Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(9): 1922-1925, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39174030

RESUMO

We investigated a fatal case of primary amoebic meningoencephalitis from an indoor surfing center in Taiwan. The case was detected through encephalitis syndromic surveillance. Of 56 environmental specimens, 1 was positive for Naegleria fowleri ameba. This report emphasizes the risk for N. fowleri infection from inadequately disinfected recreational waters, even indoors.


Assuntos
Infecções Protozoárias do Sistema Nervoso Central , Naegleria fowleri , Humanos , Naegleria fowleri/isolamento & purificação , Naegleria fowleri/genética , Taiwan/epidemiologia , Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Infecções Protozoárias do Sistema Nervoso Central/diagnóstico , Infecções Protozoárias do Sistema Nervoso Central/epidemiologia , Evolução Fatal , Masculino , Meningoencefalite/parasitologia , Meningoencefalite/diagnóstico , Amebíase/diagnóstico , Amebíase/parasitologia , Adulto
2.
Parasites Hosts Dis ; 62(2): 169-179, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38835258

RESUMO

Naegleria fowleri invades the brain and causes a fatal primary amoebic meningoencephalitis (PAM). Despite its high mortality rate of approximately 97%, an effective therapeutic drug for PAM has not been developed. Approaches with miltefosine, amphotericin B, and other antimicrobials have been clinically attempted to treat PAM, but their therapeutic efficacy remains unclear. The development of an effective and safe therapeutic drug for PAM is urgently needed. In this study, we investigated the anti-amoebic activity of Pinus densiflora leaf extract (PLE) against N. fowleri. PLE induced significant morphological changes in N. fowleri trophozoites, resulting in the death of the amoeba. The IC50 of PLE on N. fowleri was 62.3±0.95 µg/ml. Alternatively, PLE did not significantly affect the viability of the rat glial cell line C6. Transcriptome analysis revealed differentially expressed genes (DEGs) between PLE-treated and non-treated amoebae. A total of 5,846 DEGs were identified, of which 2,189 were upregulated, and 3,657 were downregulated in the PLE-treated amoebae. The DEGs were categorized into biological process (1,742 genes), cellular component (1,237 genes), and molecular function (846 genes) based on the gene ontology analysis, indicating that PLE may have dramatically altered the biological and cellular functions of the amoeba and contributed to their death. These results suggest that PLE has anti-N. fowleri activity and may be considered as a potential candidate for the development of therapeutic drugs for PAM. It may also be used as a supplement compound to enhance the therapeutic efficacy of drugs currently used to treat PAM.


Assuntos
Naegleria fowleri , Pinus , Extratos Vegetais , Folhas de Planta , Naegleria fowleri/efeitos dos fármacos , Naegleria fowleri/genética , Extratos Vegetais/farmacologia , Pinus/química , Folhas de Planta/química , Animais , Ratos , Antiprotozoários/farmacologia , Linhagem Celular , Trofozoítos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/parasitologia , Encéfalo/metabolismo , Encéfalo/patologia , Perfilação da Expressão Gênica , Infecções Protozoárias do Sistema Nervoso Central/tratamento farmacológico , Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Concentração Inibidora 50 , Sobrevivência Celular/efeitos dos fármacos
3.
BMC Med Genomics ; 17(1): 125, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715056

RESUMO

Naegleria fowleri, also known as brain-earing amoeba, causes severe and rapidly fatal CNS infection in humans called primary amebic meningoencephalitis (PAM). The DNA from the N. fowleri clinical isolate was sequenced for circular extrachromosomal ribosomal DNA (CERE - rDNA). The CERE contains 18 S, 5.8 S, and 28 S ribosomal subunits separated by internal transcribed spacers, 5 open reading frames (ORFs), and mostly repeat elements comprising 7268 bp out of 15,786 bp (46%). A wide variety of variations and recombination events were observed. Finally, the ORFs that comprised only 4 hypothetical proteins were modeled and screened against Zinc drug-like compounds. Two compounds [ZINC77564275 (ethyl 2-(((4-isopropyl-4 H-1,2,4-triazol-3-yl) methyl) (methyl)amino) oxazole-4-carboxylate) and ZINC15022129 (5-(2-methoxyphenoxy)-[2,2'-bipyrimidine]-4,6(1 H,5 H)-dione)] were finalized as potential druggable compounds based on ADME toxicity analysis. We propose that the compounds showing the least toxicity would be potential drug candidates after laboratory experimental validation is performed.


Assuntos
DNA Ribossômico , Sequenciamento de Nucleotídeos em Larga Escala , Naegleria fowleri , Naegleria fowleri/genética , Humanos , DNA Ribossômico/genética , Encéfalo/metabolismo , Genótipo , Fases de Leitura Aberta
4.
Nat Commun ; 15(1): 3307, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658525

RESUMO

Giant viruses (Nucleocytoviricota) are significant lethality agents of various eukaryotic hosts. Although metagenomics indicates their ubiquitous distribution, available giant virus isolates are restricted to a very small number of protist and algal hosts. Here we report on the first viral isolate that replicates in the amoeboflagellate Naegleria. This genus comprises the notorious human pathogen Naegleria fowleri, the causative agent of the rare but fatal primary amoebic meningoencephalitis. We have elucidated the structure and infection cycle of this giant virus, Catovirus naegleriensis (a.k.a. Naegleriavirus, NiV), and show its unique adaptations to its Naegleria host using fluorescence in situ hybridization, electron microscopy, genomics, and proteomics. Naegleriavirus is only the fourth isolate of the highly diverse subfamily Klosneuvirinae, and like its relatives the NiV genome contains a large number of translation genes, but lacks transfer RNAs (tRNAs). NiV has acquired genes from its Naegleria host, which code for heat shock proteins and apoptosis inhibiting factors, presumably for host interactions. Notably, NiV infection was lethal to all Naegleria species tested, including the human pathogen N. fowleri. This study expands our experimental framework for investigating giant viruses and may help to better understand the basic biology of the human pathogen N. fowleri.


Assuntos
Genoma Viral , Vírus Gigantes , Naegleria , Genoma Viral/genética , Vírus Gigantes/genética , Vírus Gigantes/classificação , Vírus Gigantes/ultraestrutura , Vírus Gigantes/isolamento & purificação , Vírus Gigantes/fisiologia , Naegleria/genética , Naegleria/virologia , Naegleria fowleri/genética , Naegleria fowleri/isolamento & purificação , Filogenia , Humanos
6.
Sci Rep ; 14(1): 767, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191579

RESUMO

More than 95% of patients fall victim to primary amoebic meningoencephalitis (PAM), a fatal disease attacking the central nervous system. Naegleria fowleri, a brain-eating microorganism, is PAM's most well-known pathogenic ameboflagellate. Despite the use of antibiotics, the fatality rate continues to rise as no clinical trials have been conducted against this disease. To address this, we mined the UniProt database for pathogenic proteins and selected assumed epitopes to create an mRNA-based vaccine. We identified thirty B-cell and T-cell epitopes for the vaccine candidate. These epitopes, secretion boosters, subcellular trafficking structures, and linkers were used to construct the vaccine candidate. Through predictive modeling and confirmation via the Ramachandran plot (with a quality factor of 92.22), we assessed secondary and 3D structures. The adjuvant RpfE was incorporated to enhance the vaccine construct's immunogenicity (GRAVY index: 0.394, instability index: 38.99, antigenicity: 0.8). The theoretical model of immunological simulations indicated favorable responses from both innate and adaptive immune cells, with memory cells expected to remain active for up to 350 days post-vaccination, while the antigen was eliminated from the body within 24 h. Notably, strong interactions were observed between the vaccine construct and TLR-4 (- 11.9 kcal/mol) and TLR-3 (- 18.2 kcal/mol).


Assuntos
Infecções Protozoárias do Sistema Nervoso Central , Naegleria fowleri , Humanos , Vacinas de mRNA , Naegleria fowleri/genética , Infecções Protozoárias do Sistema Nervoso Central/prevenção & controle , Epitopos de Linfócito T/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA