Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ISME J ; 13(8): 2135-2139, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31048756

RESUMO

DPANN archaea have reduced metabolic capacities and are diverse and abundant in deep aquifer ecosystems, yet little is known about their interactions with other microorganisms that reside there. Here, we provide evidence for an archaeal host-symbiont association from a deep aquifer system at the Colorado Plateau (Utah, USA). The symbiont, Candidatus Huberiarchaeum crystalense, and its host, Ca. Altiarchaeum hamiconexum, show a highly significant co-occurrence pattern over 65 metagenome samples collected over six years. The physical association of the two organisms was confirmed with genome-informed fluorescence in situ hybridization depicting small cocci of Ca. H. crystalense attached to Ca. A. hamiconexum cells. Based on genomic information, Ca. H. crystalense potentially scavenges vitamins, sugars, nucleotides, and reduced redox-equivalents from its host and thus has a similar metabolism as Nanoarchaeum equitans. These results provide insight into host-symbiont interactions among members of two uncultivated archaeal phyla that thrive in a deep subsurface aquifer.


Assuntos
Archaea/genética , Genoma Arqueal/genética , Metagenoma , Nanoarchaeota/genética , Simbiose , Archaea/isolamento & purificação , Archaea/fisiologia , Ecossistema , Água Subterrânea , Hibridização in Situ Fluorescente , Nanoarchaeota/isolamento & purificação , Nanoarchaeota/fisiologia , Filogenia , Utah
2.
Microbiome ; 6(1): 161, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30223889

RESUMO

BACKGROUND: Nanoarchaeota are obligate symbionts of other Archaea first discovered 16 years ago, yet little is known about this largely uncultivated taxon. While Nanoarchaeota diversity has been detected in a variety of habitats using 16S rRNA gene surveys, genome sequences have been available for only three Nanoarchaeota and their hosts. The host range and adaptation of Nanoarchaeota to a wide range of environmental conditions has thus largely remained elusive. Single-cell genomics is an ideal approach to address these questions as Nanoarchaeota can be isolated while still attached to putative hosts, enabling the exploration of cell-cell interactions and fine-scale genomic diversity. RESULTS: From 22 single amplified genomes (SAGs) from three hot springs in Yellowstone National Park, we derived a genome-based phylogeny of the phylum Nanoarchaeota, linking it to global 16S rRNA gene diversity. By exploiting sequencing of co-sorted tightly attached cells, we associated Nanoarchaeota with 6 novel putative hosts, 2 of which were found in multiple SAGs, and showed that the same host species may associate with multiple species of Nanoarchaeota. Comparison of single nucleotide polymorphisms (SNPs) within a population of Nanoarchaeota SAGs indicated that Nanoarchaeota attached to a single host cell in situ are likely clonal. In addition to an overall pattern of purifying selection, we found significantly higher densities of non-synonymous SNPs in hypothetical cell surface proteins, as compared to other functional categories. Genes implicated in interactions in other obligate microbe-microbe symbioses, including those encoding a cytochrome bd-I ubiquinol oxidase and a FlaJ/TadC homologue possibly involved in type IV pili production, also had relatively high densities of non-synonymous SNPs. CONCLUSIONS: This population genetics study of Nanoarchaeota greatly expands the known potential host range of the phylum and hints at what genes may be involved in adaptation to diverse environments or different hosts. We provide the first evidence that Nanoarchaeota cells attached to the same host cell are clonal and propose a hypothesis for how clonality may occur despite diverse symbiont populations.


Assuntos
Especificidade de Hospedeiro , Nanoarchaeota/genética , Simbiose , Archaea/isolamento & purificação , Archaea/fisiologia , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Genoma Arqueal , Genômica , Fontes Termais/microbiologia , Nanoarchaeota/classificação , Nanoarchaeota/isolamento & purificação , Nanoarchaeota/fisiologia , Filogenia , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA