Assuntos
Algoritmos , Oryza , Espectrometria de Fluorescência , Máquina de Vetores de Suporte , Oryza/química , Oryza/classificação , Espectrometria de Fluorescência/métodos , Riboflavina/análise , NADP/química , NADP/análise , NADP/metabolismo , Amido/análise , Amido/química , Sementes/química
2.
Int J Food Microbiol ; 411: 110537, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38150773

RESUMO

The maintenance of the balance between oxidised and reduced redox cofactors is essential for the functioning of many cellular processes in all living organisms. While the electron transport chain plays a key role in maintaining this balance under respiratory conditions, its inactivity in the absence of oxygen poses a challenge that yeasts such as Saccharomyces cerevisiae overcome through the production of various metabolic end-products during alcoholic fermentation. In this study, we investigated the diversity occurring between wine yeast species in their management of redox balance and its consequences on the fermentation performances and the formation of metabolites. To this aim, we quantified the changes in NAD(H) and NADP(H) concentrations and redox status throughout the fermentation of 6 wine yeast species. While the availability of NADP and NADPH remained balanced and stable throughout the process for all the strains, important differences between species were observed in the dynamics of NAD and NADH intracellular pools. A comparative analysis of these data with the fermentation capacity and metabolic profiles of the strains revealed that Saccharomyces cerevisiae, Torulaspora delbrueckii and Lachancea thermotolerans strains were able to reoxidise NADH to NAD throughout the fermentation, mainly by the formation of glycerol. These species exhibited good fermentation capacities. Conversely, Starmerella bacillaris and Metschnikowia pulcherrima species were unable to regenerate NAD as early as one third of sugars were consumed, explaining at least in part their poor growth and fermentation performances. The Kluyveromyces marxianus strain exhibited a specific behaviour, by maintaining similar levels of NAD and NADH throughout the process. This balance between oxidised and reduced redox cofactors ensured the consumption of a large part of sugars by this species, despite a low fermentation rate. In addition, the dynamics of redox cofactors affected the production of by-products by the various strains either directly or indirectly, through the formation of precursors. Major examples are the increased formation of glycerol by S. bacillaris and M. pulcherrima strains, as a way of trying to reoxidise NADH, and the greater capacity to produce acetate and derived metabolites of yeasts capable of maintaining their redox balance. Overall, this study provided new insight into the contribution of the management of redox status to the orientation of yeast metabolism during fermentation. This information should be taken into account when developing strategies for more efficient and effective fermentation.


Assuntos
Saccharomyces cerevisiae , Vinho , Saccharomyces cerevisiae/metabolismo , Vinho/análise , NAD/análise , NAD/metabolismo , Glicerol/metabolismo , Fermentação , NADP/análise , NADP/metabolismo , Filogenia , Oxirredução , Açúcares/metabolismo
3.
J Plant Res ; 136(1): 83-96, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36385674

RESUMO

Norway maple and sycamore, two Acer genus species, have an important ecological value and different sensitivity to stressing factors being currently aggravated by climate change. Seedling growth is postulated to be the main barrier for successful plant establishment under the climate change scenarios. Therefore, the differences in redox regulation during the seedling performance of Norway maple and sycamore were investigated. Seeds of the two Acer species exhibited an identical high germination capacity, whereas seedling emergence was higher in sycamores. PCA analyses revealed that there is more diversification in the leaf characteristics than roots. Norway maple displayed a higher chlorophyll content index (CCI) with a similar leaf mass whereas sycamore seedlings exhibited a higher normalized difference vegetation index (NDVI), higher water content, higher root biomass and higher shoot height. Based on NDVI, sycamore seedlings appeared as very healthy plants, whereas Norway maple seedlings displayed a moderate healthy phenotype. Therefore, redox basis of seedling performance was investigated. The total pool of glutathione was four times higher in sycamore leaves than in Norway maple leaves and was reflected in highly reduced half-cell reduction potential of glutathione. Sycamore leaves contained more ascorbate because the content of its reduced form (AsA) was twice as high as in Norway maple. Therefore, the AsA/DHA ratio was balanced in sycamore leaves, reaching 1, and was halved in Norway maple leaves. Nicotinamide adenine dinucleotide phosphate content was twice as high in sycamore leaves than in Norway maples; however, its reduced form (NADPH) was predominant in Norway maple seedlings. Norway maple leaves exhibited the highest anabolic and catabolic redox charge. The higher reduction capacity and the activity of NADPH-dependent reductases in Norway maple leaves possibly resulted in higher CCI, whereas the larger root system contributed to higher NDVI in sycamore. The different methods of controlling redox parameters in Acer seedlings grown at controlled conditions provided here can be useful in understanding how tree species can cope with a changing environment in the future.


Assuntos
Acer , Plântula , Acer/química , Acer/fisiologia , NADP/análise , NADP/metabolismo , Oxirredução , Glutationa/metabolismo , Folhas de Planta/metabolismo
4.
Phytochemistry ; 203: 113393, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35998832

RESUMO

The major aim of this study was to check the effect of one-time ozonation on selected quality parameters and antioxidant status of Actinidia arguta fruit. For this purpose, A. arguta fruit was ozonated with gas at a concentration of 10 and 100 ppm, which was carried out successively for 5, 15 and 30 min. Next, the selected quality attributes, antioxidants level as well as NADPH and mitochondrial energy metabolism in mini-kiwi fruit after ozonation were analysed. Our research has shown that ozonation reduced the level of yeast and mould without affecting the content of soluble solids or acidity. In turn, ozonation clearly influenced the antioxidant activity and the redox status of the fruit. The ozonated fruit was characterised by a lower level of ROS due to the higher level of low molecular weight antioxidants, as well as the higher activity of superoxide dismutase and catalase. In addition, improved quality and antioxidant activity of the fruit were indirectly due to improved energy metabolism and NADPH level. The ozonated fruit showed a higher level of ATP, due to both higher activity of succinate dehydrogenase and higher availability of NADH. Moreover, the increased level of NAD+ and the activity of NAD+ kinase and glucose-6-phosphate dehydrogenase contributed to higher levels of NADPH in the fruit.


Assuntos
Actinidia , Ozônio , Actinidia/química , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Catalase/metabolismo , Frutas/química , Glucosefosfato Desidrogenase/análise , Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/farmacologia , NAD/metabolismo , NADP/análise , NADP/metabolismo , NADP/farmacologia , Ozônio/análise , Ozônio/metabolismo , Ozônio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/análise , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/farmacologia , Superóxido Dismutase/metabolismo
5.
Methods Mol Biol ; 2276: 193-202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34060042

RESUMO

Brain is one of the most energy-demanding organs. Energy in the form of ATP is produced in brain cells predominantly in oxidative phosphorylation coupled to mitochondrial respiration. Any alteration of the mitochondrial metabolism or prolonged ischemic or anoxic conditions can lead to serious neurological conditions, including neurodegenerative disorders. Assessment of mitochondrial metabolism is important for understanding physiological and pathological processes in the brain. Bioenergetics in central nervous system is dependent on multiple parameters including neuron-glia interactions and considering this, in vivo or ex vivo, the measurements of mitochondrial metabolism should also be complimenting the experiments on isolated mitochondria or cell cultures. To assess the mitochondrial function, there are several key bioenergetic parameters which indicate mitochondrial health. One of the major characteristics of mitochondria is the mitochondrial membrane potential (ΔΨm) which is used as a proton motive force for ATP production and generated by activity of the electron transport chain. Major donor of electrons for the mitochondrial respiratory chain is NADH. Here we demonstrate how to measure mitochondrial NADH/NAD(P)H autofluorescence and ΔΨm in acute brain slices in a time-dependent manner and provide information for the identification of NADH redox index, mitochondrial NADH pool, and the rate of NADH production in the Krebs cycle. Additionally, non-mitochondrial NADH/NADPH autofluorescence can signify the level of activity of the pentose phosphate pathway.


Assuntos
Encéfalo/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , NADP/metabolismo , NAD/metabolismo , Imagem Óptica/métodos , Animais , Química Encefálica , Mitocôndrias/química , NAD/análise , NADP/análise , Oxirredução , Fosforilação Oxidativa
6.
Life Sci ; 277: 119585, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33957169

RESUMO

AIMS: Oxidative damage and altered metabolic reactions are suspected to initiate the autophagy. The exercise training significantly impacts testicular antioxidant and metabolic potentials. However, the underlying mechanism(s) that the exercise-induced alterations can affect the autophagy markers remained unknown. This study explored the effect of exercise training on antioxidant and metabolic statuses of testicular tissue and uncovered the possible cross-link between these statuses and autophagy-inducers expression. MAIN METHODS: Wistar rats were divided into sedentary control, low (LICT), moderate (MICT), and high (HICT) intensity continuous training groups. Following 8 weeks of training, the testicular total antioxidant capacity (TAC), total oxidant status (TOS), glutathione (GSH), and NADP+/NADPH as oxidative biomarkers along with intracytoplasmic carbohydrate and lipid droplet patterns, lactate dehydrogenase (LDH) activity, and lactate as metabolic elements were assessed. Finally, the autophagy-inducers expression and sperm count were examined. KEY FINDINGS: With no significant impact on the oxidative biomarkers and metabolic elements, the LICT and MICT groups exhibited statistically unremarkable (p < 0.05) impacts on spermatogenesis differentiation, spermiogenesis ratio, and sperm count while increased the autophagy-inducers expression. Reversely, the HICT group, simultaneous with suppressing the antioxidant biomarkers (TAC↓, GSH↓, TOS↑, NADP+/NADPH↑), significantly (p < 0.05) reduced the testicular LDH activity and lactate level, changed the intracytoplasmic carbohydrate and lipid droplet's pattern, and amplified the classical autophagy-inducers p62, Beclin-1, autophagy-related gene (ATG)-7, and light chain 3 (LC3)-II/I expression. SIGNIFICANCE: The autophagy-inducers overexpression has occurred after HICT induction, most probably to eliminate the oxidative damage cargoes, while increased to maintain the metabolic homeostasis in the LICT and MICT groups.


Assuntos
Estresse Oxidativo/fisiologia , Esforço Físico/fisiologia , Testículo/metabolismo , Animais , Antioxidantes/metabolismo , Autofagia/fisiologia , Biomarcadores , Glutationa/análise , Treinamento Intervalado de Alta Intensidade/métodos , Masculino , Metabolômica/métodos , NADP/análise , Oxidantes/metabolismo , Condicionamento Físico Animal/métodos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Espermatogênese/fisiologia , Espermatozoides/metabolismo , Testículo/fisiologia
7.
Phys Chem Chem Phys ; 23(22): 12692-12705, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34036961

RESUMO

The majority of in vitro studies of living cells are routinely conducted in a two-dimensional (2D) monolayer culture. Recent studies, however, suggest that 2D cell culture promotes specific types of aberrant cell behaviors due to the growth on non-physiologically stiff surfaces and the lack of the tissue-based extracellular matrix. Here, we investigate the sensitivity of the two-photon (2P) rotational dynamics of the intrinsic reduced nicotinamide adenine dinucleotide (phosphate), NAD(P)H, to changes in the metabolic state of the metastatic murine breast cancer cells (4T1) in 2D monolayer and three-dimensional (3D) collagen matrix cultures. Time-resolved 2P-associated anisotropy measurements reveal that the rotational dynamics of free and enzyme-bound NAD(P)H in 4T1 cells are correlated to changes in the metabolic state of 2D and 3D cell cultures. In addition to the type of cell culture, we also investigated the metabolic response of 4T1 cells to treatment with two metabolic inhibitors (MD1 and TPPBr). The statistical analyses of our results enabled us to identify which of the fitting parameters of the observed time-resolved associate anisotropy of cellular NAD(P)H were significantly sensitive to changes in the metabolic state of 4T1 cells. Using a black-box model, the population fractions of free and bound NAD(P)H were used to estimate the corresponding equilibrium constant and the standard Gibbs free energy changes that are associated with underlying metabolic pathways of 4T1 cells in 2D and 3D cultures. These rotational dynamics analyses are in agreement with the standard 2P-fluorescence lifetime imaging microscopy (FLIM) measurements on the same cell line, cell cultures, and metabolic inhibition. These studies represent an important step towards the development of a noninvasive, time-resolved associated anisotropy to complement 2P-FLIM in order to elucidate the underlying cellular metabolism and metabolic plasticity in more complex in vivo, tumor-like models using intrinsic NADH autofluorescence.


Assuntos
Neoplasias da Mama/metabolismo , Colágeno/metabolismo , NADP/metabolismo , Animais , Anisotropia , Neoplasias da Mama/patologia , Colágeno/química , Feminino , Camundongos , NADP/análise , Células Tumorais Cultivadas
8.
J Comp Neurol ; 529(13): 3321-3335, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34008863

RESUMO

Nitrergic neurons (NNs) are inhibitory neurons capable of releasing nitric oxide (NO) that are labeled with nicotinamide adenine dinucleotide phosphate diaphorase histochemistry. The rat primary somatosensory (S1) and motor (M1) cortices are a favorable model to investigate NN populations by comparing their morphology, since these areas share the border of forepaw representation. The distribution of the Type I NN of the forepaw representation in the S1 and M1 cortices of the rat in different laminar compartments and the morphological parameters related to the cell body and dendritic arborization were measured and compared. We observed that the neuronal density in the S1 (130 NN/mm3 ) was higher than the neuronal density in the M1 (119 NN/mm3 ). Most NN neurons were multipolar (S1 with 58%; M1 with 69%), and a minority of the NN neurons were horizontal (S1 with 6%; M1 with 12%). NN found in S1 had a higher verticality index than NN found in M1, and no significant differences were observed for the other morphological parameters. We also demonstrated significant differences in most of the morphological parameters of the NN between different cortical compartments of S1 and M1. Our results indicate that the NN of the forepaw in S1 and M1 corresponds to a neuronal population, where the functionality is independent of the different types of sensory and motor processing. However, the morphological differences found between the cortical compartments of S1 and M1, as well as the higher density of NNs found in S1, indicate that the release of NO varies between the areas.


Assuntos
Membro Anterior/metabolismo , Córtex Motor/metabolismo , Neurônios Nitrérgicos/metabolismo , Córtex Somatossensorial/metabolismo , Animais , Membro Anterior/química , Membro Anterior/inervação , Masculino , Córtex Motor/química , Córtex Motor/citologia , NADP/análise , NADP/metabolismo , Neurônios Nitrérgicos/química , Ratos , Ratos Wistar , Córtex Somatossensorial/química , Córtex Somatossensorial/citologia
9.
Undersea Hyperb Med ; 47(4): 607-619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33227837

RESUMO

Neuroinflammation plays an important role in brain damage after acute carbon monoxide poisoning (ACOP). The nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing (NLRP) 3 inflammasome triggers the activation of inflammatory caspases and maturation of interleukin (IL)-1ß and -18, and has been linked to various human autoinflammatory and autoimmune diseases. In this study we investigated the effects of hyperbaric oxygen (HBO2) on NLRP3 inflammasome activation after ACOP. Mice were randomly divided into four groups: sham group (exposure to normobaric air - i.e., 21% O2 at 1 atmosphere absolute); HBO2-only group; CO + normobaric air group; and CO + HBO2 group. Cognitive function was evaluated with the Morris water maze; myelin injury was assessed by FluoroMyelin GreenTM fluorescent myelin staining and myelin basic protein (MBP) immunostaining; and mRNA and protein levels of NLRP3 inflammasome complex proteins were measured by quantitative real-time PCR and Western blot, respectively. Additionally, serum and brain levels of IL-1ßß and -18 and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were determined by enzyme-linked immunosorbent assay. It was found that HBO2 improved learning and memory, and alleviated myelin injury in mice subjected to acute CO exposure. Furthermore, HBO2 decreased NLRP3, absent in melanoma 2 (AIM2), caspase-1, and apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain mRNA and protein levels, and reduced brain and serum concentrations of IL-1ß and -18 and NADPH oxidase. These results indicate that HBO2 suppresses the inflammatory response after ACOP by blocking NLRP3 inflammasome activation, thereby alleviating cognitive deficits.


Assuntos
Encéfalo/metabolismo , Intoxicação por Monóxido de Carbono/metabolismo , Oxigenoterapia Hiperbárica , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença Aguda , Animais , Pressão Atmosférica , Química Encefálica , Proteínas Adaptadoras de Sinalização CARD/análise , Caspase 1/análise , Proteínas de Ligação a DNA/análise , Interleucina-18/análise , Interleucina-1beta/análise , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina , NADP/análise , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , RNA Mensageiro/metabolismo , Distribuição Aleatória
10.
Molecules ; 25(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932963

RESUMO

Ln(III) complexes of macrocyclic ligands are used in medicinal chemistry, for example as contrast agents in MRI or radiopharmaceutical compounds, and in diagnostics using fluorescence imaging. This paper is devoted to a spectroscopic study of Ln(III) ternary complexes consisting of macrocyclic heptadentate DO3A and bidentate 3-isoquinolinate (IQCA) ligands. IQCA serves as an efficient antenna ligand, leading to a higher quantum yield and Stokes shift (250-350 nm for Eu, Tb, Sm, Dy in VIS region, 550-650 nm for Yb, Nd in NIR region). The shielding-quenching effect of NAD(P)H on the luminescence of the Ln(III) ternary complexes was investigated in detail and this phenomenon was utilized for the analytical determination of this compound. This general approach was verified through an enzymatic reaction during which the course of ethanol transformation catalyzed by alcohol-dehydrogenase (ADH) was followed by luminescence spectroscopy. This method can be utilized for selective and sensitive determination of ethanol concentration and/or ADH enzyme activity. This new analytical method can also be used for other enzyme systems coupled with NAD(P)H/NAD(P)+ redox pairs.


Assuntos
Meios de Contraste/química , Elementos da Série dos Lantanídeos/química , Luminescência , NADP/análise , Espectrofotometria/métodos , Álcool Desidrogenase/química , Catálise , Etanol/química , Ligantes , Estrutura Molecular , Oxirredução , Compostos Radiofarmacêuticos/química
11.
Anat Histol Embryol ; 49(4): 563-570, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32301153

RESUMO

Nitric oxide (NO) plays an important role in regulating gut motility, mucosal barrier function and secretions in the enteric nervous system. Nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) staining has been used to identify nitrergic neurons of the enteric nervous system in different species. However, NADPH-d staining lacks specificity because it also reflects the presence of enzymes other than nitric oxide synthase (NOS). Therefore, NOS immunohistochemistry techniques are needed to test for nitrergic neurons in the avian gut. In the present work, the morphology, density and size of NOS-positive neurons in the duodenum, jejunum, ileum, caecum and rectum myenteric plexus of adult pigeons were investigated using NOS immunohistochemistry and whole-mount preparations techniques. The density of NOS-positive ganglion was highest in the ileum, similar to the caecum and rectum, and the lowest staining levels were observed in the duodenum. The staining intensity of NOS-positive neurons in the duodenum, jejunum and ileum was dark, followed by the rectal regions, with weak staining in the caecum. These results suggested that NOS immunohistochemistry and whole-mount preparation techniques provide an effective assessment method of the ganglia in the pigeon intestinal myenteric nerve plexus and are more accurate for cell counting compared with conventional sections.


Assuntos
Columbidae/anatomia & histologia , Intestinos/inervação , Neurônios/enzimologia , Óxido Nítrico Sintase/análise , Animais , Gânglios/anatomia & histologia , Imuno-Histoquímica/veterinária , Intestinos/anatomia & histologia , Intestinos/citologia , Plexo Mientérico/anatomia & histologia , NADP/análise , Neurônios/citologia , Coelhos
12.
Acta Cir Bras ; 34(11): e201901102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31859816

RESUMO

PURPOSE: To investigate the effect of Picroside II on testicular ischemia and reperfusion (l/R) injury and the underlying mechanism. METHODS: Sprague-Dawley rats were randomly divided into 4 groups: sham operated group (Sham), Sham with Picroside II treatment group (Sham+ Pic II), l/R group (l/R) and l/R with Picroside II treatment group (I/R+ Pic II). l/R model was established by rotating the left testis 720° in a clock-wise direction for 4 hours. The histopathologic and spermatogenetic evaluation was performed. The apoptosis changes and the levels of HO-1 (heme oxygenase-1), MPO (myeloperoxidase), NOX (NADPH oxidase), SOD (superoxide dismutase), XO (xanthine oxidase) and NOS (nitric oxide synthase) were measured. RESULTS: The seminiferous tubules were damaged in l/R rats, but Picroside II alleviated the changes induced by l/R. The increased level of apoptosis was decreased by Picroside II (P=0.01, 9.05±0.35 vs. 4.85±0.25). The activities of HO-1, MPO, NOX, XO and MDA content were increased and the SOD activity was decreased in l/R (P<0.05) and could be reversed by Picroside II (P=0.03, 405.5±7.5 vs. 304±17U/mgprot; P=0.02, 0.99±0.05 vs. 0.52±0.04 mgprot; P=0.01, 260+7 vs. 189±2 mgprot; P=0.04, 10.95+0.55 vs. 8.75+0.35 U/mgprot; P=0.045, 6.8+0.7 vs. 3.75+0.35 mgprot; P=0.04, 44.5+3.5 vs. 57.5+3.5 mgprot). Western blot showed that the expression of iNOS, nNOS and eNOS were increased in l/R (P<0.05); however, they were decreased after Picroside II treatment (P<0.05). CONCLUSION: Picroside II attenuated testicular I/R injury in rats mainly through suppressing apoptosis and oxidative stress through reduction of nitric oxide synthesis.


Assuntos
Apoptose/efeitos dos fármacos , Cinamatos/farmacologia , Glucosídeos Iridoides/farmacologia , Óxido Nítrico/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Testículo/irrigação sanguínea , Animais , Western Blotting , Heme Oxigenase-1/análise , Marcação In Situ das Extremidades Cortadas , Masculino , Malondialdeído/análise , NADP/análise , Peroxidase/análise , Distribuição Aleatória , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Reprodutibilidade dos Testes , Superóxido Dismutase/análise , Testículo/patologia , Xantina Oxidase/análise
13.
Acta cir. bras ; 34(11): e201901102, Nov. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1054682

RESUMO

Abstract Purpose: To investigate the effect of Picroside II on testicular ischemia and reperfusion (l/R) injury and the underlying mechanism. Methods: Sprague-Dawley rats were randomly divided into 4 groups: sham operated group (Sham), Sham with Picroside II treatment group (Sham+ Pic II), l/R group (l/R) and l/R with Picroside II treatment group (I/R+ Pic II). l/R model was established by rotating the left testis 720° in a clock-wise direction for 4 hours. The histopathologic and spermatogenetic evaluation was performed. The apoptosis changes and the levels of HO-1 (heme oxygenase-1), MPO (myeloperoxidase), NOX (NADPH oxidase), SOD (superoxide dismutase), XO (xanthine oxidase) and NOS (nitric oxide synthase) were measured. Results: The seminiferous tubules were damaged in l/R rats, but Picroside II alleviated the changes induced by l/R. The increased level of apoptosis was decreased by Picroside II (P=0.01, 9.05±0.35 vs. 4.85±0.25). The activities of HO-1, MPO, NOX, XO and MDA content were increased and the SOD activity was decreased in l/R (P<0.05) and could be reversed by Picroside II (P=0.03, 405.5±7.5 vs. 304±17U/mgprot; P=0.02, 0.99±0.05 vs. 0.52±0.04 mgprot; P=0.01, 260+7 vs. 189±2 mgprot; P=0.04, 10.95+0.55 vs. 8.75+0.35 U/mgprot; P=0.045, 6.8+0.7 vs. 3.75+0.35 mgprot; P=0.04, 44.5+3.5 vs. 57.5+3.5 mgprot). Western blot showed that the expression of iNOS, nNOS and eNOS were increased in l/R (P<0.05); however, they were decreased after Picroside II treatment (P<0.05). Conclusion: Picroside II attenuated testicular I/R injury in rats mainly through suppressing apoptosis and oxidative stress through reduction of nitric oxide synthesis.


Assuntos
Animais , Masculino , Testículo/irrigação sanguínea , Traumatismo por Reperfusão/prevenção & controle , Cinamatos/farmacologia , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Glucosídeos Iridoides/farmacologia , Óxido Nítrico/biossíntese , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Distribuição Aleatória , Western Blotting , Ratos Sprague-Dawley , Peroxidase/análise , Marcação In Situ das Extremidades Cortadas , Heme Oxigenase-1/análise , Malondialdeído/análise , NADP/análise
14.
Biosens Bioelectron ; 146: 111753, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31600627

RESUMO

Nicotinamide adenine nucleotide phosphate (NADPH) has been known to be involved in the multiple pathways of cell metabolism. However, conventional quantification assays for NADPH have required breaking down the cell membranes of around one million cells per assay, and monitoring NADPH flux in living cells has been limited by a few available tools. Here, we visualized NADPH levels in human cervical cancer cells HeLa using metagenome-derived blue fluorescent protein (mBFP), which specifically binds to NADPH and enhances the intrinsic fluorescence of NADPH up to 10-fold when imaged by two-photon microscopy to reduce photodamage. Adding an oxidizing agent such as diamide to HeLa cells that expressed mBFP led to an immediate decrease of intracellular NADPH depending on glucose availability in culture media. Furthermore, inhibiting glucose-6-phosphate dehydrogenase (G6PD) in the pentose phosphate pathway with dehydroandrosterone (DHEA) and knockdown of G6PD transcripts gradually decreased NADPH when diamide was added to living cells. These results demonstrate that introducing a bacterial mBFP gene into mammalian cells is a straightforward approach to monitoring intracellular NADPH flux in real time at the single-cell level. Moreover, this strategy can be expanded to tracking the spatio-temporal changes in NADPH even in single-cell organelles such as mitochondria and chloroplasts, which will allow us to more precisely assess the efficacy of biochemically or biophysically metabolic perturbations in animal and plant cells.


Assuntos
Técnicas Biossensoriais/métodos , Corantes Fluorescentes/análise , Proteínas Luminescentes/análise , NADP/análise , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , NADP/metabolismo
15.
Anal Chem ; 91(12): 7654-7661, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31082217

RESUMO

Currently, 31P NMR is the only analytical method that quantitatively determines the average chain length of long inorganic polyphosphate (>80 P-subunits). In this study, an enzyme assay is presented that determines the average chain length of polyphosphate in the range of two to several hundred P-subunits. In the enzyme assay, the average polyP chain length is calculated by dividing the total polyphosphate concentration by the concentration of the polyphosphate chains. The total polyphosphate is determined by enzymatic polyphosphate hydrolysis with Saccharomyces cerevisiae exopolyphosphatase 1 and S. cerevisiae inorganic pyrophosphatase 1, followed by colorimetric orthophosphate detection. Because the exopolyphosphatase leaves one pyrophosphate per polyphosphate chain, the polyphosphate chain concentration is assayed by coupling the enzymes exopolyphosphatase (polyP into pyrophosphate), ATP sulfurylase (pyrophosphate into ATP), hexokinase (ATP into glucose 6-phosphate), and glucose 6-phosphate dehydrogenase (glucose 6-phosphate into NADPH), followed by fluorometric NADPH detection. The ability of 31P NMR and the enzyme assay to size polyP was demonstrated with polyP lengths in the range from 2 to ca. 280 P-subunits (no polyP with a longer chain length was available). The small deviation between methods (-4 ± 4%) indicated that the new enzyme assay performed accurately. The limitations of 31P NMR (i.e., low throughput, high sample concentration, expensive instrument) are overcome by the enzyme assay that is presented here, which allows for high sample throughput and requires only a commonly available plate reader and micromole per liter concentrations of polyphosphate.


Assuntos
Ensaios Enzimáticos/métodos , Espectroscopia de Ressonância Magnética/métodos , Polifosfatos/análise , Hidrolases Anidrido Ácido/metabolismo , Difosfatos/análise , Fluorometria , Pirofosfatase Inorgânica/metabolismo , NADP/análise , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Methods Mol Biol ; 1996: 61-73, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31127548

RESUMO

Pyridine nucleotides which include NAD+, NADH, NADP, and NADPH play vital roles in many different biological processes. These metabolites can be accurately quantified in a wide variety of biological samples using LC-MS/MS. The quality and precision of these measurements was enhanced using heavy isotope-labeled internal standards and carefully crafted protocols for sample processing.


Assuntos
Metabolômica/métodos , NADP/análise , NAD/análise , Espectrometria de Massas em Tandem/métodos , Animais , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/normas , NAD/química , NAD/metabolismo , NADP/química , NADP/metabolismo , Oxirredução , Isótopos de Oxigênio/química , Padrões de Referência
17.
BMC Biochem ; 20(1): 4, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30961528

RESUMO

BACKGROUND: The reduction of tetrazolium salts by NAD(P)H to formazan product has been widely used to determine the metabolic activity of cells, and as an indicator of cell viability. However, the application of a WST-8 based assay for the quantitative measurement of dehydrogenase enzyme activity has not been described before. In this study, we reported the application of an assay based on the tetrazolium salt WST-8 for the quantitative measurement of dehydrogenase activity. The assay is performed in a microplate format, where a single endpoint is measured at 450 nm. RESULTS: The optimized dehydrogenase-WST-8 assay conditions, the limit of detection (LOD), accuracy, and precision for measuring NAD(P)H, were demonstrated. The sensitivity of the WST-8 assay for detecting NAD(P)H was 5-fold greater than the spectrophotometric measurement of NAD(P)H absorption at 340 nm (LOD of 0.3 nmole vs 1.7 nmole, respectively). In the dehydrogenase assay, the colorimetric WST-8 method exhibits excellent assay reproducibility with a Z' factor of 0.9. The WST-8 assay was also used to determine dehydrogenase activity in biological samples, and for screening the substrate of uncharacterized short-chain dehydrogenase/oxidoreductase from Burkholderia pseudomallei. CONCLUSION: The results suggest that the WST-8 assay is a sensitive and rapid method for determining NAD(P)H concentration and dehydrogenase enzyme activity, which can be further applied for the high-throughput screening of dehydrogenases.


Assuntos
Colorimetria/métodos , Oxirredutases/análise , Sais de Tetrazólio/química , Burkholderia pseudomallei/enzimologia , Glucosefosfato Desidrogenase , Humanos , Limite de Detecção , NAD/análise , NAD/metabolismo , NADP/análise , NADP/metabolismo , Oxirredutases/metabolismo , Espectrofotometria
18.
Sci Rep ; 9(1): 4753, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30894596

RESUMO

Reactive oxygen species (ROS) are natural byproducts of metabolism that have toxic effects well documented in mammals. In hematophagous arthropods, however, these processes are not largely understood. Here, we describe that Rhipicephalus microplus ticks and embryonic cell line (BME26) employ an adaptive metabolic compensation mechanism that confers tolerance to hydrogen peroxide (H2O2) at concentrations too high for others organisms. Tick survival and reproduction are not affected by H2O2 exposure, while BME26 cells morphology was only mildly altered by the treatment. Furthermore, H2O2-tolerant BME26 cells maintained their proliferative capacity unchanged. We evaluated several genes involved in gluconeogenesis, glycolysis, and pentose phosphate pathway, major pathways for carbohydrate catabolism and anabolism, describing a metabolic mechanism that explains such tolerance. Genetic and catalytic control of the genes and enzymes associated with these pathways are modulated by glucose uptake and energy resource availability. Transient increase in ROS levels, oxygen consumption, and ROS-scavenger enzymes, as well as decreased mitochondrial superoxide levels, were indicative of cell adaptation to high H2O2 exposure, and suggested a tolerance strategy developed by BME26 cells to cope with oxidative stress. Moreover, NADPH levels increased upon H2O2 challenge, and this phenomenon was sustained mainly by G6PDH activity. Interestingly, G6PDH knockdown in BME26 cells did not impair H2O2 tolerance, but generated an increase in NADP-ICDH transcription. In agreement with the hypothesis of a compensatory NADPH production in these cells, NADP-ICDH knockdown increased G6PDH relative transcript level. The present study unveils the first metabolic evidence of an adaptive mechanism to cope with high H2O2 exposure and maintain redox balance in ticks.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Peróxido de Hidrogênio/toxicidade , Oxidantes/toxicidade , Estresse Oxidativo/fisiologia , Rhipicephalus/metabolismo , Adaptação Fisiológica , Animais , Carboidratos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Resistência a Medicamentos , Tolerância a Medicamentos/fisiologia , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , NADP/análise , Oxirredução
19.
Med Sci Monit ; 25: 2132-2140, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30901320

RESUMO

BACKGROUND Endothelial injury is the main mechanism of atherosclerosis, and is caused by oxidized low-density lipoprotein (ox-LDL). Astragaloside IV (AS-IV) is the primary active ingredient of the Chinese herb Huangqi, and exhibits antioxidant and anti-inflammatory properties in cardiovascular diseases. This study investigated the protective effect of AS-IV in human umbilical vein endothelial cells (HUVECs). MATERIAL AND METHODS HUVEC cells were induced with ox-LDL to establish an in vitro atherosclerosis model. Then HUVECs were pretreated for 1 h with AS-IV at different concentrations (10, 20, and 50 µM) and then exposed to ox-LDL (100 µg/mL) for 48 h. The cell viability, lactate dehydrogenase (LDH) release, apoptosis, migration, intracellular reactive oxygen species (ROS), and NADPH oxidase activity of HUVECs were measured. qRT-PCR was performed to measure the mRNA expressions of Nrf2, HO-1, TNFalpha, and IL-6. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the supernatant contents of TNFalpha and IL-6. RESULTS Exposure of HUVECs to ox-LDL reduced cell viability and migration, induced apoptosis, and increased intracellular ROS production and NADPH oxidase. Pretreatment with AS-IV (10, 20, and 50 µM) significantly enhanced the cell viability and migration, suppressed LDH release, apoptosis, ROS production, and NADPH oxidase in HUVECs, in a concentration-dependent manner. The AS-IV (50 µM) alone did not show significant differences from control. AS-IV increased mRNA expressions of Nrf2 and HO-1 and decreased mRNA expressions of TNFalpha and IL-6 in the ox-LDL-HUEVC cells. Furthermore, AS-IV reduced supernatant contents of TNFalpha and IL-6. CONCLUSIONS Astragaloside IV prevents ox-LDL-induced endothelial cell injury by reducing apoptosis, oxidative stress, and inflammatory response.


Assuntos
Células Endoteliais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Saponinas/farmacologia , Triterpenos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/fisiologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Inflamação/metabolismo , L-Lactato Desidrogenase/análise , Lipoproteínas LDL/metabolismo , NADP/análise , NADP/efeitos dos fármacos , NADPH Oxidases/metabolismo , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Saponinas/metabolismo , Triterpenos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Anal Bioanal Chem ; 411(13): 2971-2979, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30923861

RESUMO

Chinese hamster ovary (CHO) cells are predominant in the production of therapeutic proteins to treat various diseases. Characterization and investigation of CHO cell metabolism in a quick and simple way could boost process and cell line development. Therefore, a method to simultaneously detect seven redox- and energy-related metabolites in CHO cells by capillary electrophoresis has been developed. An on-line focusing technique was applied to improve the peak shape and resolution by using a 50 µm × 44 cm uncoated fused silica capillary. Key parameters and their interactions were investigated by design of experiments (DoE) and optimized conditions were determined by desirability function as follows: 24 °C, 95 mM, and pH 9.4 of BGE. The method was validated to ensure sensitivity, linearity, and reproducibility. The limits of detection (LODs) ranged from 0.050 to 0.688 mg/L for seven metabolites, and correlation coefficients of linearity were all greater than 0.996. The relative standard deviations (RSD) of migration time and peak area were smaller than 0.872% and 5.5%, respectively, except for NADPH, and the recoveries were between 97.5 and 101.2%. The method was successfully applied to analyze the extracts from CHO cells under two different culture conditions. Graphical abstract.


Assuntos
Monofosfato de Adenosina/análise , Eletroforese Capilar/métodos , NADP/análise , NAD/análise , Difosfato de Adenosina/análise , Trifosfato de Adenosina/análise , Animais , Anticorpos Monoclonais/química , Células CHO , Técnicas de Cultura de Células , Cricetulus , Limite de Detecção , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA