Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.568
Filtrar
1.
Sci Transl Med ; 16(769): eadj6779, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39413163

RESUMO

X-linked chronic granulomatous disease (X-CGD) is an inborn error of immunity (IEI) resulting from genetic mutations in the cytochrome b-245 beta chain (CYBB) gene. The applicability of base editors (BEs) to correct mutations that cause X-CGD is constrained by the requirement of Cas enzymes to recognize specific protospacer adjacent motifs (PAMs). Our recently engineered PAMless Cas enzyme, SpRY, can overcome the PAM limitation. However, the efficiency, specificity, and applicability of SpRY-based BEs to correct mutations in human hematopoietic stem and progenitor cells (HSPCs) have not been thoroughly examined. Here, we demonstrated that the adenine BE ABE8e-SpRY can access a range of target sites in HSPCs to correct mutations causative of X-CGD. For the prototypical X-CGD mutation CYBB c.676C>T, ABE8e-SpRY achieved up to 70% correction, reaching efficiencies greater than three-and-one-half times higher than previous CRISPR nuclease and donor template approaches. We profiled potential off-target DNA edits, transcriptome-wide RNA edits, and chromosomal perturbations in base-edited HSPCs, which together revealed minimal off-target or bystander edits. Edited alleles persisted after transplantation of the base-edited HSPCs into immunodeficient mice. Together, these investigational new drug-enabling studies demonstrated efficient and precise correction of an X-CGD mutation with PAMless BEs, supporting a first-in-human clinical trial (NCT06325709) and providing a potential blueprint for treatment of other IEI mutations.


Assuntos
Edição de Genes , Doença Granulomatosa Crônica , Células-Tronco Hematopoéticas , Mutação , Doença Granulomatosa Crônica/terapia , Doença Granulomatosa Crônica/genética , Edição de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Animais , Mutação/genética , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Camundongos , Sistemas CRISPR-Cas/genética , Transplante de Células-Tronco Hematopoéticas
2.
Sci Transl Med ; 16(767): eadl3438, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356746

RESUMO

Oxidative stress has long been implicated in Parkinson's disease (PD) pathogenesis, although the sources and regulation of reactive oxygen species (ROS) production are poorly defined. Pathogenic mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are associated with increased kinase activity and a greater risk of PD. The substrates and downstream consequences of elevated LRRK2 kinase activity are still being elucidated, but overexpression of mutant LRRK2 has been associated with oxidative stress, and antioxidants reportedly mitigate LRRK2 toxicity. Here, using CRISPR-Cas9 gene-edited HEK293 cells, RAW264.7 macrophages, rat primary ventral midbrain cultures, and PD patient-derived lymphoblastoid cells, we found that elevated LRRK2 kinase activity was associated with increased ROS production and lipid peroxidation and that this was blocked by inhibitors of either LRRK2 kinase or NADPH oxidase 2 (NOX2). Oxidative stress induced by the pesticide rotenone was ameliorated by LRRK2 kinase inhibition and was absent in cells devoid of LRRK2. In a rat model of PD induced by rotenone, a LRRK2 kinase inhibitor prevented the lipid peroxidation and NOX2 activation normally seen in nigral dopaminergic neurons in this model. Mechanistically, LRRK2 kinase activity was shown to regulate phosphorylation of serine-345 in the p47phox subunit of NOX2. This, in turn, led to translocation of p47phox from the cytosol to the membrane-associated gp91phox (NOX2) subunit, activation of the NOX2 enzyme complex, and production of ROS. Thus, LRRK2 kinase activity may drive cellular ROS production in PD through the regulation of NOX2 activity.


Assuntos
Modelos Animais de Doenças , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , NADPH Oxidase 2 , Estresse Oxidativo , Doença de Parkinson , Espécies Reativas de Oxigênio , Rotenona , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/genética , Células HEK293 , Estresse Oxidativo/efeitos dos fármacos , Camundongos , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Rotenona/farmacologia , Ratos , Peroxidação de Lipídeos , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Ratos Sprague-Dawley , NADPH Oxidases
3.
Behav Brain Funct ; 20(1): 26, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350139

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that is significantly increasing, resulting in severe distress. The approved treatment for ASD only partially improves the sympoms, but it does not entirely reverse the symptoms. Developing novel disease-modifying drugs is essential for the continuous improvement of ASD. Because of its pleiotropic effect, atorvastatin has been garnered attention for treating neuronal degeneration. The present study aimed to investigate the therapeutic effects of atorvastatin in autism and compare it with an approved autism drug (risperidone) through the impact of these drugs on TLR4/NF-κB/NOX-2 and the apoptotic pathway in a valproic acid (VPA) induced rat model of autism. METHODS: On gestational day 12.5, pregnant rats received a single IP injection of VPA (500 mg/kg), for VPA induced autism, risperidone and atorvastatin groups, or saline for control normal group. At postnatal day 21, male offsprings were randomly divided into four groups (n = 6): control, VPA induced autism, risperidone, and atorvastatin. Risperidone and atorvastatin were administered from postnatal day 21 to day 51. The study evaluated autism-like behaviors using the three-chamber test, the dark light test, and the open field test at the end of the study. Biochemical analysis of TLR4, NF-κB, NOX-2, and ROS using ELISA, RT-PCR, WB, histological examination with hematoxylin and eosin and immunohistochemical study of CAS-3 were performed. RESULTS: Male offspring of prenatal VPA-exposed female rats exhibited significant autism-like behaviors and elevated TLR4, NF-κB, NOX-2, ROS, and caspase-3 expression. Histological analysis revealed structural alterations. Both risperidone and atorvastatin effectively mitigated the behavioral, biochemical, and structural changes associated with VPA-induced rat model of autism. Notably, atorvastatin group showed a more significant improvement than risperidone group. CONCLUSIONS: The research results unequivocally demonstrated that atorvastatin can modulate VPA-induced autism by suppressing inflammation, oxidative stress, and apoptosis through TLR4/NF-κB/NOX-2 signaling pathway. Atorvastatin could be a potential treatment for ASD.


Assuntos
Atorvastatina , Modelos Animais de Doenças , NADPH Oxidase 2 , NF-kappa B , Risperidona , Receptor 4 Toll-Like , Ácido Valproico , Animais , Risperidona/farmacologia , Atorvastatina/farmacologia , Ácido Valproico/farmacologia , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Ratos , Feminino , NADPH Oxidase 2/metabolismo , Masculino , Gravidez , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/tratamento farmacológico , Ratos Sprague-Dawley , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos
4.
Cell Rep ; 43(9): 114720, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39244752

RESUMO

Macrophages are major host cells for the protozoan Leishmania parasite. Depending on their activation state, they either contribute to the detection and elimination of Leishmania spp. or promote parasite resilience. Here, we report that the activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in macrophages plays a pivotal role in the progression of Leishmania infantum infection by controlling inflammation and redox balance of macrophages. We also highlight the involvement of the NOX2/reactive oxygen species (ROS) axis in early Nrf2 activation and, subsequently, prostaglandin E2 (PGE2)/EP2r signaling in the sustenance of Nrf2 activation upon infection. Moreover, we establish a ferroptosis-like process within macrophages as a cell death program of L. infantum and the protective effect of Nrf2 in macrophages against L. infantum death. Altogether, these results identify Nrf2 as a critical factor for the susceptibility of L. infantum infection, highlighting Nrf2 as a promising pharmacological target for the development of therapeutic approaches for the treatment of visceral leishmaniasis.


Assuntos
Ferroptose , Leishmania infantum , Leishmaniose Visceral , Macrófagos , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Fator 2 Relacionado a NF-E2/metabolismo , Macrófagos/metabolismo , Macrófagos/parasitologia , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/patologia , Transdução de Sinais , Morte Celular , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Humanos , Camundongos Endogâmicos C57BL , Dinoprostona/metabolismo , Feminino
5.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273358

RESUMO

Neutrophil extracellular traps (NETs) are three-dimensional reticular structures that release chromatin and cellular contents extracellularly upon neutrophil activation. As a novel effector mechanism of neutrophils, NETs possess the capacity to amplify localized inflammation and have been demonstrated to contribute to the exacerbation of various inflammatory diseases, including cardiovascular diseases and tumors. It is suggested that lysophosphatidylcholine (LPC), as the primary active component of oxidized low-density lipoprotein, represents a significant risk factor for various inflammatory diseases, such as cardiovascular diseases and neurodegenerative diseases. However, the specific mechanism of NETs formation induced by LPC remains unclear. Quercetin has garnered considerable attention due to its anti-inflammatory properties, serving as a prevalent flavonoid in daily diet. However, little is currently known about the underlying mechanisms by which quercetin inhibits NETs formation and alleviates associated diseases. In our study, we utilized LPC-treated primary rat neutrophils to establish an in vitro model of NETs formation, which was subsequently subjected to treatment with a combination of quercetin or relevant inhibitors/activators. Compared to the control group, the markers of NETs and the expression of P2X7R/P38MAPK/NOX2 pathway-associated proteins were significantly increased in cells treated with LPC alone. Quercetin intervention decreased the LPC-induced upregulation of the P2X7R/P38MAPK/NOX2 pathway and effectively reduced the expression of NETs markers. The results obtained using a P2X7R antagonist/activator and P38MAPK inhibitor/activator support these findings. In summary, quercetin reversed the upregulation of the LPC-induced P2X7R/P38MAPK/NOX2 pathway, further mitigating NETs formation. Our study investigated the potential mechanism of LPC-induced NETs formation, elucidated the inhibitory effect of quercetin on NETs formation, and offered new insights into the anti-inflammatory properties of quercetin.


Assuntos
Armadilhas Extracelulares , Lisofosfatidilcolinas , NADPH Oxidase 2 , Neutrófilos , Quercetina , Receptores Purinérgicos P2X7 , Proteínas Quinases p38 Ativadas por Mitógeno , Quercetina/farmacologia , Lisofosfatidilcolinas/metabolismo , Lisofosfatidilcolinas/farmacologia , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Ratos , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Receptores Purinérgicos P2X7/metabolismo , NADPH Oxidase 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino
6.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39273558

RESUMO

M2-polarized, tumor-associated macrophages (TAMs) produce pro-tumorigenic and angiogenic mediators, such as interleukin-8 (IL-8) and IL-10. Leucine-rich repeat-containing protein 8 members (LRRC8s) form volume-regulated anion channels and play an important role in macrophage functions by regulating cytokine and chemokine production. We herein examined the role of LRRC8A in IL-8 and IL-10 expression in THP-1-differentiated M2-like macrophages (M2-MACs), which are a useful tool for investigating TAMs. In M2-MACs, the pharmacological inhibition of LRRC8A led to hyperpolarizing responses after a transient depolarization phase, followed by a slight elevation in the intracellular concentration of Ca2+. Both the small interfering RNA-mediated and pharmacological inhibition of LRRC8A repressed the transcriptional expression of IL-8 and IL-10, resulting in a significant reduction in their secretion. The inhibition of LRRC8A decreased the nuclear translocation of phosphorylated nuclear factor-erythroid 2-related factor 2 (Nrf2), while the activation of Nrf2 reversed the LRRC8A inhibition-induced transcriptional repression of IL-8 and IL-10 in M2-MACs. We identified the CCAAT/enhancer-binding protein isoform B, CEBPB, as a downstream target of Nrf2 signaling in M2-MACs. Moreover, among several upstream candidates, the inhibition of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) suppressed the Nrf2-CEBPB transcriptional axis in M2-MACs. Collectively, the present results indicate that the inhibition of LRRC8A repressed IL-8 and IL-10 transcription in M2-MACs through the NOX2-Nrf2-CEBPB axis and suggest that LRRC8A inhibitors suppress the IL-10-mediated evasion of tumor immune surveillance and IL-8-mediated metastasis and neovascularization in TAMs.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Interleucina-10 , Interleucina-8 , Macrófagos , Proteínas de Membrana , NADPH Oxidase 2 , Fator 2 Relacionado a NF-E2 , Humanos , Interleucina-10/metabolismo , Interleucina-10/genética , Interleucina-8/metabolismo , Interleucina-8/genética , Fator 2 Relacionado a NF-E2/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Transdução de Sinais , Regulação para Baixo , Células THP-1
7.
Parasites Hosts Dis ; 62(3): 270-280, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39218626

RESUMO

Trichomoniasis is caused by a sexually transmitted flagellate protozoan parasite Trichomonas vaginalis. T. vaginalis-derived secretory products (TvSP) contain lipid mediators such as leukotriene B4 (LTB4) and various cysteinyl leukotrienes (CysLTs) which included LTC4, LTD4, and LTE4. However, the signaling mechanisms by which T. vaginalis-induced CysLTs stimulate interleukin (IL)-8 production in human mast cells remain unclear. In this study, we investigated these mechanisms in human mast cells (HMC-1). Stimulation with TvSP resulted in increased intracellular reactive oxygen species (ROS) generation and NADPH oxidase 2 (NOX2) activation compared to unstimulated cells. Pre-treatment with NOX2 inhibitors such as diphenyleneiodonium chloride (DPI) or apocynin significantly reduced ROS production in TvSP-stimulated HMC-1 cells. Additionally, TvSP stimulation increased NOX2 protein expression and the translocation of p47phox from the cytosol to the membrane. Pretreatment of HMC-1 cells with PI3K or PKC inhibitors reduced TvSP-induced p47phox translocation and ROS generation. Furthermore, NOX2 inhibitors or NOX2 siRNA prevented CREB phosphorylation and IL-8 gene expression or protein secretion induced by TvSP. Pretreatment with a CysLTR antagonist significantly inhibited TvSP-induced ROS production, CREB phosphorylation, and IL-8 production. These results indicate that CysLT-mediated activation of NOX2 plays a crucial role in ROS-dependent IL-8 production in human mast cells stimulated by T. vaginalis-secreted CysLTs. These findings enhance our understanding of the inflammatory response in trichomoniasis and may inform the development of targeted therapies to mitigate this response.


Assuntos
Interleucina-8 , Mastócitos , NADPH Oxidase 2 , Espécies Reativas de Oxigênio , Receptores de Leucotrienos , Trichomonas vaginalis , Humanos , Trichomonas vaginalis/efeitos dos fármacos , Trichomonas vaginalis/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Mastócitos/metabolismo , Mastócitos/efeitos dos fármacos , Mastócitos/parasitologia , Mastócitos/imunologia , Linhagem Celular , Receptores de Leucotrienos/metabolismo , Receptores de Leucotrienos/genética , NADPH Oxidases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Leucotrienos/metabolismo
8.
Hypertension ; 81(11): 2357-2367, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39301728

RESUMO

BACKGROUND: Hypertensive disorders of pregnancy are associated with increased risk for cardiovascular disease, renal disease, and mortality. While the exact mechanisms remain unclear, T cells and reactive oxygen species have been implicated in its pathogenesis. We utilized Dahl salt-sensitive (SS), SSCD247-/- (Dahl SS CD247 knockout rat; lacking T cells), and SSp67phox-/- (Dahl SS p67phox [NOX2 (NADPH [nitcotinamide adenine dinucleotide phosphate] oxidase 2)] knockout rat; lacking NOX2) rats to investigate these mechanisms in primigravida and multigravida states. METHODS: We assessed blood pressure and renal damage phenotypes in SS, SSCD247-/-, and SSp67phox-/- rats during primigravida and multigravida states. To investigate the contribution of NOX2 in T cells, we performed adoptive transfers of splenocytes or cluster of differentiation (CD)4+ T cells from either SS or SSp67phox-/- donors into SSCD247-/- recipients to determine pregnancy-specific alterations in phenotype. RESULTS: Multigravida SS rats developed significant pregnancy-induced renal damage and renal functional impairment associated with elevated maternal mortality rates, whereas deletion of T cells or NOX2 garnered protection. During primigravida states, this attenuation in renal damage was observed, with the greatest protection in the SSp67phox-/- rat. To demonstrate that NOX2 in T cells contributes to adverse pregnancy phenotypes, adoptive transfer of SS splenocytes into SSCD247-/- rats resulted in significant pregnancy-induced renal damage, whereas transfer of SSp67phox-/- splenocytes garnered protection. Specifically, the transfer of SS CD4+ T cells resulted in pregnancy-induced proteinuria and increases in uterine artery resistance index, an effect not seen with the transfer of SSp67phox-/- CD4+ T cells. CONCLUSIONS: T cells and NOX2-derived reactive oxygen species, thus, contribute to end-organ damage in both primigravida and multigravida pregnancies in the SS rat leading to increases in maternal mortality.


Assuntos
NADPH Oxidase 2 , Ratos Endogâmicos Dahl , Linfócitos T , Animais , Feminino , Gravidez , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Ratos , Linfócitos T/metabolismo , Linfócitos T/imunologia , Espécies Reativas de Oxigênio/metabolismo , Modelos Animais de Doenças , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Pressão Sanguínea/fisiologia , Rim/patologia
9.
PLoS Pathog ; 20(8): e1012500, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39178329

RESUMO

NADPH oxidase 2 (NOX2) is an enzyme responsible for generating reactive oxygen species, primarily found in phagocytes. Chronic Granulomatous Disease (CGD), along with bacterial infections such as Mycobacterium tuberculosis (Mtb), is a representative NOX2-deficient X-linked disease characterized by uncontrolled inflammation. However, the precise roles of host-derived factors that induce infection-mediated hyperinflammation in NOX2-deficient condition remain incompletely understood. To address this, we compared Mtb-induced pathogenesis in Nox2-/- and wild type (WT) mice in a sex-dependent manner. Among age- and sex-matched mice subjected to Mtb infection, male Nox2-/- mice exhibited a notable increase in bacterial burden and lung inflammation. This was characterized by significantly elevated pro-inflammatory cytokines such as G-CSF, TNF-α, IL-1α, IL-1ß, and IL-6, excessive neutrophil infiltration, and reduced pulmonary lymphocyte levels as tuberculosis (TB) progressed. Notably, lungs of male Nox2-/- mice were predominantly populated with CD11bintLy6GintCXCR2loCD62Llo immature neutrophils which featured mycobacterial permissiveness. By diminishing total lung neutrophils or reducing immature neutrophils, TB immunopathogenesis was notably abrogated in male Nox2-/- mice. Ultimately, we identified G-CSF as the pivotal trigger that exacerbates the generation of immature permissive neutrophils, leading to TB immunopathogenesis in male Nox2-/- mice. In contrast, neutralizing IL-1α and IL-1ß, which are previously known factors responsible for TB pathogenesis in Nox2-/- mice, aggravated TB immunopathogenesis. Our study revealed that G-CSF-driven immature and permissive pulmonary neutrophils are the primary cause of TB immunopathogenesis and lung hyperinflammation in male Nox2-/- mice. This highlights the importance of quantitative and qualitative control of pulmonary neutrophils to alleviate TB progression in a phagocyte oxidase-deficient condition.


Assuntos
Pulmão , Camundongos Knockout , Mycobacterium tuberculosis , NADPH Oxidase 2 , NADPH Oxidases , Neutrófilos , Animais , Masculino , Camundongos , Neutrófilos/imunologia , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/imunologia , NADPH Oxidase 2/genética , NADPH Oxidase 2/imunologia , NADPH Oxidase 2/metabolismo , Pulmão/imunologia , Pulmão/patologia , Pulmão/microbiologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia , Tuberculose Pulmonar/microbiologia , Feminino , Camundongos Endogâmicos C57BL , Doença Granulomatosa Crônica/imunologia , Doença Granulomatosa Crônica/microbiologia , Doença Granulomatosa Crônica/patologia , Fagócitos/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças
11.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39201564

RESUMO

Arsenic (As) has been classified as a carcinogen for humans. There is abundant evidence indicating that arsenic increases the risk of bladder cancer among human populations. However, the underlying mechanisms have yet to be fully understood and elucidated. NADPH oxidases (NOXs) are the main enzymes for ROS production in the body. NADPH Oxidase 2 (NOX2), which is the most distinctive and ubiquitously expressed subunit of NOXs, can promote the formation and development of tumors. The utilization of NOX2 as a therapeutic target has been proposed to modulate diseases resulting from the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3). Matrine has been reported to exhibit various pharmacological effects, including anti-inflammatory, antifibrotic, antitumor, and analgesic properties. However, it has not been reported whether matrine can inhibit malignant transformation induced by arsenic in uroepithelial cells through NOX2. We have conducted a series of experiments using both a sub-chronic NaAsO2 exposure rat model and a long-term NaAsO2 exposure cell model. Our findings indicate that arsenic significantly increases cell proliferation, migration, and angiogenesis in vivo and in vitro. Arsenic exposure resulted in an upregulation of reactive oxygen species (ROS), NOX2, and NLRP3 inflammasome expression. Remarkably, both in vivo and in vitro, the administration of matrine demonstrated a significant improvement in the detrimental impact of arsenic on bladder epithelial cells. This was evidenced by the downregulation of proliferation, migration, and angiogenesis, as well as the expression of the NOX2 and NLRP3 inflammasomes. Collectively, these findings indicate that matrine possesses the ability to reduce NOX2 levels and inhibit the transformation of bladder epithelial cells.


Assuntos
Alcaloides , Arsênio , Proliferação de Células , Transformação Celular Neoplásica , Matrinas , NADPH Oxidase 2 , Quinolizinas , Espécies Reativas de Oxigênio , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Animais , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/induzido quimicamente , Humanos , Arsênio/toxicidade , Arsênio/efeitos adversos , Alcaloides/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ratos , Quinolizinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Movimento Celular/efeitos dos fármacos , Linhagem Celular , Masculino
12.
J Clin Invest ; 134(18)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146015

RESUMO

Obesity is linked to an increased risk of atrial fibrillation (AF) via increased oxidative stress. While NADPH oxidase 2 (NOX2), a major source of oxidative stress and reactive oxygen species (ROS) in the heart, predisposes to AF, the underlying mechanisms remain unclear. Here, we studied NOX2-mediated ROS production in obesity-mediated AF using Nox2-knockout mice and mature human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs). Diet-induced obesity (DIO) mice and hiPSC-aCMs treated with palmitic acid (PA) were infused with a NOX blocker (apocynin) and a NOX2-specific inhibitor, respectively. We showed that NOX2 inhibition normalized atrial action potential duration and abrogated obesity-mediated ion channel remodeling with reduced AF burden. Unbiased transcriptomics analysis revealed that NOX2 mediates atrial remodeling in obesity-mediated AF in DIO mice, PA-treated hiPSC-aCMs, and human atrial tissue from obese individuals by upregulation of paired-like homeodomain transcription factor 2 (PITX2). Furthermore, hiPSC-aCMs treated with hydrogen peroxide, a NOX2 surrogate, displayed increased PITX2 expression, establishing a mechanistic link between increased NOX2-mediated ROS production and modulation of PITX2. Our findings offer insights into possible mechanisms through which obesity triggers AF and support NOX2 inhibition as a potential novel prophylactic or adjunctive therapy for patients with obesity-mediated AF.


Assuntos
Fibrilação Atrial , Camundongos Knockout , Miócitos Cardíacos , NADPH Oxidase 2 , Obesidade , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Fibrilação Atrial/etiologia , Fibrilação Atrial/enzimologia , Animais , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Camundongos , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Estresse Oxidativo , Remodelamento Atrial
13.
Sci Rep ; 14(1): 18431, 2024 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117781

RESUMO

Reactive oxygen species (ROS) serve vital physiological functions, but aberrant ROS production contributes to numerous diseases. Unfortunately, therapeutic progress targeting pathogenic ROS has been hindered by the limited understanding of whether the mechanisms driving pathogenic ROS differ from those governing physiological ROS generation. To address this knowledge gap, we utilised a cellular model of Parkinson's disease (PD), as an exemplar of ROS-associated diseases. We exposed SH-SY5Y neuroblastoma cells to the PD-toxin, MPP+ (1-methyl-4-phenylpyridinium) and studied ROS upregulation leading to cell death, the primary cause of PD. We demonstrate: (1) MPP+ stimulates ROS production by raising cytoplasmic Ca2+ levels, rather than acting directly on mitochondria. (2) To raise the Ca2+, MPP+ co-stimulates NADPH oxidase-2 (NOX2) and the Transient Receptor Potential Melastatin2 (TRPM2) channel that form a positive feedback loop to support each other's function. (3) Ca2+ exacerbates mitochondrial ROS (mtROS) production not directly, but via Zn2+. (4) Zn2+ promotes electron escape from respiratory complexes, predominantly from complex III, to generate mtROS. These conclusions are drawn from data, wherein inhibition of TRPM2 and NOX2, chelation of Ca2+ and Zn2+, and prevention of electron escape from complexes -all abolished the ability of MPP+ to induce mtROS production and the associated cell death. Furthermore, calcium ionophore mimicked the effects of MPP+, while Zn2+ ionophore replicated the effects of both MPP+ and Ca2+. Thus, we unveil a previously unrecognized signalling circuit involving NOX2, TRPM2, Ca2+, Zn2+, and complex III that drives cytotoxic ROS production. This circuit lies dormant in healthy cells but is triggered by pathogenic insults and could therefore represent a safe therapeutic target for PD and other ROS-linked diseases.


Assuntos
Cálcio , Mitocôndrias , NADPH Oxidase 2 , Doença de Parkinson , Espécies Reativas de Oxigênio , Canais de Cátion TRPM , Zinco , Espécies Reativas de Oxigênio/metabolismo , Humanos , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Zinco/metabolismo , Canais de Cátion TRPM/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , 1-Metil-4-fenilpiridínio
14.
J Clin Immunol ; 44(8): 171, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102004

RESUMO

PURPOSE: Chronic granulomatous disease (CGD) is an inherited immunodeficiency caused by pathogenic variants of genes encoding the enzyme complex NADPH oxidase. In countries where tuberculosis (TB) is endemic and the Bacillus Calmette-Guérin (BCG) vaccine is routinely administered, mycobacteria are major disease-causing pathogens in CGD. However, information on the clinical evolution and treatment of mycobacterial diseases in patients with CGD is limited. The present study describes the adverse reactions to BCG and TB in Mexican patients with CGD. METHODS: Patients with CGD who were evaluated at the Immunodeficiency Laboratory of the National Institute of Pediatrics between 2013 and 2024 were included. Medical records were reviewed to determine the clinical course and treatment of adverse reactions to BCG and TB disease. RESULTS: A total of 79 patients with CGD were included in this study. Adverse reactions to BCG were reported in 55 (72%) of 76 patients who received the vaccine. Tuberculosis was diagnosed in 19 (24%) patients. Relapse was documented in three (10%) of 31 patients with BGC-osis and six (32%) of 19 patients with TB, despite antituberculosis treatment. There was no difference in the frequency of BCG and TB disease between patients with pathogenic variants of the X-linked CYBB gene versus recessive variants. CONCLUSIONS: This report highlights the importance of considering TB in endemic areas and BCG complications in children with CGD to enable appropriate diagnostic and therapeutic approaches to improve prognosis and reduce the risk of relapse.


Assuntos
Vacina BCG , Doença Granulomatosa Crônica , NADPH Oxidase 2 , Tuberculose , Humanos , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/epidemiologia , Doença Granulomatosa Crônica/complicações , Vacina BCG/efeitos adversos , Masculino , Feminino , Criança , Tuberculose/epidemiologia , Tuberculose/imunologia , Pré-Escolar , Lactente , Adolescente , NADPH Oxidase 2/genética , Estudos de Coortes , Mycobacterium bovis , México/epidemiologia , Antituberculosos/uso terapêutico , NADPH Oxidases/genética
15.
Neurochem Int ; 179: 105825, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39097233

RESUMO

There is evidence that tumor necrosis factor alpha (TNFα) influences autonomic processes coordinated within the hypothalamic paraventricular nucleus (PVN), however, the signaling mechanisms subserving TNFα's actions in this brain area are unclear. In non-neuronal cell types, TNFα has been shown to play an important role in canonical NADPH oxidase (NOX2)-mediated production of reactive oxygen species (ROS), molecules also known to be critically involved in hypertension. However, little is known about the role of TNFα in NOX2-dependent ROS production in the PVN within the context of hypertension. Using dual labeling immunoelectron microscopy and dihydroethidium (DHE) microfluorography, we provide structural and functional evidence for interactions between TNFα and NOX2 in the PVN. The TNFα type 1 receptor (TNFR1), the major mediator of TNFα signaling in the PVN, was commonly co-localized with the catalytic gp91phox subunit of NOX2 in postsynaptic sites of PVN neurons. Additionally, there was an increase in dual labeled dendritic profiles following fourteen-day slow-pressor angiotensin II (AngII) infusion. Using DHE microfluorography, it was also shown that TNFα application resulted in a NOX2-dependent increase in ROS in isolated PVN neurons projecting to the spinal cord. Further, TNFα-mediated ROS production was heightened after AngII infusion. The finding that TNFR1 and gp91phox are positioned for rapid interactions, particularly in PVN-spinal cord projection neurons, provides a molecular substrate by which inflammatory signaling and oxidative stress may jointly contribute to AngII hypertension.


Assuntos
Angiotensina II , NADPH Oxidase 2 , Neurônios , Núcleo Hipotalâmico Paraventricular , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , NADPH Oxidase 2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Masculino , NADPH Oxidases/metabolismo , Ratos , Glicoproteínas de Membrana/metabolismo
16.
BMC Cardiovasc Disord ; 24(1): 409, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103770

RESUMO

BACKGROUND: This study evaluated the effects of concurrent isolated training (T) or training combined with the antioxidant N-acetylcysteine (NAC) on cardiac remodeling and oxidative stress in spontaneously hypertensive rats (SHR). METHODS: Six-month-old male SHR were divided into sedentary (S, n = 12), concurrent training (T, n = 13), sedentary supplemented with NAC (SNAC, n = 13), and concurrent training with NAC supplementation (TNAC, n = 14) groups. T and TNAC rats were trained three times a week on a treadmill and ladder; NAC supplemented groups received 120 mg/kg/day NAC in rat chow for eight weeks. Myocardial antioxidant enzyme activity and lipid hydroperoxide concentration were assessed by spectrophotometry. Gene expression of NADPH oxidase subunits Nox2, Nox4, p22 phox, and p47 phox was evaluated by real time RT-PCR. Statistical analysis was performed using ANOVA and Bonferroni or Kruskal-Wallis and Dunn. RESULTS: Echocardiogram showed concentric remodeling in TNAC, characterized by increased relative wall thickness (S 0.40 ± 0.04; T 0.39 ± 0.03; SNAC 0.40 ± 0.04; TNAC 0.43 ± 0.04 *; * p < 0.05 vs T and SNAC) and diastolic posterior wall thickness (S 1.50 ± 0.12; T 1.52 ± 0.10; SNAC 1.56 ± 0.12; TNAC 1.62 ± 0.14 * mm; * p < 0.05 vs T), with improved contractile function (posterior wall shortening velocity: S 39.4 ± 5.01; T 36.4 ± 2.96; SNAC 39.7 ± 3.44; TNAC 41.6 ± 3.57 * mm/s; * p < 0.05 vs T). Myocardial lipid hydroperoxide concentration was lower in NAC treated groups (S 210 ± 48; T 182 ± 43; SNAC 159 ± 33 *; TNAC 110 ± 23 *# nmol/g tissue; * p < 0.05 vs S, # p < 0.05 vs T and SNAC). Nox 2 and p22 phox expression was higher and p47 phox lower in T than S [S 1.37 (0.66-1.66); T 0.78 (0.61-1.04) *; SNAC 1.07 (1.01-1.38); TNAC 1.06 (1.01-1.15) arbitrary units; * p < 0.05 vs S]. NADPH oxidase subunits did not differ between TNAC, SNAC, and S groups. CONCLUSION: N-acetylcysteine supplementation alone reduces oxidative stress in untreated spontaneously hypertensive rats. The combination of N-acetylcysteine and concurrent exercise further decreases oxidative stress. However, the lower oxidative stress does not translate into improved cardiac remodeling and function in untreated spontaneously hypertensive rats.


Assuntos
Acetilcisteína , Hipertensão , NADPH Oxidases , Estresse Oxidativo , Ratos Endogâmicos SHR , Remodelação Ventricular , Animais , Masculino , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Remodelação Ventricular/efeitos dos fármacos , Hipertensão/fisiopatologia , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Ratos , Antioxidantes/farmacologia , Condicionamento Físico Animal , Modelos Animais de Doenças , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Miocárdio/metabolismo , Miocárdio/patologia , Peróxidos Lipídicos/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Suplementos Nutricionais , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Hipertrofia Ventricular Esquerda/metabolismo
17.
Cells ; 13(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39195237

RESUMO

BACKGROUND: Intrauterine fetal death and perinatal death represent one of the most relevant medical scientific problems since, in many cases, even after extensive investigation, the causes remain unknown. The considerable increase in medical legal litigation in the obstetrical field that has witnessed in recent years, especially in cases of stillborn births, has simultaneously involved the figure of the forensic pathologist in scientific research aimed at clarifying the pathophysiological processes underlying stillbirth. METHODS: our study aims to analyze cases of sudden intrauterine unexplained death syndrome (SIUD) to evaluate the role of oxidative stress in the complex pathogenetic process of stillbirth. In particular, the immunohistochemical expression of specific oxidative stress markers (NOX2, NT, iNOS, 8-HODG, IL-6) was evaluated in tissue samples of placentas of SIUDs belonging to the extensive case series (20 cases), collected from autopsy cases of the University of Ferrara and Politecnica delle Marche between 2017 and 2023. RESULTS: The study demonstrated the involvement of oxidative stress in intrauterine fetal deaths in the placenta of the cases examined. In SIUD, the most expressed oxidative stress markers were NOX2 and 8-HODG. CONCLUSIONS: The study contributes to investigating the role of oxidative stress in modulating different pathways in unexplained intrauterine fetal death (SIUD) tissues.


Assuntos
Biomarcadores , Morte Fetal , Imuno-Histoquímica , Estresse Oxidativo , Placenta , Humanos , Feminino , Placenta/metabolismo , Placenta/patologia , Gravidez , Biomarcadores/metabolismo , Adulto , NADPH Oxidase 2/metabolismo , Natimorto , Interleucina-6/metabolismo
18.
Redox Biol ; 75: 103254, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968922

RESUMO

Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) signaling in the brain plays a critical role in regulating neuronal Ca2+ homeostasis. Its dysfunctional activity is associated with various neurological and neurodegenerative disorders, including Parkinson's disease (PD). Using computational modeling analysis, we predicted that, two essential cysteine residues contained in CaMKIIα, Cys30 and Cys289, may undergo redox modifications impacting the proper functioning of the CaMKIIα docking site for Ca2+/CaM, thus impeding the formation of the CaMKIIα:Ca2+/CaM complex, essential for a proper modulation of CaMKIIα kinase activity. Our subsequent in vitro investigations confirmed the computational predictions, specifically implicating Cys30 and Cys289 residues in impairing CaMKIIα:Ca2+/CaM interaction. We observed CaMKIIα:Ca2+/CaM complex disruption in dopamine (DA) nigrostriatal neurons of post-mortem Parkinson's disease (PD) patients' specimens, addressing the high relevance of this event in the disease. CaMKIIα:Ca2+/CaM complex disruption was also observed in both in vitro and in vivo rotenone models of PD, where this phenomenon was associated with CaMKIIα kinase hyperactivity. Moreover, we observed that, NADPH oxidase 2 (NOX2), a major enzymatic generator of superoxide anion (O2●-) and hydrogen peroxide (H2O2) in the brain with implications in PD pathogenesis, is responsible for CaMKIIα:Ca2+/CaM complex disruption associated to a stable Ca2+CAM-independent CaMKIIα kinase activity and intracellular Ca2+ accumulation. The present study highlights the importance of oxidative stress, in disturbing the delicate balance of CaMKIIα signaling in calcium dysregulation, offering novel insights into PD pathogenesis.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Calmodulina , NADPH Oxidase 2 , Oxirredução , Doença de Parkinson , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Doença de Parkinson/metabolismo , Humanos , Calmodulina/metabolismo , Animais , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Cálcio/metabolismo , Cisteína/metabolismo , Camundongos
19.
Scand J Clin Lab Invest ; 84(5): 297-304, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033335

RESUMO

The mechanisms underlying subclinical hypothyroidism (SCH) remain unclear, making timely and accurate differentiation between hypothyroidism and SCH, as well as severity assessment, challenging. This study aimed to investigate the role of NFE2 like bZIP transcription factor 2 (Nrf2), gp91phox, and interleukin-17 (IL-17) in the pathogenesis of SCH. In this prospective comparative study, 105 SCH patients, 105 hypothyroidism patients, and 105 healthy individuals were enrolled from January 2022 to August 2023. SCH patients were categorized into mild-moderate and severe groups based on thyroid-stimulating hormone (TSH) levels. Levels of TSH, free T4 (FT4), free T3 (FT3), thyroglobulin antibodies (TG-Ab), thyroid peroxidase antibodies (TPO-Ab), cholesterol (TC), triglycerides (TG), high-density lipoprotein-cholesterol (HDL-ch), and low-density lipoprotein-cholesterol (LDL-ch) were measured. Nrf2, IL-1ß, IL-6, IL-17, and gp91phox levels were tested using ELISA. Nrf2, IL-17 and gp91phox were significantly higher in SCH and hypothyroidism patients compared to the healthy controls, with hypothyroidism patients showing the highest levels. Nrf2 levels were negatively correlated with TSH, TG-Ab and IL-17, but not gp91phox. Nrf2, IL-17 and gp91phox could be used for diagnosis of SCH and severe SCH. Only TG-Ab, IL-17 and gp91phox were independent risk factors for severe SCH. This study demonstrates a negative correlation between serum Nrf2 levels and SCH severity. TG-Ab, IL-17, and gp91phox are independent risk factors, and their associations with SCH pathology suggest their potential roles in the disease mechanism. These findings provide insights into SCH pathogenesis and highlight the need for further research to elucidate their diagnostic or prognostic significance.


Assuntos
Hipotireoidismo , Interleucina-17 , NADPH Oxidase 2 , Fator 2 Relacionado a NF-E2 , Humanos , Fator 2 Relacionado a NF-E2/sangue , Masculino , Feminino , Interleucina-17/sangue , Pessoa de Meia-Idade , Hipotireoidismo/sangue , Hipotireoidismo/diagnóstico , NADPH Oxidase 2/sangue , Adulto , Índice de Gravidade de Doença , Estudos Prospectivos , Estudos de Casos e Controles , Tireotropina/sangue , Autoanticorpos/sangue
20.
Phytother Res ; 38(8): 4286-4306, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38973314

RESUMO

Tamarixetin, a natural dietary flavone, exhibits remarkable potential for the treatment of ischemic stroke. The present article aimed to explore the impact of tamarixetin on ischemic stroke and elucidate the underlying mechanisms. Effects of tamarixetin on ischemic stroke were evaluated in rats using the middle cerebral artery occlusion and reperfusion (MCAO/R) model, by assessing the neurological deficit scores, brain water content, brain infraction, and neuronal damage. The levels of proinflammatory cytokines, NLRP3 inflammasome activation, reactive oxygen species (ROS) production, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression were measured in MCAO/R rats and lipopolysaccharide-stimulated cells. Tamarixetin administration improved the neurological dysfunction and neuronal loss in MCAO/R rats. In addition, tamarixetin reduced microglial hyperactivation and proinflammatory cytokines expression in vivo and in vitro. Tamarixetin attenuated NF-κB p65 phosphorylation and promoter activity, reduced NLRP3 expression and caspase-1 cleavage, and downregulated IL-1ß and IL-18 secretions to suppress NLRP3 inflammasome activation. The levels of superoxide anion, hydrogen peroxide, and ROS were also suppressed by tamarixetin. The downregulation of NADP+ and NADPH levels, and gp91phox expression indicated the ameliorative effects of tamarixetin on NADPH oxidase activation. In the gp91phox knockdown cells treated with lipopolysaccharide, the effects of tamarixetin on NADPH oxidase activation, ROS generation, and NLRP3 inflammasome activation were diminished. Moreover, tamarixetin protects neurons against microglial hyperactivation in vitro. Our findings support the potential of tamarixetin as a therapeutic agent for ischemic stroke, and its mechanism of action involves the inhibition of NADPH oxidase-NLRP3 inflammasome signaling.


Assuntos
Dissacarídeos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Traumatismo por Reperfusão/tratamento farmacológico , Masculino , Inflamassomos/metabolismo , Dissacarídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidases/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Modelos Animais de Doenças , Isquemia Encefálica/tratamento farmacológico , Quercetina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA