Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.196
Filtrar
1.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611940

RESUMO

Growth hormone deficiency (GHD) and idiopathic short stature (ISS) are the most common types of short stature (SS), but little is known about their pathogenesis, and even less is known about the study of adolescent SS. In this study, nuclear magnetic resonance (NMR)-based metabolomic analysis combined with least absolute shrinkage and selection operator (LASSO) were performed to identify the biomarkers of different types of SS (including 94 preadolescent GHD (PAG), 61 preadolescent ISS (PAI), 43 adolescent GHD (ADG), and 19 adolescent ISS (ADI)), and the receiver operating characteristic curve (ROC) was further used to evaluate the predictive power of potential biomarkers. The results showed that fourteen, eleven, nine, and fifteen metabolites were identified as the potential biomarkers of PAG, PAI, ADG, and ADI compared with their corresponding controls, respectively. The disturbed metabolic pathways in preadolescent SS were mainly carbohydrate metabolism and lipid metabolism, while disorders of amino acid metabolism played an important role in adolescent SS. The combination of aspartate, ethanolamine, phosphocholine, and trimethylamine was screened out to identify PAI from PAG, and alanine, histidine, isobutyrate, methanol, and phosphocholine gave a high classification accuracy for ADI and ADC. The differences in metabolic characteristics between GHD and ISS in preadolescents and adolescents will contribute to the development of individualized clinical treatments in short stature.


Assuntos
Nanismo , Fosforilcolina , Adolescente , Humanos , Nanismo/diagnóstico , Metabolismo dos Lipídeos , Biomarcadores , Hormônio do Crescimento
2.
Mol Genet Genomic Med ; 12(4): e2439, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613222

RESUMO

OBJECTIVE: To characterize the phenotype spectrum, diagnosis, and response to growth-promoting therapy in patients with ACAN variants causing familial short stature. METHODS: Three families with ACAN variants causing short stature were reported. Similar cases in the literature were summarized, and the genotype and phenotype were analyzed. RESULTS: Three novel heterozygous variants, c.757+1G>A, (splicing), c.6229delG, p.(Asp2078Tfs*1), and c.6679C>T, p.(Gln2227*) in the ACAN gene were identified. A total of 314 individuals with heterozygous variants from 105 families and 8 individuals with homozygous variants from 4 families were confirmed to have ACAN variants from literature and our 3 cases. Including our 3 cases, the variants reported comprised 33 frameshift, 39 missense, 23 nonsense, 5 splicing, 4 deletion, and 1 translocation variants. Variation points are scattered throughout the gene, while exons 12, 15, and 10 were most common (25/105, 11/105, and 10/105, respectively). Some identical variants existing in different families could be hot variants, c.532A>T, p.(Asn178Tyr), c.1411C>T, p.(Gln471*), c.1608C>A, p.(Tyr536*), c.2026+1G>A, (splicing), and c.7276G>T, p.(Glu2426*). Short stature, early-onset osteoarthritis, brachydactyly, midfacial hypoplasia, and early growth cessation were the common phenotypic features. The 48 children who received rhGH (and GnRHa) treatment had a significant height improvement compared with before (-2.18 ± 1.06 SD vs. -2.69 ± 0.95 SD, p < 0.001). The heights of children who received rhGH (and GnRHa) treatment were significantly improved compared with those of untreated adults (-2.20 ± 1.10 SD vs. -3.24 ± 1.14 SD, p < 0.001). CONCLUSION: Our study achieves a new understanding of the phenotypic spectrum, diagnosis, and management of individuals with ACAN variants. No clear genotype-phenotype relationship of patients with ACAN variants was found. Gene sequencing is necessary to diagnose ACAN variants that cause short stature. In general, appropriate rhGH and/or GnRHa therapy can improve the adult height of affected pediatric patients caused by ACAN variants.


Assuntos
Nanismo , Hormônio do Crescimento Humano , Adulto , Humanos , Criança , Genótipo , Fenótipo , Heterozigoto , Homozigoto , Pacientes , Agrecanas
3.
BMC Med Genomics ; 17(1): 95, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643142

RESUMO

NSUN2-intellectual disability syndrome, also known as intellectual disability type 5 (MRT5), is an autosomal recessive disorder that is characterized by intellectual disability (ID), postnatal growth retardation, dysmorphic facies, microcephaly, short stature, developmental delay, language impairment and other congenital abnormalities. The disease is caused by mutations in the NSUN2 gene, which encodes a tRNA cytosine methyltransferase that has an important role in spindle assembly during mitosis and chromosome segregation. In this study, we recruited a family that had two individuals with ID. Whole exome sequencing was performed to identify a homozygous frameshift variant (c.1171_1175delACCAT(p.Thr391fs*18*)) in NSUN2 (NM_017755.5) in the proband. The varint was confirmed as segregating in his affected brother and his parents by Sanger sequencing. The individuals that we described showed a similar dysmorphology profile to that associated with MRT5. To analyze the correlations between genotypes of NSUN2 and phenotypes of individuals with ID, we examined 17 variants and the associated phenotypes from 32 ID individuals in current and previous studies. We concluded that mutations in NSUN2 cause a wide range of phenotypic defects. Although some clinical manifestations were highly variable, the core phenotypes associated with NSUN2 mutations were dysmorphic facies, microcephaly, short stature, ID, growth restriction, language impairment, hypotonia and delayed puberty. Our study expands the genetic spectrum of NSUN2 mutations and helps to further define the genotype-phenotype correlations in MRT5.


Assuntos
Nanismo , Deficiência Intelectual , Transtornos do Desenvolvimento da Linguagem , Microcefalia , Malformações do Sistema Nervoso , Masculino , Humanos , Deficiência Intelectual/genética , Microcefalia/genética , Fácies , Mutação , Fenótipo , China , Linhagem , Metiltransferases/genética
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 586-590, 2024 May 10.
Artigo em Chinês | MEDLINE | ID: mdl-38684306

RESUMO

OBJECTIVE: To analyze the clinical phenotype and genetic characteristics of a patient with Isidor-Toutain spinal epiphyseal dysplasia (SEMD) due to variant of RPL13 gene. METHODS: A pregnant woman at 18 weeks of gestation who had presented at Quzhou Maternal and Child Health Care Hospital on January 14, 2023 was selected as the study subject. Whole exome sequencing (WES) was carried out for the patient, and candidate variant was validated by Sanger sequencing and bioinformatic analysis. RESULTS: The woman was 37 years old with extremely short stature (135 cm) and "O" shaped legs. WES revealed that she has harbored a c.548G>C (p.Arg183Pro) missense variant of the RPL13 gene (NM_000977.4). The same variant was not found in her fetus. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was predicted to be likely pathogenic (PS4+PM2_Supporting+PP3+PP4). CONCLUSION: Isidor-Toutain type SEMD due to variants of the RPL13 gene may have variable expressivity and diverse clinical phenotypes. Above finding has facilitated the differential diagnosis and genetic counseling for this family.


Assuntos
Proteínas Ribossômicas , Humanos , Feminino , Adulto , Proteínas Ribossômicas/genética , Gravidez , Sequenciamento do Exoma , Fenótipo , Osteocondrodisplasias/genética , Nanismo/genética , Mutação de Sentido Incorreto , Testes Genéticos
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 577-580, 2024 May 10.
Artigo em Chinês | MEDLINE | ID: mdl-38684304

RESUMO

OBJECTIVE: To explore the clinical features and genetic etiology of a child with SPONASTRIME dysplasia (SD). METHODS: A 9-month-old female who had presented at the Linyi People's Hospital in August 2022 for short stature was selected as the study subject. Clinical data of the child were collected, and whole exome sequencing (WES) was carried out. Sanger sequencing was used for validating the candidate variants. RESULTS: The child has manifested short stature, mid-face hypoplasia, joint laxity, internal knee rotation, irregularities in the metaphysis of long bones, and flat and concave lumbar vertebrae. WES revealed that she has harbored compound heterozygous variants of the TONSL gene, namely c.3088G>T (p.Glu1030*) and c.3053G>A (p.Arg1018His), which were inherited from her phenotypically normal parents. Neither variant was reported previously. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the c.3088G>T variant was classified as likely pathogenic (PVS1+PM2_Supporting), whilst the c.3053G>A was classified as a variant of uncertain significance (PM2_Supporting+PM3+PP3). CONCLUSION: The c.3088G>T and c.3053G>A compound heterozygous variants of the TONSL gene probably underlay the pathogenesis in this patient. Above finding has facilitated the clinical diagnosis and genetic counseling for her family.


Assuntos
Sequenciamento do Exoma , Heterozigoto , Humanos , Feminino , Lactente , Mutação , Nanismo/genética , Fenótipo , Proteínas Matrilinas
7.
Mol Genet Genomic Med ; 12(4): e2433, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591167

RESUMO

BACKGROUND: Kenny-Caffey syndrome type 2 (KCS2) is an extremely rare inherited disorder characterized by proportionate short stature, skeletal defects, ocular and dental abnormalities, and transient hypocalcemia. It is caused by variants in FAM111A gene. Diagnosis of KCS2 can be challenging because of its similarities to other syndromes, the absence of clear hallmarks and the deficient number of genetically confirmed cases. Here, we aimed to further delineate and summarize the genotype and phenotype of KCS2, in order to get a better understanding of this rare disorder, and promote early diagnosis and intervention. METHODS: We present clinical and genetic characteristics of eight newly affected individuals with KCS2 from six families, including one family with three individuals found to be a father-to-daughter transmission, adding to the limited literature. Furthermore, we performed a review of genetically confirmed KCS2 cases in PubMed, MEDLINE and CNKI databases. RESULTS: There were six females and two males in our cohort. All the patients presented with short stature (100.0%). Clinical manifestations included ocular defects such as hypermetropia (5/8), dental problems such as defective dentition (3/8) and dental caries (3/8), skeletal and brain anomalies such as delayed closure of anterior fontanelle (6/8), cerebral calcification (3/8), cortical thickening (3/8) and medullary stenosis (4/8) of tubular bones. Endocrinologic abnormalities included hypoparathyroidism (5/8) and hypocalcemia (3/8). One male patient had micropenis and microorchidism. All cases harboured missense variants of FAM111A, and nucleotides c.1706 arose as a mutational hotspot, with seven individuals harbouring a c.1706G>A (p.Arg569His) variant, and one child harbouring a c.1531T>C (p.Tyr511His) variant. Literature review yielded a total of 46 patients from 20 papers. Data analysis showed that short stature, hypoparathyroidism and hypocalcemia, ocular and dental defects, skeletal features including cortical thickening and medullary stenosis of tubular bones, and seizures/spasms were present in more than 70% of the reported KCS2 cases. CONCLUSION: We provide detailed characteristics of the largest KCS2 group in China and present the first genetically confirmed instance of father-to-daughter transmission of KCS2. Our study confirms that Arg569His is the hot spot variant and summarizes the typical phenotypes of KCS2, which would help early diagnosis and intervention.


Assuntos
Cárie Dentária , Nanismo , Hiperostose Cortical Congênita , Hipocalcemia , Hipoparatireoidismo , Criança , Feminino , Humanos , Masculino , Hipocalcemia/genética , Constrição Patológica , Fenótipo , Genótipo , Hipoparatireoidismo/genética
8.
Virol J ; 21(1): 86, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622686

RESUMO

BACKGROUND: Viruses have notable effects on agroecosystems, wherein they can adversely affect plant health and cause problems (e.g., increased biosecurity risks and economic losses). However, our knowledge of their diversity and interactions with specific host plants in ecosystems remains limited. To enhance our understanding of the roles that viruses play in agroecosystems, comprehensive analyses of the viromes of a wide range of plants are essential. High-throughput sequencing (HTS) techniques are useful for conducting impartial and unbiased investigations of plant viromes, ultimately forming a basis for generating further biological and ecological insights. This study was conducted to thoroughly characterize the viral community dynamics in individual plants. RESULTS: An HTS-based virome analysis in conjunction with proximity sampling and a tripartite network analysis were performed to investigate the viral diversity in chunkung (Cnidium officinale) plants. We identified 61 distinct chunkung plant-associated viruses (27 DNA and 34 RNA viruses) from 21 known genera and 6 unclassified genera in 14 known viral families. Notably, 12 persistent viruses (7 DNA and 5 RNA viruses) were exclusive to dwarfed chunkung plants. The detection of viruses from the families Partitiviridae, Picobirnaviridae, and Spinareoviridae only in the dwarfed plants suggested that they may contribute to the observed dwarfism. The co-infection of chunkung by multiple viruses is indicative of a dynamic and interactive viral ecosystem with significant sequence variability and evidence of recombination. CONCLUSIONS: We revealed the viral community involved in chunkung. Our findings suggest that chunkung serves as a significant reservoir for a variety of plant viruses. Moreover, the co-infection rate of individual plants was unexpectedly high. Future research will need to elucidate the mechanisms enabling several dozen viruses to co-exist in chunkung. Nevertheless, the important insights into the chunkung virome generated in this study may be relevant to developing effective plant viral disease management and control strategies.


Assuntos
Coinfecção , Nanismo , Vírus de Plantas , Vírus de RNA , Humanos , Viroma , Ecossistema , Cnidium/genética , RNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus de Plantas/genética , DNA , Filogenia
9.
J Am Acad Orthop Surg ; 32(9): e425-e433, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38470978

RESUMO

Skeletal dysplasias are a group of genetic conditions defined by atypical bone or cartilage growth and development. Skeletal abnormalities include short stature, limb deformity, joint contracture, and spinal deformity. Over 90% of disorders have a known genetic mutation that can definitively determine the diagnosis. As patients may present with a primary spinal concern, a careful clinical and radiographic evaluation can allow the physician to develop a working diagnosis to guide additional evaluation. Spinal manifestations include scoliosis and kyphoscoliosis, cervical instability, cervical kyphosis, thoracolumbar kyphosis, spinal stenosis, and atypical vertebral body morphology. An understanding of the affected conditions, prevalence, and natural history of these radiographic findings aids the orthopaedic surgeon in establishing a diagnosis and guides appropriate orthopaedic care.


Assuntos
Nanismo , Cifose , Escoliose , Estenose Espinal , Humanos , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/cirurgia , Escoliose/diagnóstico , Escoliose/etiologia , Escoliose/cirurgia , Cifose/etiologia , Cifose/cirurgia
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 271-277, 2024 Mar 10.
Artigo em Chinês | MEDLINE | ID: mdl-38448013

RESUMO

OBJECTIVE: To retrospectively analyze the clinical and genetic characteristics of six patients with Acromicric dysplasia due to variants of the FBN1 gene. METHODS: Six patients who had visited the Affiliated Hospital of Qingdao University between February 2018 and October 2020 were selected as the study subjects. Clinical data of the patients were collected. High-throughput sequencing was carried out. And candidate variants were verified by Sanger sequencing. RESULTS: All of the six patients had presented with severe short stature (< 3s), brachydactyly, short and broad hands and feet. Other manifestations included joint stiffness, facial dysmorphism, delayed bone age, liver enlargement, coracoid femoral head, and lumbar lordosis. Genetic testing revealed that all had harbored heterozygous variants of the FBN1 gene. Patient 1 had harbored a c.5183C>T (p.A1728V) missense variant in exon 42, which had derived from his father (patient 2). Patient 3 had harbored a c.5284G>A (p.G1762S) missense variant in exon 43, which had derived from her mother (patient 4). Patient 5 had harbored a c.5156G>T (p.C1719F) missense variant in exon 42, which was de novo in origin. Patient 6 had harbored a c.5272G>T (p.D1758Y) missense variant in exon 43, which was also de novo in origin. The variants carried by patients 1, 3 and 6 were known to be pathogenic. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the FBN1: c.5156G>T was rated as a pathogenic variant (PS2+PM1+PM2_Supporting +PM5+PP3). CONCLUSION: All of the six patients had severe short stature and a variety of other clinical manifestations, which may be attributed to the variants of the FBN1 gene.


Assuntos
Doenças do Desenvolvimento Ósseo , Nanismo , Deformidades Congênitas dos Membros , Humanos , Feminino , Animais , Estudos Retrospectivos , Fenótipo , China , Fibrilina-1/genética , Adipocinas
12.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(2): 118-123, 2024 Feb 15.
Artigo em Chinês | MEDLINE | ID: mdl-38436307

RESUMO

Short stature in puberty significantly affects the physical and mental health of adolescents. The continuous acceleration of skeletal maturation, caused by sex hormones during puberty, limits the time available for growth and poses a considerable challenge for the treatment of short stature. To date, there is still no standardized treatment protocol for this disorder. However, puberty is the last period to improve the final adult height. Currently, commonly used pharmacological treatments in clinical settings include recombinant human growth hormone, gonadotropin-releasing hormone analogs, and third-generation aromatase inhibitors. In recent years, personalized treatment aiming to improve the final adult height has become a key focus in clinical practice. This article provides a comprehensive summary of research on pharmacological therapies for height improvement in pubertal children with short stature, offering valuable insights for healthcare professionals.


Assuntos
Nanismo , Hormônio do Crescimento Humano , Adolescente , Adulto , Criança , Humanos , Hormônio do Crescimento Humano/uso terapêutico , Pessoal de Saúde
13.
Hum Genomics ; 18(1): 23, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448978

RESUMO

BACKGROUND/OBJECTIVES: Rare genetic disorders causing specific congenital developmental abnormalities often manifest in single families. Investigation of disease-causing molecular features are most times lacking, although these investigations may open novel therapeutic options for patients. In this study, we aimed to identify the genetic cause in an Iranian patient with severe skeletal dysplasia and to model its molecular function in zebrafish embryos. RESULTS: The proband displays short stature and multiple skeletal abnormalities, including mesomelic dysplasia of the arms with complete humero-radio-ulna synostosis, arched clavicles, pelvic dysplasia, short and thin fibulae, proportionally short vertebrae, hyperlordosis and mild kyphosis. Exome sequencing of the patient revealed a novel homozygous c.374G > T, p.(Arg125Leu) missense variant in MSGN1 (NM_001105569). MSGN1, a basic-Helix-Loop-Helix transcription factor, plays a crucial role in formation of presomitic mesoderm progenitor cells/mesodermal stem cells during early developmental processes in vertebrates. Initial in vitro experiments show protein stability and correct intracellular localization of the novel variant in the nucleus and imply retained transcription factor function. To test the pathogenicity of the detected variant, we overexpressed wild-type and mutant msgn1 mRNA in zebrafish embryos and analyzed tbxta (T/brachyury/ntl). Overexpression of wild-type or mutant msgn1 mRNA significantly reduces tbxta expression in the tailbud compared to control embryos. Mutant msgn1 mRNA injected embryos depict a more severe effect, implying a gain-of-function mechanism. In vivo analysis on embryonic development was performed by clonal msgn1 overexpression in zebrafish embryos further demonstrated altered cell compartments in the presomitic mesoderm, notochord and pectoral fin buds. Detection of ectopic tbx6 and bmp2 expression in these embryos hint to affected downstream signals due to Msgn1 gain-of-function. CONCLUSION: In contrast to loss-of-function effects described in animal knockdown models, gain-of-function of MSGN1 explains the only mildly affected axial skeleton of the proband and rather normal vertebrae. In this context we observed notochord bending and potentially disruption of pectoral fin buds/upper extremity after overexpression of msgn1 in zebrafish embryos. The latter might result from Msgn1 function on mesenchymal stem cells or on chondrogenesis in these regions. In addition, we detected ectopic tbx6 and bmp2a expression after gain of Msgn1 function in zebrafish, which are interconnected to short stature, congenital scoliosis, limb shortening and prominent skeletal malformations in patients. Our findings highlight a rare, so far undescribed skeletal dysplasia syndrome associated with a gain-of-function mutation in MSGN1 and hint to its molecular downstream effectors.


Assuntos
Anormalidades Múltiplas , Nanismo , Osteocondrodisplasias , Animais , Feminino , Humanos , Gravidez , Mutação com Ganho de Função , Irã (Geográfico) , RNA Mensageiro , Proteínas com Domínio T/genética , Fatores de Transcrição , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
14.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474092

RESUMO

Proteases are critical enzymes in cellular processes which regulate intricate events like cellular proliferation, differentiation and apoptosis. This review highlights the multifaceted roles of the serine proteases FAM111A and FAM111B, exploring their impact on cellular functions and diseases. FAM111A is implicated in DNA replication and replication fork protection, thereby maintaining genome integrity. Additionally, FAM111A functions as an antiviral factor against DNA and RNA viruses. Apart from being involved in DNA repair, FAM111B, a paralog of FAM111A, participates in cell cycle regulation and apoptosis. It influences the apoptotic pathway by upregulating anti-apoptotic proteins and modulating cell cycle-related proteins. Furthermore, FAM111B's association with nucleoporins suggests its involvement in nucleo-cytoplasmic trafficking and plays a role in maintaining normal telomere length. FAM111A and FAM111B also exhibit some interconnectedness and functional similarity despite their distinct roles in cellular processes and associated diseases resulting from their dysfunction. FAM111A and FAM111B dysregulation are linked to genetic disorders: Kenny-Caffey Syndrome type 2 and Gracile Bone Dysplasia for FAM111A and POIKTMP, respectively, and cancers. Therefore, the dysregulation of these proteases in diseases emphasizes their potential as diagnostic markers and therapeutic targets. Future research is essential to unravel the intricate mechanisms governing FAM111A and FAM111B and explore their therapeutic implications comprehensively.


Assuntos
Doenças do Desenvolvimento Ósseo , Nanismo , Humanos , Peptídeo Hidrolases/genética , Mutação , Proteínas de Ciclo Celular/metabolismo , Nanismo/genética , Endopeptidases/genética , Receptores Virais/metabolismo
15.
Prenat Diagn ; 44(5): 653-656, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38504427

RESUMO

Autosomal recessive ROR2-Robinow syndrome is caused by pathogenic variants in the ROR2 gene. Fetal ultrasound done on our patient at 24 + 3/7 weeks gestation showed macrocephaly, brachycephaly, flat face, prominent forehead, mild frontal bossing, lower thoracic hemivertebrae, digital abnormalities and micropenis. Fetal trio whole exome sequencing done on amniocytes showed two pathogenic compound heterozygous variants in the ROR2 gene, c.1324 C > T; p.(Arg442*) maternally inherited and c.1366dup; p.(Leu456Profs*3) apparently de novo. c.1324 C > T; p.(Arg442*) is a nonsense variant resulting in protein truncation reported to be associated with RRS3. c.1366dup; p.(Leu456Profs*3) is a frameshift variant predicted to result in protein truncation reported to segregate with the disease in multiple affected individuals from a single large family with distal symphalangism of the fourth finger. Fetal autopsy following pregnancy termination showed a large head with low-set ears, facial abnormalities, mesomelic bone shortening, hemivertebra, fused S3 and S4 vertebral bodies, several fused rib heads and short penis with buried shaft.


Assuntos
Nanismo , Deformidades Congênitas dos Membros , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Ultrassonografia Pré-Natal , Anormalidades Urogenitais , Humanos , Feminino , Gravidez , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/diagnóstico por imagem , Adulto , Coluna Vertebral/anormalidades , Coluna Vertebral/diagnóstico por imagem , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/diagnóstico por imagem , Dedos/anormalidades , Dedos/diagnóstico por imagem , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico por imagem , Masculino , Sequenciamento do Exoma
16.
Am J Med Genet A ; 194(6): e63562, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38337186

RESUMO

Biallelic pathogenic variants in RMRP, the gene encoding the RNA component of RNase mitochondrial RNA processing enzyme complex, have been reported in individuals with cartilage hair hypoplasia (CHH). CHH is prevalent in Finnish and Amish populations due to a founder pathogenic variant, n.71A > G. Based on the manifestations in the Finnish and Amish individuals, the hallmarks of CHH are prenatal-onset growth failure, metaphyseal dysplasia, hair hypoplasia, immunodeficiency, and other extraskeletal manifestations. Herein, we report six Japanese individuals with CHH from four families. All probands presented with moderate short stature with mild metaphyseal dysplasia or brachydactyly. One of them had hair hypoplasia and the other immunodeficiency. By contrast, the affected siblings of two families showed only mild short stature. We also reviewed all previously reported 13 Japanese individuals. No n.71A > G allele was detected. The proportions of Japanese versus Finnish individuals were 0% versus 70% for birth length < -2.0 SD, 84% versus 100% for metaphyseal dysplasia and 26% versus 88% for hair hypoplasia. Milder manifestations in the Japanese individuals may be related to the difference of genotypes. The mildest form of CHH phenotypes is mild short stature without overt skeletal alteration or extraskeletal manifestation and can be termed "RMRP-related short stature".


Assuntos
Cabelo , Cabelo/anormalidades , Osteocondrodisplasias , Osteocondrodisplasias/congênito , Humanos , Feminino , Masculino , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Cabelo/patologia , Criança , Doença de Hirschsprung/genética , Doença de Hirschsprung/patologia , Doença de Hirschsprung/diagnóstico , Nanismo/genética , Nanismo/patologia , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/patologia , Pré-Escolar , Fenótipo , Japão/epidemiologia , RNA Longo não Codificante/genética , Linhagem , Mutação/genética , Alelos , Adolescente , Genótipo , População do Leste Asiático
17.
Eur J Pediatr ; 183(5): 2257-2272, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38411716

RESUMO

Patients with Aarskog-Scott syndrome (AAS) have short stature, facial anomalies, skeletal deformities, and genitourinary malformations. FYVE, RhoGEF, and PH domain-containing 1 (FGD1) is the only known causative gene of AAS. However, the diagnosis of AAS remains difficult, and specific treatments are still absent. Patients suspected with AAS were recruited, and clinical information was collected. Genetic testing and functional analysis were carried out for the diagnosis. By literature review, we summarized the clinical and genetic characteristics of FGD1-related AAS and analyzed the genotype-phenotype correlation. Five patients were recruited, and four novel FGD1 variants were identified. The diagnosis of AAS was confirmed by genetic analysis and functional study. Three patients treated with growth hormone showed improved heights during the follow-up period. By literature review, clinical features of AAS patients with FGD1 variants were summarized. Regarding FGD1 variations, substitutions were the most common form, and among them, missense variants were the most frequent. Moreover, we found patients with drastic variants showed higher incidences of foot and genitourinary malformations. Missense variants in DH domain were related to a lower incidence of cryptorchidism.   Conclusion: We reported four novel pathogenic FGD1 variations in AAS patients and confirmed the efficacy and safety of growth hormone treatment in FGD1-related AAS patients with growth hormone deficiency. Additionally, our literature review suggested the crucial role of DH domain in FGD1 function. What is Known: • Aarskog-Scott syndrome is a rare genetic disease, and the only known cause is the variant in FGD1 gene. The typical clinical manifestations of AAS include facial, skeletal, and urogenital deformities and short stature. What is New: • We reported four novel FGD1 variants and reported the treatment of growth hormone in FGD1-related AAS patients. Our genotype-phenotype correlation analysis suggested the crucial role of DH domain in FGD1 function.


Assuntos
Anormalidades Múltiplas , Face/anormalidades , Doenças Genéticas Ligadas ao Cromossomo X , Genitália Masculina/anormalidades , Fatores de Troca do Nucleotídeo Guanina , Humanos , Fatores de Troca do Nucleotídeo Guanina/genética , Masculino , Feminino , Pré-Escolar , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico , Criança , Lactente , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/diagnóstico , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/diagnóstico , Estudos de Associação Genética , Nanismo/genética , Nanismo/diagnóstico , Nanismo/tratamento farmacológico , Dermatoses do Couro Cabeludo/genética , Dermatoses do Couro Cabeludo/diagnóstico , Dermatoses do Couro Cabeludo/tratamento farmacológico , Dermatoses do Couro Cabeludo/congênito , Fenótipo , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/diagnóstico
18.
Ann Anat ; 253: 152224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367951

RESUMO

BACKGROUND: 3 M syndrome is first reported in 1975,which characterized by severe pre- and postnatal growth retardation, skeletal malformation and facial dysmorphism. These three genes (CUL7, OBSL1 and CCDC8) have been identified to be respond for 3 M syndrome, of which CUL7 is accounting for approximately 70%. To date, the molecular mechanism underlying the pathogenesis of 3 M syndrome remains poorly understood. Previous studies showed that no Cul7-/- mice could survive after birth, because of growth retardation at late gestational stage and respiratory distress after birth. The establishment of the animal model of cartilage specific Cul7 knockout mice (Cul7fl/fl;Col2a1-CreERT2 mice) has confirmed that Cul7fl/fl;Col2a1-CreERT2 mice can be selective in a time- and tissue-dependent manner, which can provide an experimental basis for further research on severe genetic diseases related to growth plates. OBJECTIVE: To establish a model of Cul7fl/fl;Col2a1-CreERT2 mice based on Cre/LoxP system, and to further observe its phenotype and morphological changes in growth plate. METHODS: The Cul7fl/fl;Col2a1-CreERT2 mice were taken as the experimental group, while the genotype of Cul7fl/+;Col2a1-CreERT2 mice were used as the control group. The gross morphological features and X-ray films of limbs in the two groups were observed every week for 3-6 consecutive weeks, and the length of the mice from nose to the tail, the length of femur and tibia were recorded. In the meantime, The histological morphology of tibial growth plates was compared between the two groups. RESULTS: A preliminary model of Cul7fl/fl;Col2a1-CreERT2 mice was established. The Cul7fl/fl;Col2a1-CreERT2 mice had abnormally short and deformed limbs (P<0.05), increased thickness of growth plate, the disorderly arranged chondrocyte columns, decreased number of cells in the proliferation zone, changes in the shape from flat to round, obviously expanded extracellular matrix, and disordered arrangement, thickening and loosening of bone trabecula at the proximal metaphysis of the femur. CONCLUSIONS: The knockout of Cul7 gene may affect both the proliferation of chondrocytes and the endochondral osteogenesis, confirming that Cul7 is essential for the normal development of bone in the body.


Assuntos
Anormalidades Múltiplas , Nanismo , Lâmina de Crescimento , Deficiência Intelectual , Hipotonia Muscular , Retinose Pigmentar , Coluna Vertebral/anormalidades , Camundongos , Animais , Camundongos Knockout , Condrócitos , Transtornos do Crescimento , Proteínas Culina/genética
19.
Environ Sci Pollut Res Int ; 31(14): 22012-22023, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38400976

RESUMO

Are the residues of organochlorine pesticides (OCPs) in freshwater in China still of concern after prohibition and restriction for decades? The scarcity of monitoring data on OCPs in freshwater in China over the past few years has hampered understanding of this issue. In this study, water and suspended particulate matter (SPM) samples were collected from the middle reach of the Huai River for OCP analyses. Residues of ∑OCPs in water and SPM ranged from ND to 8.6 ng L-1 and 0.50 to 179 ng L-1, with mean concentrations of 1.7 ± 1.3 ng L-1 and 6.1 ± 31 ng L-1, respectively. ∑HCHs (α-, ß-, γ-, and δ-HCH) and ∑HEPTs (heptachlor and heptachlor epoxide) were the most predominant pesticides in the dissolved phase and SPM, respectively, accounting for 43 ± 35% and 27 ± 29% of ∑OCPs. HCHs and heptachlor epoxide mainly existed in the dissolved phase, while heptachlor mainly existed in SPM. The isomeric composition pattern of HCHs in water differed from that in SPM. Briefly, ß-HCH dominated in water, while δ-HCH dominated in SPM. However, the composition pattern of DDT and its metabolites in water was similar to that in SPM. o,p'-DDD and p,p'-DDE dominated in both water and SPM. The ratios of α-/γ-HCH and (DDD + DDE)/DDTs indicated that HCHs and DDTs were mainly derived from historical residues. Risk assessments indicated that OCPs may not pose carcinogenic and non-carcinogenic risks to residents.


Assuntos
Osso e Ossos/anormalidades , Nanismo , Hexaclorocicloexano , Hidrocarbonetos Clorados , Deformidades Congênitas dos Membros , Lordose , Praguicidas , Humanos , Rios , Heptacloro Epóxido , Heptacloro , Mitotano , Água , China
20.
Clin Chim Acta ; 555: 117820, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307397

RESUMO

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders predominantly characterized by impaired corticosteroid synthesis. Clinical phenotypes include hypoadrenocorticism, electrolyte disturbances, abnormal gonadal development, and short stature, of which severe hyponadrenocorticism and salt wasting can be life-threatening. Genetic analysis can help in the clinical diagnosis of CAH. However, the 21-OHD-causing gene CYP21A2 is arranged in tandem with the highly homologous CYP21A1P pseudogene, making it difficult to determine the exact genotypes using the traditional method of multiplex ligation-dependent probe amplification (MLPA) plus Sanger sequencing or next-generation sequencing (NGS). We applied a long-read sequencing-based approach termed comprehensive analysis of CAH (CACAH) to 48 newborns with CAH that were diagnosed by clinical features and the traditional MLPA plus Sanger sequencing method for retrospective analysis, to evaluate its efficacy in the clinical diagnosis of neonatal CAH. Compared with the MLPA plus Sanger sequencing method, CACAH showed 100 % consistency in detecting SNV/indel variants located in exons and exon-intron boundary regions of CAH-related genes. It can directly determine the cis-trans relationship without the need to analyze parental genotypes, which reduces the time to diagnosis. Moreover, CACAH was able to distinguish different CYP21A1P/CYP21A2 and TNXA/TNXB chimeras, and detect additional variants (CYP21A2 variants c.-121C > T, c.*13G > A, c.*52C > T, c.*440C > T, c.*443 T > C, and TNXB variants c.12463 + 2 T > C, c.12204 + 5G > A). We also identified the TNXB variant c.11435_11524 + 30del alone instead of as a part of the TNXA/TNXB-CH-1 chimera in two newborns, which might be introduced by gene conversion. All of these characteristics enabled clinicians to better explain the phenotype of subjects and manage them more effectively. CACAH has a great advantage over the traditional MLPA and Sanger sequencing methods, showing substantial potential in the genetic diagnosis and screening of neonatal CAH.


Assuntos
Hiperplasia Suprarrenal Congênita , Nanismo , Recém-Nascido , Humanos , Hiperplasia , Estudos Retrospectivos , Hiperplasia Suprarrenal Congênita/diagnóstico , Hiperplasia Suprarrenal Congênita/genética , Sequenciamento de Nucleotídeos em Larga Escala , Tenascina , Esteroide 21-Hidroxilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA