Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.502
Filtrar
1.
Mikrochim Acta ; 191(5): 280, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649540

RESUMO

An interfacial galvanic replacement strategy to controllable synthesize palladium nanoparticles (Pd NPs)-modified NiFe MOF nanocomposite on nickel foam, which served as an efficient sensing platform for quantitative determination of dopamine (DA). Pd NPs grown in situ on the nanosheets of NiFe MOF via self-driven galvanic replacement reaction (GRR) and well uniform distribution was achieved. This method effectively reduced the aggregation of metallic nanoparticles and significantly promoted the electron transfer rate during the electrochemical process, leading to improved electrocatalytic activity for DA oxidation. Remarkably, the precisely constructed biosensor achieved a low detection limit (LOD) of 0.068 µM and recovery of 94.1% (RSD 6.7%, N = 3) for simulated real sample detection and also exhibited superior selectivity and stability. The results confirmed that the as-fabricated Pd-NiFe/NF composite electrode could realize the quantitative determination of DA and showed promising prospects in real sample biosensing.


Assuntos
Técnicas Biossensoriais , Dopamina , Estruturas Metalorgânicas , Nanoestruturas , Dopamina/análise , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/normas , Níquel/química , Eletrodos/normas , Paládio/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Microscopia Eletrônica de Varredura , Estruturas Metalorgânicas/síntese química , Estruturas Metalorgânicas/ultraestrutura , Sensibilidade e Especificidade , Condutividade Elétrica , Microscopia Eletrônica de Transmissão , Ferro/química , Reprodutibilidade dos Testes
2.
Langmuir ; 39(21): 7444-7455, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37189015

RESUMO

The advantages of porosity and stable unpaired electrons of porphyrinic organic polymers (POPs) with free radicals are exclusive and potentially practical functionalities and combining the semiconductor-like characteristics of these materials and metal ions has been an effective way to assemble an efficient photocatalytic system. Herein, a new ruthenium (Ru) ion-encapsulated porphyrinic organic polymer (POP/Ru) is facilely synthesized as a proper photoresponsive nanozyme with unique photo-oxidase properties. Surprisingly, the proposed POP/Ru revealed outstanding photoresponsive oxidase-mimicking activity due to the synergetic effect of the integration of Ru and π-electrons of POP, which boosts charge separation and transport. POP/Ru was applied to the oxidation of o-phenylenediamine (o-PDA) as a chromogenic probe for producing a colorimetric signal. The kinetic study reveals that these photo-oxidase mimics have a significant affinity for the o-PDA chromogenic agent owing to a lower Km and superior Vmax. Further findings demonstrate that the presence of the l-arginine (l-Arg) target causes an inhibition effect on the photo-nanozymatic colorimetry of POP/Ru. This research develops the applications of the comprehensive colorimetric strategy for ultrasensitive l-Arg monitoring with a limit of detection (LOD) of 15.2 nM in the dynamic range of 4.0 nM-340 µM and illuminates that the proposed photo-oxidase nanozyme as a visual strategy is feasible in l-Arg environmentally friendly colorimetric detection in juice samples.


Assuntos
Colorimetria , Cápsulas , Rutênio/química , Polímeros/química , Colorimetria/métodos , Nanoestruturas/ultraestrutura , Oxirredutases/química , Oxirredutases/metabolismo , Porfirinas/química
3.
J Magn Reson ; 341: 107258, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753185

RESUMO

This study investigates the fibril nanostructure of fresh celery samples by modeling the anisotropic behavior of the transverse relaxation time (T2) in nuclear magnetic resonance (NMR). Experimental results are interpreted within the framework of a previously developed theory, which was successfully used to model the nanostructures of several biological tissues as a set of water filled nanocavities, hence explaining the anisotropy the T2 relaxation time in vivo. An important feature of this theory is to determine the degree of orientational ordering of the nanocavities, their characteristic volume, and their average direction with respect to the macroscopic sample. Results exhibit good agreement between theory and experimental data, which are, moreover, supported by optical microscopic resolution. The quantitative NMR approach presented herein can be potentially used to determine the internal ordering of biological tissues noninvasively.


Assuntos
Apium/ultraestrutura , Imageamento por Ressonância Magnética , Microscopia , Caules de Planta/anatomia & histologia , Anisotropia , Apium/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Nanoestruturas/ultraestrutura , Caules de Planta/ultraestrutura
4.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328455

RESUMO

In 2019, the new coronavirus disease (COVID-19), related to the severe acute respiratory syndrome coronavirus (SARS-CoV-2), started spreading around the word, giving rise to the world pandemic we are still facing. Since then, many strategies for the prevention and control of COVID-19 have been studied and implemented. In addition to pharmacological treatments and vaccines, it is mandatory to ensure the cleaning and disinfection of the skin and inanimate surfaces, especially in those contexts where the contagion could spread quickly, such as hospitals and clinical laboratories, schools, transport, and public places in general. Here, we report the efficacy of ZnO nanoparticles (ZnONPs) against SARS-CoV-2. NPs were produced using an ecofriendly method and fully characterized; their antiviral activity was tested in vitro against SARS-CoV-2, showing a decrease in viral load between 70% and 90%, as a function of the material's composition. Application of these nano-antimicrobials as coatings for commonly touched surfaces is envisaged.


Assuntos
Antivirais/farmacologia , COVID-19/prevenção & controle , Nanoestruturas/química , SARS-CoV-2/efeitos dos fármacos , Óxido de Zinco/farmacologia , Antivirais/química , COVID-19/induzido quimicamente , COVID-19/epidemiologia , Colorimetria , Humanos , Testes de Sensibilidade Microbiana/métodos , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Pandemias/prevenção & controle , Espectroscopia Fotoeletrônica , SARS-CoV-2/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier , Resultado do Tratamento , Carga Viral/efeitos dos fármacos , Difração de Raios X , Óxido de Zinco/química
5.
ACS Appl Mater Interfaces ; 14(9): 11883-11894, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35213132

RESUMO

Luminescent upconversion nanocrystals (UCNCs) have become one of the most promising nanomaterials for biosensing, imaging, and theranostics. However, their ultimate translation into robust luminescent probes for daily use in biological and medical laboratories requires comprehension and control of the many possible deactivation pathways that cause upconversion luminescence (UCL) quenching. Here, we demonstrate that thorough modeling of UCL rise and decay kinetics using a freely accessible software can identify the UCL quenching mechanisms in small (<40 nm) UCNCs with spatial and temporal resolution. Applied to the most relevant ß-NaYF4:Yb3+,Er3+ UCNCs, our model showed that only a few distinct nonradiative low-energy transitions were deactivated via specific solvent and ligand vibrations with a strong downstream effect on the population and depopulation dynamics of the emitting states. UCL quenching could penetrate ca. 4 nm inside the UCNC, which resulted in significant size-dependent changes of UCL intensities and spectra. Despite the large surface-to-volume ratios and UCL quenching via the UCNC surface, we found strong contributions of the outer layers to the overall UCL, which will be highly important for the design of UCNPs to investigate biomolecular interactions via distance-dependent energy transfer methods. Our advanced kinetic model is easily scalable to different UCNC architectures, environments, and energy transfer interactions such that relatively simple modeling of UCL kinetics can be used for efficiently optimizing UCNCs for their final application as practical luminescent probes.


Assuntos
Luminescência , Medições Luminescentes/métodos , Nanopartículas/química , Nanoestruturas/química , Cinética , Modelos Químicos , Nanopartículas/ultraestrutura , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Solventes
6.
Molecules ; 27(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35209022

RESUMO

Today, the use of natural biodegradable materials in the production processes is more and more adopted by industry to achieve cyclic economy targets and to improve environmental and human health indexes. Active packaging is the latest trend for food preservation. In this work, nanostructures were prepared by incorporation of thyme oil with natural natrium-montmorillonite and organo-montmorillonite with two different techniques, direct impregnation and the green evaporation-adsorption process. Such nanostructures were mixed with poly-L-lactic-acid for the first time via an extrusion molding process to develop a new packaging film. Comparisons of morphological, mechanical, and other basic properties for food packaging were carried out via XRD, FTIR, TG, SEM/EDS, oxygen and water vapor permeation, and antimicrobial and antioxidant activity for the first time. Results showed that poly-L-lactic-acid could be modified with clays and essential oils to produce improved active packaging films. The final product exhibits food odor prevention characteristics and shelf-life extension capabilities, and it could be used for active packaging. The films based on OrgMt clay seems to be more promising, while the thyme oil addition improves their behavior as active packaging. The PLLA/3%TO@OrgMt and PLLA/5%TO@OrgMt films were qualified between the tested samples as the most promising materials for this purpose.


Assuntos
Antioxidantes/química , Bentonita/química , Embalagem de Alimentos , Membranas Artificiais , Nanoestruturas/química , Óleos de Plantas/química , Poliésteres/química , Sódio/química , Timol/química , Thymus (Planta)/química , Anti-Infecciosos , Fenômenos Químicos , Fenômenos Mecânicos , Nanoestruturas/ultraestrutura , Análise Espectral
7.
Molecules ; 27(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35209120

RESUMO

(1) Background: Mangiferin (MGN) is a natural compound, showing anti-inflammatory and antioxidant activities for the potential treatment of eye diseases. The poor physicochemical features of MGN (low solubility and high instability) justify its nanoencapsulation into nanostructured lipid carriers (NLC) to improve its ocular bioavailability. (2) Methods: Firstly, MGN-NLC were prepared by the high shear homogenization coupled with the ultrasound (HSH-US) method. Finally, unloaded and MGN-loaded NLC were analyzed in terms of ocular tolerance. (3) Results: MGN-NLC showed good technological parameters suitable for ocular administration (particle size below 200 nm). The ORAC assay was performed to quantify the antioxidant activity of MGN, showing that the antioxidant activity of MGN-NLC (6494 ± 186 µM TE/g) was higher than that of the free compound (3521 ± 271 µM TE/g). This confirmed that the encapsulation of the drug was able to preserve and increase its activity. In ovo studies (HET-CAM) revealed that the formulation can be considered nonirritant. (4) Conclusions: Therefore, NLC systems are a promising approach for the ocular delivery of MGN.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , Nanotecnologia , Xantonas/administração & dosagem , Administração Oftálmica , Antioxidantes/administração & dosagem , Calorimetria , Olho/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Lipídeos/química , Estrutura Molecular , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Solubilidade , Análise Espectral
8.
Nat Struct Mol Biol ; 29(2): 108-120, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35173351

RESUMO

The Na+/H+ exchanger SLC9B2, also known as NHA2, correlates with the long-sought-after Na+/Li+ exchanger linked to the pathogenesis of diabetes mellitus and essential hypertension in humans. Despite the functional importance of NHA2, structural information and the molecular basis for its ion-exchange mechanism have been lacking. Here we report the cryo-EM structures of bison NHA2 in detergent and in nanodiscs, at 3.0 and 3.5 Å resolution, respectively. The bison NHA2 structure, together with solid-state membrane-based electrophysiology, establishes the molecular basis for electroneutral ion exchange. NHA2 consists of 14 transmembrane (TM) segments, rather than the 13 TMs previously observed in mammalian Na+/H+ exchangers (NHEs) and related bacterial antiporters. The additional N-terminal helix in NHA2 forms a unique homodimer interface with a large intracellular gap between the protomers, which closes in the presence of phosphoinositol lipids. We propose that the additional N-terminal helix has evolved as a lipid-mediated remodeling switch for the regulation of NHA2 activity.


Assuntos
Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Sequência de Aminoácidos , Animais , Antiporters/química , Antiporters/genética , Antiporters/metabolismo , Sítios de Ligação , Bison/genética , Bison/metabolismo , Microscopia Crioeletrônica , Humanos , Metabolismo dos Lipídeos , Espectrometria de Massas , Modelos Moleculares , Simulação de Dinâmica Molecular , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Multimerização Proteica , Proteolipídeos/química , Proteolipídeos/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Eletricidade Estática
9.
Comput Math Methods Med ; 2022: 6088398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35132331

RESUMO

BACKGROUND: Short-track speed skating (STSS) is an extreme sport in pursuit of extreme speed and explosive force. In such a sport, once athletes fall down, they are susceptible to serious cervical spine injury (CSI) under the inertia of high-velocity movement. Nanohydroxyapatite/polyamide 66 (NHP66) bioactive cage is a high-tech product of nanotechnology in the medical field in recent years. With a structure similar to that of human cortical bone, NHP66 bioactive cage has extremely high toughness and strength, which tailors to the needs of STSS. OBJECTIVE: This study mainly analyzed the therapeutic effect of NHP66 on patients with CSI in STSS, aiming to provide new opportunities for the treatment of this patient population. METHODS: A total of 51 patients with CSI treated in our hospital were enrolled, including 19 cases of short-track speed skaters (observation group) and 32 cases of car accidents, falls from heights, or collision injuries (control group). The relevant surgical indicators (operation time, intraoperative blood loss, etc.), the incidence of adverse reactions, the Cobb angle of cervical lordosis before and after surgery, and the fusion segment height of the cage were observed and compared between the two groups. Postoperative pain was evaluated by the visual analog scale (VAS), improvement of spinal cord injury was assessed by the American Spinal Cord Injury Association (ASIA) Impairment Scale, and bone fusion, bone subsidence, and other motor functions were assessed by the Japanese Orthopaedic Association (JOA) score rating system. RESULTS: The operation time, intraoperative blood loss, and incidence of adverse reactions in the observation group were significantly lower than those in the control group. The Cobb angle of cervical lordosis and the fusion segment height of cage increased significantly higher in both groups after surgery. In addition, the VAS scores of the observation group 2 h and 3 d after operation were significantly lower than those of the control group. In terms of improvement of spinal cord injury, ASIA and JOA scores in the observation group were significantly higher than those before treatment and in the control group. There was no significant difference in bone fusion activity between the two groups. CONCLUSIONS: In this study, it is found through experiments that NHP66 has higher safety and application value than autogenous iliac bone, confirming that NHP66 can achieve significant results as a cage for anterior cervical decompression and iliac bone graft fusion and internal fixation in short-track speed skaters after CSI.


Assuntos
Traumatismos em Atletas/cirurgia , Substitutos Ósseos , Vértebras Cervicais/lesões , Vértebras Cervicais/cirurgia , Patinação , Fraturas da Coluna Vertebral/cirurgia , Adulto , Substitutos Ósseos/administração & dosagem , Substitutos Ósseos/química , Biologia Computacional , Descompressão Cirúrgica/efeitos adversos , Descompressão Cirúrgica/métodos , Durapatita/administração & dosagem , Durapatita/química , Feminino , Fixação Interna de Fraturas/efeitos adversos , Fixação Interna de Fraturas/métodos , Humanos , Masculino , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia , Nylons/química , Adulto Jovem
10.
Biochim Biophys Acta Biomembr ; 1864(1): 183749, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506795

RESUMO

Gangliosides induced a smelting process in nanostructured amyloid fibril-like films throughout the surface properties contributed by glycosphingolipids when mixed with 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/Aß(1-40) amyloid peptide. We observed a dynamical smelting process when pre-formed amyloid/phospholipid mixture is laterally mixed with gangliosides. This particular environment, gangliosides/phospholipid/Aß(1-40) peptide mixed interfaces, showed complex miscibility behavior depending on gangliosides content. At 0% of ganglioside covered surface respect to POPC, Aß(1-40) peptide forms fibril-like structure. In between 5 and 15% of gangliosides, the fibrils dissolve into irregular domains and they disappear when the proportion of gangliosides reach the 20%. The amyloid interfacial dissolving effect of gangliosides is taken place at lateral pressure equivalent to the organization of biological membranes. Domains formed at the interface are clearly evidenced by Brewster Angle Microscopy and Atomic Force Microscopy when the films are transferred onto a mica support. The domains are thioflavin T (ThT) positive when observed by fluorescence microscopy. We postulated that the smelting process of amyloids fibrils-like structure at the membrane surface provoked by gangliosides is a direct result of a new interfacial environment imposed by the complex glycosphingolipids. We add experimental evidence, for the first time, how a change in the lipid environment (increase in ganglioside proportion) induces a rapid loss of the asymmetric structure of amyloid fibrils by a simple modification of the membrane condition (a more physiological situation).


Assuntos
Peptídeos beta-Amiloides/química , Gangliosídeos/química , Glicoesfingolipídeos/química , Lipídeos de Membrana/química , Nanoestruturas/química , Fragmentos de Peptídeos/química , Amiloide/química , Peptídeos beta-Amiloides/ultraestrutura , Microscopia de Força Atômica , Nanoestruturas/ultraestrutura , Fragmentos de Peptídeos/ultraestrutura , Fosfatidilcolinas/química , Propriedades de Superfície
11.
Nucleic Acids Res ; 50(D1): D246-D252, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34747480

RESUMO

We introduce a new online database of nucleic acid nanostructures for the field of DNA and RNA nanotechnology. The database implements an upload interface, searching and database browsing. Each deposited nanostructures includes an image of the nanostructure, design file, an optional 3D view, and additional metadata such as experimental data, protocol or literature reference. The database accepts nanostructures in any preferred format used by the uploader for the nanostructure design. We further provide a set of conversion tools that encourage design file conversion into common formats (oxDNA and PDB) that can be used for setting up simulations, interactive editing or 3D visualization. The aim of the repository is to provide to the DNA/RNA nanotechnology community a resource for sharing their designs for further reuse in other systems and also to function as an archive of the designs that have been achieved in the field so far. Nanobase.org is available at https://nanobase.org/.


Assuntos
DNA/ultraestrutura , Bases de Dados de Ácidos Nucleicos , Nanoestruturas/ultraestrutura , RNA/ultraestrutura , Interface Usuário-Computador , Gráficos por Computador , DNA/genética , DNA/metabolismo , Humanos , Armazenamento e Recuperação da Informação , Internet , Nanotecnologia , Conformação de Ácido Nucleico , RNA/genética , RNA/metabolismo
12.
Nat Commun ; 12(1): 7077, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873183

RESUMO

Sensing of clinically relevant biomolecules such as neurotransmitters at low concentrations can enable an early detection and treatment of a range of diseases. Several nanostructures are being explored by researchers to detect biomolecules at sensitivities beyond the picomolar range. It is recognized, however, that nanostructuring of surfaces alone is not sufficient to enhance sensor sensitivities down to the femtomolar level. In this paper, we break this barrier/limit by introducing a sensing platform that uses a multi-length-scale electrode architecture consisting of 3D printed silver micropillars decorated with graphene nanoflakes and use it to demonstrate the detection of dopamine at a limit-of-detection of 500 attomoles. The graphene provides a high surface area at nanoscale, while micropillar array accelerates the interaction of diffusing analyte molecules with the electrode at low concentrations. The hierarchical electrode architecture introduced in this work opens the possibility of detecting biomolecules at ultralow concentrations.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite/química , Impressão Tridimensional , Algoritmos , Técnicas Biossensoriais/instrumentação , Dopamina/análise , Dopamina/metabolismo , Técnicas Eletroquímicas/instrumentação , Dispositivos Lab-On-A-Chip , Microscopia Eletrônica de Varredura , Modelos Teóricos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Oxirredução , Reprodutibilidade dos Testes , Prata/química
13.
J Nanobiotechnology ; 19(1): 458, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963490

RESUMO

Bio-inspired Topographically Mediated Surfaces (TMSs) based on high aspect ratio nanostructures have recently been attracting significant attention due to their pronounced antimicrobial properties by mechanically disrupting cellular processes. However, scalability of such surfaces is often greatly limited, as most of them rely on micro/nanoscale fabrication techniques. In this report, a cost-effective, scalable, and versatile approach of utilizing diamond nanotechnology for producing TMSs, and using them for limiting the spread of emerging infectious diseases, is introduced. Specifically, diamond-based nanostructured coatings are synthesized in a single-step fabrication process with a densely packed, needle- or spike-like morphology. The antimicrobial proprieties of the diamond nanospike surface are qualitatively and quantitatively analyzed and compared to other surfaces including copper, silicon, and even other diamond surfaces without the nanostructuring. This surface is found to have superior biocidal activity, which is confirmed via scanning electron microscopy images showing definite and widespread destruction of E. coli cells on the diamond nanospike surface. Consistent antimicrobial behavior is also observed on a sample prepared seven years prior to testing date.


Assuntos
Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Diamante/química , Nanoestruturas/química , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Cobre/química , Cobre/farmacologia , Diamante/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Nanoestruturas/ultraestrutura , Nanotecnologia , Propriedades de Superfície
14.
Mikrochim Acta ; 188(12): 417, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762162

RESUMO

A three-step strategy is introduced to develop inherent iminodiacetic (IDA)-functionalized nanopolymer. SEM micrographs show homogenous spherical beads with a particle size of 500 nm. Further modification to COOH-functionalized 1,2-epoxy-5-hexene/DVB mesoporous nanopolymer enriches glycopeptides via hydrophilic interactions followed by their MS determination. Significantly high BET surface area 433.4336 m2 g-1 contributes to the improved surface hydrophilicity which is also shown by high concentration of ionizable carboxylic acids, 14.59 ± 0.25 mmol g-1. Measured surface area is the highest among DVB-based polymers and in general much higher in comparison to the previously reported BET surface areas of co-polymers, terpolymers, MOFs, and graphene-based composites. Thirty-one, 19, and 16 N-glycopeptides are enriched/identified by nanopolymer beads from tryptic digests of immunoglobulin G, horseradish peroxidase, and chicken avidin, respectively, without additional desalting steps. Material exhibits high selectivity (1:400 IgG:BSA), sensitivity (down to 0.1 fmol), regeneration ability up to three cycles, and batch-to-batch reproducibility (RSD > 1%). Furthermore, from 1 µL of digested human serum, 343 N-glycopeptide characteristics of 134 glycoproteins including 30 FDA-approved serum biomarkers are identified via nano-LC-MS/MS. The developed strategy to self-generate IDA on polymeric surface with improved surface area, porosity, and ordered morphology is insignia of its potential as chromatographic tool contributing to future developments in large-scale biomedical glycoproteomics studies.


Assuntos
Glicopeptídeos/química , Iminoácidos/química , Nanoestruturas/química , Polímeros/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Porosidade , Propriedades de Superfície
15.
Int J Biol Macromol ; 192: 407-416, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597700

RESUMO

Bone defect repair and tissue engineering is specifically challenging process because of the distinctive morphological and structural behaviours of natural bone with complex healing and biochemical mechanisms. In the present investigation, we designed dopamine adhesive chemistry-based fabrication of silk fibroin hydrogel (SFD) with incorporation of nano-hydroxyapatite (nHA)-graphene oxide (GO) hybrid nanofillers with well-arranged porous morphology immobilized with bone morphogenic protein-2 (BMP-2) for the effective in vitro rabbit bone marrow derived mesenchymal stem cells loading compatibility and in vivo new bone regrowth and collagen deposition ability. We have achieved bone-specific hydrogel scaffolds with upgraded structural features, mechanical properties and particularly promoted in vitro osteogenic differentiation and compatibility of rabbit bone marrow mesenchymal stem cells (rBMSCs). Structural and microscopic analyses established greater distributions of components and well-ordered and aligned porous structure of the hydrogel network. In vivo result of new bone regrowth was promisingly higher in the Bm@nHG-SFD hydrogel (85%) group as compared to the other treatment groups of nHG-SFD (77%) and nH-SFD (64%) hydrogel. Overall, we summarized that morphologically improved hydrogel material with immobilization of BMP-2 could be have more attentions for new generation bone regeneration therapies.


Assuntos
Adesivos/química , Proteína Morfogenética Óssea 2/química , Diferenciação Celular , Fibroínas/química , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Nanoestruturas/química , Adesivos/síntese química , Animais , Regeneração Óssea , Fenômenos Químicos , Masculino , Fenômenos Mecânicos , Camundongos , Nanoestruturas/ultraestrutura , Osteogênese , Engenharia Tecidual , Alicerces Teciduais
16.
Biochem Biophys Res Commun ; 581: 53-59, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34655976

RESUMO

Selective laser melting (SLM) titanium (Ti) implants have shown good prospects for personalized clinical application, but further research is necessary to develop stabilized long-term properties. Since surface modification has been proven bioactive for osseointegration, conventional Ti surface treatment technologies, including sandblasting/acid-etching (SLA) and sandblasting/alkali-heating (SAH), were applied to construct micro and micro/nano surfaces. The SAH group with netlike nano-structure topography exhibited appropriate surface roughness and high hydrophilicity, and as expected, the osseointegration capacities in vivo of the three groups were in order of SAH > SLA > SLM. Besides, both in vivo and in vitro studies revealed that the SLA- and SAH-treated SLM Ti implants significantly inhibited osteoclast activity of peri-implants. Considering the close associations between osteoclasts and macrophages, the effects of Ti surface topography on macrophage polarization were detected. The results showed that the SLA- and SAH-treated SLM Ti implants, especially the latter, had the capacity to promote macrophage polarization to the M2 phenotype. Moreover, the cell culture supernatants of M2 macrophages and RAW264.7 cells seeded on SLA- and SAH-treated SLM Ti surfaces had an adverse effect on osteoclastogenesis. Collectively, this study demonstrated that micro/nano topographies of SLM Ti implants were effective for osseointegration promotion, and their inhibition of osteoclastogenesis might be attributed to macrophage polarization. Our findings shed some light on clinical application of SLM Ti implants and also prove a specific association between macrophage polarization and osteoclastogenesis.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Implantes Dentários , Nanoestruturas/ultraestrutura , Osseointegração/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Titânio/farmacologia , Animais , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Biomarcadores/metabolismo , Catepsina K/genética , Catepsina K/metabolismo , Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Interleucina-10/genética , Interleucina-10/metabolismo , Lasers , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Receptor de Manose/genética , Receptor de Manose/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Nanoestruturas/química , Osseointegração/fisiologia , Células RAW 264.7 , Ratos Sprague-Dawley , Propriedades de Superfície , Fosfatase Ácida Resistente a Tartarato/genética , Fosfatase Ácida Resistente a Tartarato/metabolismo , Titânio/química , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
17.
Nucleic Acids Res ; 49(19): 10835-10850, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34614184

RESUMO

Liposomes are widely used as synthetic analogues of cell membranes and for drug delivery. Lipid-binding DNA nanostructures can modify the shape, porosity and reactivity of liposomes, mediated by cholesterol modifications. DNA nanostructures can also be designed to switch conformations by DNA strand displacement. However, the optimal conditions to facilitate stable, high-yield DNA-lipid binding while allowing controlled switching by strand displacement are not known. Here, we characterized the effect of cholesterol arrangement, DNA structure, buffer and lipid composition on DNA-lipid binding and strand displacement. We observed that binding was inhibited below pH 4, and above 200 mM NaCl or 40 mM MgCl2, was independent of lipid type, and increased with membrane cholesterol content. For simple motifs, binding yield was slightly higher for double-stranded DNA than single-stranded DNA. For larger DNA origami tiles, four to eight cholesterol modifications were optimal, while edge positions and longer spacers increased yield of lipid binding. Strand displacement achieved controlled removal of DNA tiles from membranes, but was inhibited by overhang domains, which are used to prevent cholesterol aggregation. These findings provide design guidelines for integrating strand displacement switching with lipid-binding DNA nanostructures. This paves the way for achieving dynamic control of membrane morphology, enabling broader applications in nanomedicine and biophysics.


Assuntos
DNA de Cadeia Simples/metabolismo , DNA/metabolismo , Lipossomos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Colesterol/química , Colesterol/metabolismo , DNA/química , DNA de Cadeia Simples/química , Concentração de Íons de Hidrogênio , Cinética , Lipossomos/química , Cloreto de Magnésio/química , Cloreto de Magnésio/metabolismo , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Conformação de Ácido Nucleico , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Cloreto de Sódio/química , Cloreto de Sódio/metabolismo , Soluções , Termodinâmica
18.
Nanotechnology ; 33(6)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34649227

RESUMO

Peptide-based supramolecular self-assembly from peptide monomers into well-organized nanostructures, has attracted extensive attentions towards biomedical and biotechnological applications in recent decades. This spontaneous and reversible assembly process involving non-covalent bonding interactions can be artificially regulated. In this review, we have elaborated different strategies to modulate the peptide self-assembly through tuning the physicochemical and environmental conditions, includingpH, light, temperature, solvent, and enzyme. Detailed introduction of biological applications and future potential of the peptide-based nano-assemblies will also be given.


Assuntos
Biotecnologia , Nanoestruturas , Nanotecnologia , Peptídeos/química , Animais , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Nanoestruturas/química , Nanoestruturas/ultraestrutura
19.
Int J Biol Macromol ; 193(Pt A): 27-37, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34687763

RESUMO

Exploration of the application prospects of cattail fibers (CFs) in natural composites, and other fields is important for the sustainable development of new, green, light-weight, functional biomass materials. In this study, the physical and chemical properties, micro/nano structure, and mechanical characteristics of CFs were investigated. The CFs have a low density (618.0 kg m-3). The results of transmission electron microscopy and tensile testing data indicated that the cattail trunk fiber (CTF) bundle is composed of parenchyma cells and solid stone cells, demonstrating high specific modulus (10.1 MPa∙m3·kg-1) and high elongation at break (3.9%). In turn, the cattail branch fiber (CBF) bundle is composed of parenchyma cells with specific "half-honeycomb" shape. The inner diaphragms divide these cells into the open cavities. This structural feature endows the CTF bundles with stable structure, good oil absorption and storage capacities. The chemical component and the Fourier transform infrared spectroscopy analyses show that the CFs have higher lignin content (20.6%) and wax content (11.5%), which are conducive to the improvement of corrosion resistance, thermal stability and lipophilic-hydrophobic property of CF. Finally, the thermogravimetric analysis indicates that its final degradation temperature is 404.5 °C, which is beneficial to the increase in processability of CFs-reinforced composites.


Assuntos
Celulose , Nanoestruturas , Typhaceae , Celulose/química , Celulose/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Temperatura , Resistência à Tração , Typhaceae/química , Typhaceae/ultraestrutura
20.
Nat Commun ; 12(1): 5922, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635666

RESUMO

Death from acute hemorrhage is a major problem in military conflicts, traffic accidents, and surgical procedures, et al. Achieving rapid effective hemostasis for pre-hospital care is essential to save lives in massive bleeding. An ideal hemostasis material should have those features such as safe, efficient, convenient, economical, which remains challenging and most of them cannot be achieved at the same time. In this work, we report a rapid effective nanoclay-based hemostatic membranes with nanoclay particles incorporate into polyvinylpyrrolidone (PVP) electrospun fibers. The nanoclay electrospun membrane (NEM) with 60 wt% kaolinite (KEM1.5) shows better and faster hemostatic performance in vitro and in vivo with good biocompatibility compared with most other NEMs and clay-based hemostats, benefiting from its enriched hemostatic functional sites, robust fluffy framework, and hydrophilic surface. The robust hemostatic bandages based on nanoclay electrospun membrane is an effective candidate hemostat in practical application.


Assuntos
Bandagens , Hemorragia/tratamento farmacológico , Hemostáticos/farmacologia , Caulim/farmacologia , Nanoestruturas/química , Ferida Cirúrgica/tratamento farmacológico , Animais , Argila/química , Modelos Animais de Doenças , Hemorragia/sangue , Hemorragia/patologia , Hemostasia/efeitos dos fármacos , Hemostáticos/química , Humanos , Caulim/química , Fígado/irrigação sanguínea , Fígado/efeitos dos fármacos , Fígado/lesões , Masculino , Nanoestruturas/administração & dosagem , Nanoestruturas/ultraestrutura , Povidona/química , Povidona/farmacologia , Ratos , Ratos Sprague-Dawley , Baço/irrigação sanguínea , Baço/efeitos dos fármacos , Baço/lesões , Ferida Cirúrgica/sangue , Ferida Cirúrgica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA