Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 733
Filtrar
1.
J Microbiol Biotechnol ; 34(3): 725-734, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38044690

RESUMO

CYP102A1 from Bacillus megaterium is an important enzyme in biotechnology, because engineered CYP102A1 enzymes can react with diverse substrates and produce human cytochrome P450-like metabolites. Therefore, CYP102A1 can be applied to drug metabolite production. Terpinen-4-ol is a cyclic monoterpene and the primary component of essential tea tree oil. Terpinen-4-ol was known for therapeutic effects, including antibacterial, antifungal, antiviral, and anti-inflammatory. Because terpenes are natural compounds, examining novel terpenes and investigating the therapeutic effects of terpenes represent responses to social demands for eco-friendly compounds. In this study, we investigated the catalytic activity of engineered CYP102A1 on terpinen-4-ol. Among CYP102A1 mutants tested here, the R47L/F81I/F87V/E143G/L188Q/N213S/E267V mutant showed the highest activity to terpinen-4-ol. Two major metabolites of terpinen-4-ol were generated by engineered CYP102A1. Characterization of major metabolites was confirmed by liquid chromatography-mass spectrometry (LC-MS), gas chromatography-MS, and nuclear magnetic resonance spectroscopy (NMR). Based on the LC-MS results, the difference in mass-to-charge ratio of an ion (m/z) between terpinen-4-ol and its major metabolites was 16. One major metabolite was defined as 1,4-dihydroxy-p-menth-2-ene by NMR. Given these results, we speculate that another major metabolite is also a mono-hydroxylated product. Taken together, we suggest that CYP102A1 can be applied to make novel terpene derivatives.


Assuntos
Sistema Enzimático do Citocromo P-450 , Terpenos , Humanos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Terpenos/química , Monoterpenos , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo
2.
Chembiochem ; 25(3): e202300650, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994193

RESUMO

The vast majority of known enzymes exist as oligomers, which often gives them high catalytic performance but at the same time imposes constraints on structural conformations and environmental conditions. An example of an enzyme with a complex architecture is the P450 BM3 monooxygenase CYP102A1 from Bacillus megaterium. Only active as a dimer, it is highly sensitive to dilution or common immobilization techniques. In this study, we engineered a thermostable P450BM3 chimera consisting of the heme domain of a CYP102A1 variant and the reductase domain of the homologous CYP102A3. The dimerization of the hybrid was even weaker compared to the corresponding CYP102A1 variant. To create a stable dimer, we covalently coupled the C-termini of two monomers of the chimera via SpyTag003/SpyCatcher003 interaction. As a result, purification, thermostability, pH stability, and catalytic activity were improved. Via a bioorthogonal two-step affinity purification, we obtained high purity (94 %) of the dimer-stabilized variant being robust against heme depletion. Long-term stability was increased with a half-life of over 2 months at 20 °C and 80-90 % residual activity after 2 months at 5 °C. Most catalytic features were retained with even an enhancement of the overall activity by ~2-fold compared to the P450BM3 chimera without SpyTag003/SpyCatcher003.


Assuntos
Bacillus megaterium , Sistema Enzimático do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/química , Catálise , Heme , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
3.
Proc Natl Acad Sci U S A ; 120(50): e2317372120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38060561

RESUMO

Powerfully oxidizing enzymes need protective mechanisms to prevent self-destruction. The flavocytochrome P450 BM3 from Priestia megaterium (P450BM3) is a self-sufficient monooxygenase that hydroxylates fatty acid substrates using O2 and NADPH as co-substrates. Hydroxylation of long-chain fatty acids (≥C14) is well coupled to O2 and NADPH consumption, but shorter chains (≤C12) are more poorly coupled. Hydroxylation of p-nitrophenoxydodecanoic acid by P450BM3 produces a spectrophotometrically detectable product wherein the coupling of NADPH consumption to product formation is just 10%. Moreover, the rate of NADPH consumption is 1.8 times that of O2 consumption, indicating that an oxidase uncoupling pathway is operative. Measurements of the total number of enzyme turnovers before inactivation (TTN) indicate that higher NADPH concentrations increase TTN. At lower NADPH levels, added ascorbate increases TTN, while a W96H mutation leads to a decrease. The W96 residue is about 7 Å from the P450BM3 heme and serves as a gateway residue in a tryptophan/tyrosine (W/Y) hole transport chain from the heme to a surface tyrosine residue. The data indicate that two oxidase pathways protect the enzyme from damage by intercepting the powerfully oxidizing enzyme intermediate (Compound I) and returning it to its resting state. At high NADPH concentrations, reducing equivalents from the flavoprotein are delivered to Compound I by the usual reductase pathway. When NADPH is not abundant, however, oxidizing equivalents from Compound I can traverse a W/Y chain, arriving at the enzyme surface where they are scavenged by reductants. Ubiquitous tryptophan/tyrosine chains in highly oxidizing enzymes likely perform similar protective functions.


Assuntos
NADPH-Ferri-Hemoproteína Redutase , Triptofano , Oxirredução , Triptofano/metabolismo , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos/metabolismo , Heme/metabolismo , Tirosina/metabolismo , Proteínas de Bactérias/metabolismo
4.
Biomolecules ; 13(12)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38136599

RESUMO

Cytochrome P450 oxidoreductase (POR) is an essential redox partner for steroid and drug-metabolizing cytochromes P450 located in the endoplasmic reticulum. Mutations in POR lead to metabolic disorders, including congenital adrenal hyperplasia, and affect the metabolism of steroids, drugs, and xenobiotics. In this study, we examined approximately 450 missense variants of the POR gene listed in the Genome Aggregation Database (gnomAD) using eleven different in silico prediction tools. We found that 64 novel variants were consistently predicted to be disease-causing by most tools. To validate our findings, we conducted a population analysis and selected two variations in POR for further investigation. The human POR wild type and the R268W and L577P variants were expressed in bacteria and subjected to enzyme kinetic assays using a model substrate. We also examined the activities of several cytochrome P450 proteins in the presence of POR (WT or variants) by combining P450 and reductase proteins in liposomes. We observed a decrease in enzymatic activities (ranging from 35% to 85%) of key drug-metabolizing enzymes, supported by POR variants R288W and L577P compared to WT-POR. These results validate our approach of curating a vast amount of data from genome projects and provide an updated and reliable reference for diagnosing POR deficiency.


Assuntos
Sistema Enzimático do Citocromo P-450 , NADPH-Ferri-Hemoproteína Redutase , Humanos , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Mutação , Mutação de Sentido Incorreto , Oxirredução , Esteroides
5.
Antimicrob Agents Chemother ; 67(11): e0091823, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37815358

RESUMO

Azole antifungals remain the "gold standard" therapy for invasive aspergillosis. The world-wide emergence of isolates resistant to this drug class, however, developed into a steadily increasing threat to human health over the past years. In Aspergillus fumigatus, major mechanisms of resistance involve increased expression of cyp51A encoding one of two isoenzymes targeted by azoles. Yet, the level of resistance caused by cyp51A upregulation, driven by either clinically relevant tandem repeat mutations within its promoter or the use of high expressing heterologous promoters, is limited. Cytochrome P450 enzymes such as Cyp51A rely on redox partners that provide electrons for their activity. A. fumigatus harbors several genes encoding putative candidate proteins including two paralogous cytochrome P450 reductases, CprA and CprB, and the cytochrome b 5 CybE. In this work, we investigated the contribution of each cprA, cprB, and cybE overexpression to cyp51A-mediated resistance to different medical and agricultural azoles. Using the bidirectional promoter PxylP, we conditionally expressed these genes in combination with cyp51A, revealing cprA as the main limiting factor. Similar to this approach, we overexpressed cprA in an azole-resistant background strain carrying a cyp51A allele with TR34 in its promoter, which led to a further increase in its resistance. Employing sterol measurements, we demonstrate an enhanced eburicol turnover during upregulation of either cprA or cyp51A, which was even more pronounced during their simultaneous overexpression. In summary, our work suggests that mutations leading to increased Cyp51A activity through increased electron supply could be key factors that elevate azole resistance.


Assuntos
Aspergillus fumigatus , Azóis , Humanos , Azóis/farmacologia , Azóis/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Farmacorresistência Fúngica , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Testes de Sensibilidade Microbiana
6.
Biochemistry (Mosc) ; 88(9): 1347-1355, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37770401

RESUMO

Cytochrome CYP102A1 (P450 BM3) of Priestia megaterium (bas. Bacillus megaterium) has several unique functional features and thus provides an ideal object for directed evolution and other synthetic applications. Previously, the CYP102A1-LG23 mutant with 14 mutations in the heme part was obtained that hydroxylates several androstanes at C7ß with the formation of products with the anti-inflammatory and neuroprotective activities. In this study, synthetic cyp102A1-LG23 gene encoding the P450 BM3 mutant was expressed as a component of either monocistronic operon or bicistronic operon containing the gdh (glucose dehydrogenase, GDH) or zwf2 (glucose 6-phosphate dehydrogenase, G6PD) gene in Mycolicibacterium smegmatis BD cells. The recombinant bacteria were able hydroxylate androst-4-ene-3,17-dione (AD) into 7ß-OH-AD. Their biocatalytic activity was increased twice by increasing the solubility of CYP102A1-LG23 protein in the cells and supplementing the cells with the additional cofactor regeneration system by introducing GDH and G6PD. The maximum 7ß-OH-AD yield (37.68 mol%) was achieved by co-expression of cyp102A1-LG23 and gdh genes in M. smegmatis. These results demonstrate the possibility of using synthetic genes to obtain recombinant enzymes and expand our understanding of the processes involved in steroid hydroxylation by bacterial cytochromes. The data obtained can be used to develop new approaches for microbiological production of 7ß-hydroxylated steroids in genetically modified Mycolicibacterium species.


Assuntos
Genes Sintéticos , NADPH-Ferri-Hemoproteína Redutase , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Bactérias/metabolismo
7.
Pestic Biochem Physiol ; 194: 105467, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532343

RESUMO

Nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR), a crucial electron-transfer partner of P450 systems, is required for various biological reactions catalyzed by P450 monooxygenase. Our previous study indicated that enhanced P450 enzyme detoxification and CYP6ER1 overexpression contributed to sulfoxaflor resistance in Nilaparvata lugens. However, the association between CPR, sulfoxaflor resistance, and neonicotinoid cross-resistance in N. lugens remains unclear. In this study, the sulfoxaflor-resistant (SFX-SEL) (RR = 254.04-fold), resistance-decline (DESEL) (RR = 18.99-fold), and susceptible unselected (UNSEL) strains of N. lugens with the same genetic background were established. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that the N. lugens CPR (NlCPR) expression level in the SFX-SEL strain was 6.85-fold and 6.07-fold higher than in UNSEL and DESEL strains, respectively. NlCPR expression was significantly higher in the abdomens of UNSEL, DESEL, and SFX-SEL fourth-instar nymphs than in other tissues (thoraxes, heads, and legs). Additionally, sulfoxaflor stress significantly increased NlCPR mRNA levels in the UNSEL, SFX-SEL and DESEL strains. NlCPR silencing by RNA interference (RNAi) dramatically increased the susceptibility of the UNSEL, DESEL, and SFX-SEL strains to sulfoxaflor, but the recovery of SFX-SEL was more obvious. Furthermore, NlCPR silencing led to a significant recovery in susceptibility to nitenpyram, dinotefuran, clothianidin, and thiamethoxam across all strains (UNSEL, DESEL, and SFX-SEL), with the greatest degree of recovery in the sulfoxaflor-resistant strain (SFX-SEL). Our findings suggest that NlCPR overexpression contributes to sulfoxaflor resistance and neonicotinoid cross-resistance in N. lugens. This will aid in elucidating the significance of CPR in the evolution of P450-mediated metabolic resistance in N. lugens.


Assuntos
Hemípteros , Inseticidas , Animais , Inseticidas/farmacologia , NADPH-Ferri-Hemoproteína Redutase/genética , Neonicotinoides/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Hemípteros/metabolismo , Nitrocompostos/farmacologia , Resistência a Inseticidas/genética
8.
Biomolecules ; 13(7)2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37509119

RESUMO

A unique cytochrome P450 (CYP) oxidoreductase (CPR) sustains activities of human microsomal CYPs. Its function requires toggling between a closed conformation enabling electron transfers from NADPH to FAD and then FMN cofactors and open conformations forming complexes and transferring electrons to CYPs. We previously demonstrated that distinct features of the hinge region linking the FAD and FMN domain (FD) modulate conformer poses and their interactions with CYPs. Specific FD residues contribute in a CYP isoform-dependent manner to the recognition and electron transfer mechanisms that are additionally modulated by the structure of CYP-bound substrate. To obtain insights into the underlying mechanisms, we analyzed how hinge region and FD mutations influence CYP1A2-mediated caffeine metabolism. Activities, metabolite profiles, regiospecificity and coupling efficiencies were evaluated in regard to the structural features and molecular dynamics of complexes bearing alternate substrate poses at the CYP active site. Studies reveal that FD variants not only modulate CYP activities but surprisingly the regiospecificity of reactions. Computational approaches evidenced that the considered mutations are generally in close contact with residues at the FD-CYP interface, exhibiting induced fits during complexation and modified dynamics depending on caffeine presence and orientation. It was concluded that dynamic coupling between FD mutations, the complex interface and CYP active site exist consistently with the observed regiospecific alterations.


Assuntos
Cafeína , Citocromo P-450 CYP1A2 , Humanos , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Transporte de Elétrons , Mutação , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo
9.
Appl Microbiol Biotechnol ; 107(18): 5727-5737, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37477695

RESUMO

Cytochrome P450 monooxygenases CYP120As are the unique non-membrane P450s, which are extensively involved in retinoid biodegradation. As the O-functionalized 1,3,3-trimethylcyclohex-1-ene moiety exists in many bioactive compounds which could only be catalyzed by Class II P450s, exploration of the catalytic repertoire of CYP120As is therefore highly attractive. However, up to date, only one bacteriogenic candidate (CYP120A1) was demonstrated for the hydroxylation of C16 and C17 of retinoic acid, by utilizing the integral membrane protein cytochrome P450 reductase redox partner for the electron transfer. Herein, we provided an efficient prokaryotic functional expression system of CYP120As in E. coli by expression of the CYP120A1 coupled with several reductase partners. Fusion redox partners to the C-terminal of the heme-domain are also working on other CYP120A members. Among them, the fusion protein of CYP120A29 and FAD/FMN reductase from Bacillus megaterium P450BM3 (CYP101A2) showed the highest expression level. Based on the available translational fusion systems, the regioselectivity and the substrate scope of the CYP120As have also been explored. This work represents a good starting point for further expanding the catalytic potential of CYP120 family. KEY POINTS: • Characterization of CYP120As in E. coli is firstly achieved by constructing fusion proteins. • The feasibility of three P450 reductase domains to CYP120As was evaluated. • Hydroxylated products of retinoic acid by six CYP120As were sorted and analyzed.


Assuntos
Proteínas de Bactérias , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Oxirredução , Transporte de Elétrons , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Tretinoína/metabolismo
10.
Biotechnol Lett ; 45(8): 993-1000, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37243776

RESUMO

The self-sufficient cytochrome P450 BM3 mutant (A74G/F87V/D168H/L188Q) can serve as a biocatalyst for whole-cell catalysis process of indigo. Nevertheless, the bioconversion yield of indigo is generally low under normal cultivation conditions (37 °C, 250 rpm). In this study, a recombinant E. coli BL21(DE3) strain was constructed to co-express the P450 BM3 mutant gene and GroEL/ES genes to investigate whether GroEL/ES can promote the indigo bioconversion yield in E. coli. The results revealed that the GroEL/ES system could significantly increase the indigo bioconversion yield, and the indigo bioconversion yield of the strain co-expressing P450 BM3 mutant and GroEL/ES was about 21-fold that of the strain only expressing the P450 BM3 mutant. In addition, the P450 BM3 enzyme content and in vitro indigo bioconversion yield were determined to explore the underlying mechanism for the improvement of indigo bioconversion yield. The results revealed that GroEL/ES did not increase indigo bioconversion yield by increasing the content of P450 BM3 enzyme and its enzymatic transformation efficiency. Moreover, GroEL/ES could improve the intracellular nicotinamide adenine dinucleotide phosphate (NADPH)/NADP+ ratio. Given that NADPH is an important coenzyme in the catalytic process of indigo, the underlying mechanism for the improvement of indigo bioconversion yield is probably related to an increase in the intracellular NADPH/NADP+ ratio.


Assuntos
Escherichia coli , Índigo Carmim , Escherichia coli/genética , Escherichia coli/metabolismo , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Biotransformação
11.
Pestic Biochem Physiol ; 190: 105337, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36740331

RESUMO

Precocene I is a juvenile hormone antagonist that needs to be activated via oxidative biotransformation catalyzed by cytochrome P450 (CYP). NADPH-cytochrome P450 reductase (CPR) supplies CYP with electrons in the oxidation-reduction process; however, its functional role in the activation of precocene I remains unexplored. Here, the representative characteristics of CPRs were analyzed in the CPR gene of Locusta migratoria (LmCPR), the result of model docking indicated that the hydrogen bonds were formed between reduced nicotinamide adenine dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN) and NADPH-, FAD-, FMN-domains of LmCPR, respectively. Treating the fourth-instar nymphs with precocene I decreased the juvenile hormone titers of nymphs to 0.55-fold of that in acetone-treated controls, and extended the interval time between fourth- and fifth-instar nymphs. 68.75% of the treated fourth-instar nymphs developed into precocious adults in the fifth-instar. LmCPR knockdown decreased the response to precocene I in the nymphs, the occurrence rate of precocious adults induced by precocene I treatment reduced by 23.11%. Therefore, LmCPR may be involved in the activation of precocene I in L. migratoria. In addition, we generated an active recombinant LmCPR protein using a prokaryotic expression system, its activity in reducing cytochrome c was 33.13 ± 11.50 nmol CytCred/min/µg protein. This study lays the foundation for further research on the role of LmCPR in precocene I activation.


Assuntos
Locusta migratoria , NADPH-Ferri-Hemoproteína Redutase , Animais , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Locusta migratoria/genética , Locusta migratoria/metabolismo , NADP/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
12.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36077536

RESUMO

Cytochrome P450 oxidoreductase (POR) is the redox partner of steroid and drug-metabolising cytochromes P450 located in the endoplasmic reticulum. Mutations in POR cause a broad range of metabolic disorders. The POR variant rs17853284 (P228L), identified by genome sequencing, has been linked to lower testosterone levels and reduced P450 activities. We expressed the POR wild type and the P228L variant in bacteria, purified the proteins, and performed protein stability and catalytic functional studies. Variant P228L affected the stability of the protein as evidenced by lower unfolding temperatures and higher sensitivity to urea denaturation. A significant decline in the rate of electron transfer to cytochrome c and thiazolyl blue tetrazolium (MTT) was observed with POR P228L, while activities of CYP3A4 were reduced by 25% and activities of CYP3A5 and CYP2C9 were reduced by more than 40% compared with WT POR. The 17,20 lyase activity of CYP17A1, responsible for the production of the main androgen precursor dehydroepiandrosterone, was reduced to 27% of WT in the presence of the P228L variant of POR. Based on in silico and in vitro studies, we predict that the change of proline to leucine may change the rigidity of the protein, causing conformational changes in POR, leading to altered electron transfer to redox partners. A single amino acid change can affect protein stability and cause a severe reduction in POR activity. Molecular characterisation of individual POR mutations is crucial for a better understanding of the impact on different redox partners of POR.


Assuntos
NADPH-Ferri-Hemoproteína Redutase , Esteroides , Mutação , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Estabilidade Proteica , Testosterona
13.
Expert Opin Drug Metab Toxicol ; 18(7-8): 529-535, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35946839

RESUMO

BACKGROUND: Tacrolimus is a immunosuppressant drug in transplantation with a narrow therapeutic range and high pharmacokinetic variability. Clinical studies have revealed that POR*28 contributes enhanced tacrolimus clearance in CYP3A5 expressers. However, it remains unknown that how exactly the POR polymorphism could influence the metabolism of tacrolimus via CYP3A5 in vitro. RESEARCH DESIGN & METHODS: A503V is an amino acid sequence variant encoded by POR*28. Wild-type (WT) and A503V POR, with WT CYP3A5 were expressed in recombinant HepG2 cells and reconstituted proteins. Michaelis constant (Km) and maximum velocity (Vmax) of CYP3A5 with tacrolimus as substrates were determined, and catalytic efficiency is expressed as Vmax/Km. RESULTS: Both WT and A503V POR down-regulated the CYP3A5 mRNA expression, and WT POR rather than A503V down-regulated the protein expression of CYP3A5 in recombinant HepG2 cells. Compared with WT POR, A503V increased metabolism of tacrolimus by CYP3A5 in both cellular and protein levels. CONCLUSION: A503V can affect CYP3A5-catalyzed tacrolimus metabolism in vitro, which suggests that A503V has the potential to serve as a biomarker for tacrolimus treatment in transplantation recipients.


Assuntos
Citocromo P-450 CYP3A , Tacrolimo , Citocromo P-450 CYP3A/genética , Genótipo , Células Hep G2 , Humanos , Imunossupressores/farmacocinética , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Polimorfismo de Nucleotídeo Único , Tacrolimo/farmacocinética
14.
Molecules ; 27(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889519

RESUMO

Cytochrome P450 oxidoreductase (POR) is a membrane-bound flavoprotein that helps in transferring electrons from its NADPH domain to all cytochrome P450 (CYP450) enzymes. Mutations in the POR gene could severely affect the metabolism of steroid hormones and the development of skeletal muscles, a condition known as Cytochrome P450 oxidoreductase deficiency (PORD). PORD is associated with clinical presentations of disorders of sex development, Antley and Bixler's syndrome (ABS), as well as an abnormal steroid hormone profile. We have performed an in silico analysis of POR 3D X-ray protein crystal structure to study the effects of reported mutations on the POR enzyme structure. A total of 32 missense mutations were identified, from 170 PORD patients, and mapped on the 3D crystal structure of the POR enzyme. In addition, five of the missense mutations (R457H, A287P, D210G, Y181D and Y607C) were further selected for an in-depth in silico analysis to correlate the observed changes in POR protein structure with the clinical phenotypes observed in PORD patients. Overall, missense mutations found in the binding sites of POR cofactors could lead to a severe form of PORD, emphasizing the importance of POR cofactor binding domains in transferring electrons to the CYP450 enzyme family.


Assuntos
Fenótipo de Síndrome de Antley-Bixler , NADPH-Ferri-Hemoproteína Redutase , Fenótipo de Síndrome de Antley-Bixler/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Mutação , NADPH-Ferri-Hemoproteína Redutase/genética , Esteroides
15.
BMC Biotechnol ; 22(1): 20, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831844

RESUMO

BACKGROUND: Unlike most other P450 cytochrome monooxygenases, CYP102A1 from Bacillus megaterium (BM3) is both soluble and fused to its redox partner forming a single polypeptide chain. Like other monooxygenases, it can catalyze the insertion of oxygen unto the carbon-hydrogen bond which can result in a wide variety of commercially relevant products for pharmaceutical and fine chemical industries. However, the instability of the enzyme holds back the implementation of a BM3-based biocatalytic industrial processes due to the important enzyme cost it would prompt. RESULTS: In this work, we sought to enhance BM3's total specific product output by using experimental evolution, an approach not yet reported to improve this enzyme. By exploiting B. megaterium's own oleic acid metabolism, we pressed the evolution of a new variant of BM3, harbouring 34 new amino acid substitutions. The resulting variant, dubbed DE, increased the conversion of the substrate 10-pNCA to its product p-nitrophenolate 1.23 and 1.76-fold when using respectively NADPH or NADH as a cofactor, compared to wild type BM3. CONCLUSIONS: This new DE variant, showed increased organic cosolvent tolerance, increased product output and increased versatility in the use of either nicotinamide cofactors NADPH and NADH. Experimental evolution can be used to evolve or to create libraries of evolved BM3 variants with increased productivity and cosolvent tolerance. Such libraries could in turn be used in bioinformatics to further evolve BM3 more precisely. The experimental evolution results also supports the hypothesis which surmises that one of the roles of BM3 in Bacillus megaterium is to protect it from exogenous unsaturated fatty acids by breaking them down.


Assuntos
Bacillus megaterium , Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/química , NAD/metabolismo , NADP/química , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , Ácido Oleico , Oxirredução
16.
Methods Enzymol ; 671: 527-552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35878993

RESUMO

Cytochrome P450 enzymes (CYPs) are involved in metabolic steps that provide structural diversity during the biosynthesis of carotenoids and their oxidative cleavage products called apocarotenoids. Recent studies on bioactive apocarotenoids in plants revealed the necessity of performing further research to uncover the function of novel CYP enzymes that might be involved in apocarotenoid metabolism. We describe a series of in-vitro methods to characterize plant CYPs that metabolize apocarotenoids, using a specific Saccharomyces cerevisiae strain, WAT11, engineered to express a CYP redox partner, Arabidopsis thaliana NADPH-P450 reductase 1 (ATR1). This chapter provides protocols for construction and transformation of plasmids that express CYPs in yeast, isolation of yeast microsomes, and in-vitro enzymatic assays to validate the final metabolic products using LC-MS.


Assuntos
Arabidopsis , Saccharomyces cerevisiae , Arabidopsis/genética , Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Chembiochem ; 23(12): e202200065, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35333425

RESUMO

Multi-enzyme cascades enable the production of valuable chemical compounds, and fusion of the enzymes that catalyze these reactions can improve the reaction outcome. In this work, P450 BM3 from Bacillus megaterium and an alcohol dehydrogenase from Sphingomonas yanoikuyae were fused to bifunctional constructs to enable cofactor regeneration and improve the in vitro two-step oxidation of (+)-valencene to (+)-nootkatone. An up to 1.5-fold increased activity of P450 BM3 was achieved with the fusion constructs compared to the individual enzyme. Conversion of (+)-valencene coupled to cofactor regeneration and performed in the presence of the solubilizing agent cyclodextrin resulted in up to 1080 mg L-1 (+)-nootkatone produced by the fusion constructs as opposed to 620 mg L-1 produced by a mixture of the separate enzymes. Thus, a two-step (+)-valencene oxidation was considerably improved through the simple method of enzyme fusion.


Assuntos
Álcool Desidrogenase , Bacillus megaterium , Álcool Desidrogenase/genética , Bacillus megaterium/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , Sesquiterpenos Policíclicos
18.
Molecules ; 27(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35209175

RESUMO

The three-dimensional structure of monomers and homodimers of CYP102A1/WT (wild-type) proteins and their A83F and A83I mutant forms was predicted using the AlphaFold2 (AF2) and AlphaFold Multimer (AFMultimer) programs, which were compared with the rate constants of hydroxylation reactions of these enzyme forms to determine the efficiency of intra- and interprotein electron transport in the CYP102A1 hydroxylase system. The electron transfer rate constants (ket), which determine the rate of indole hydroxylation by the CYP102A1 system, were calculated based on the distances (R) between donor-acceptor prosthetic groups (PG) FAD→FMN→HEME of these proteins using factor ß, which describes an exponential decay from R the speed of electron transport (ET) according to the tunnelling mechanism. It was shown that the structure of monomers in the homodimer, calculated using the AlpfaFold Multimer program, is in good agreement with the experimental structures of globular domains (HEME-, FMN-, and FAD-domains) in CYP102A1/WT obtained by X-ray structural analysis, and the structure of isolated monomers predicted in AF2 does not coincide with the structure of monomers in the homodimer, although a high level of similarity in individual domains remains. The structures of monomers and homodimers of A83F and A83I mutants were also calculated, and their structures were compared with the wild-type protein. Significant differences in the structure of all isolated monomers with respect to the structures of monomers in homodimers were also found for them, and at the same time, insignificant differences were revealed for all homodimers. Comparative analysis for CYP102A1/WT between the calculated intra- and interprotein distances FAD→FMN→HEME and the rate constants of hydroxylation in these proteins showed that the distance between prosthetic groups both in the monomer and in the dimer allows the implementation of electron transfer between PGs, which is consistent with experimental literature data about kcat. For the mutant form of monomer A83I, an increase in the distance between PGs was obtained, which can restrict electron transportation compared to WT; however, for the dimer of this protein, a decrease in the distance between PGs was observed compared to the WT form, which can lead to an increase in the electron transfer rate constant and, accordingly, kcat. For the monomer and homodimer of the A83F mutant, the calculations showed an increase in the distance between the PGs compared to the WT form, which should have led to a decrease in the electron transfer rate, but at the same time, for the homodimer, the approach of the aromatic group F262 with heme can speed up transportation for this form and, accordingly, the rate of hydroxylation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Transporte de Elétrons , Modelos Moleculares , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Conformação Proteica , Multimerização Proteica , Proteínas de Bactérias/genética , Sistema Enzimático do Citocromo P-450/genética , NADPH-Ferri-Hemoproteína Redutase/genética , Mutação Puntual , Ligação Proteica , Relação Estrutura-Atividade
19.
J Biol Chem ; 298(4): 101761, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202651

RESUMO

Plant NADPH-dependent cytochrome P450 reductase (CPR) is a multidomain enzyme that donates electrons for hydroxylation reactions catalyzed by class II cytochrome P450 monooxygenases involved in the synthesis of many primary and secondary metabolites. These P450 enzymes include trans-cinnamate-4-hydroxylase, p-coumarate-3'-hydroxylase, and ferulate-5-hydroxylase involved in monolignol biosynthesis. Because of its role in monolignol biosynthesis, alterations in CPR activity could change the composition and overall output of lignin. Therefore, to understand the structure and function of three CPR subunits from sorghum, recombinant subunits SbCPR2a, SbCPR2b, and SbCPR2c were subjected to X-ray crystallography and kinetic assays. Steady-state kinetic analyses demonstrated that all three CPR subunits supported the oxidation reactions catalyzed by SbC4H1 (CYP73A33) and SbC3'H (CYP98A1). Furthermore, comparing the SbCPR2b structure with the well-investigated CPRs from mammals enabled us to identify critical residues of functional importance and suggested that the plant flavin mononucleotide-binding domain might be more flexible than mammalian homologs. In addition, the elucidated structure of SbCPR2b included the first observation of NADP+ in a native CPR. Overall, we conclude that the connecting domain of SbCPR2, especially its hinge region, could serve as a target to alter biomass composition in bioenergy and forage sorghums through protein engineering.


Assuntos
NADPH-Ferri-Hemoproteína Redutase , Proteínas de Plantas , Sorghum , Animais , Lignina/metabolismo , Mamíferos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sorghum/química , Sorghum/enzimologia , Sorghum/genética
20.
Insect Sci ; 29(4): 1105-1119, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34723412

RESUMO

Nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is involved in the metabolism of endogenous and exogenous substances, and detoxification of insecticides. RNA interference (RNAi) of CPR in certain insects causes developmental defects and enhanced susceptibility to insecticides. However, the CPR of Acyrthosiphon pisum has not been characterized, and its function is still not understood. In this study, we investigated the biochemical functions of A. pisum CPR (ApCPR). ApCPR was found to be transcribed in all developmental stages and was abundant in the embryo stage, and in the gut, head, and abdominal cuticle. After optimizing the dose and silencing duration of RNAi for downregulating ApCPR, we found that ApCPR suppression resulted in a significant decrease in the production of cuticular and internal hydrocarbon contents, and of cuticular waxy coatings. Deficiency in cuticular hydrocarbons (CHCs) decreased the survival rate of A. pisum under desiccation stress and increased its susceptibility to contact insecticides. Moreover, desiccation stress induced a significant increase in ApCPR mRNA levels. We further confirmed that ApCPR participates in CHC production. These results indicate that ApCPR modulates CHC production, desiccation tolerance, and insecticide susceptibility in A. pisum, and presents a novel target for pest control.


Assuntos
Afídeos , Inseticidas , Animais , Afídeos/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dessecação , Regulação para Baixo , Resistência a Inseticidas/genética , Inseticidas/farmacologia , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Pisum sativum/metabolismo , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA