Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
World J Microbiol Biotechnol ; 39(11): 289, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37640981

RESUMO

Coal fly ash (CFA) is an industrial byproduct produced during the production of electricity in thermal power plants from the burning of pulverized coal. It is considered hazardous due to the presence of toxic heavy metals while it is also considered valuable due to the presence of value-added minerals like silicates, alumina, and iron oxides. Silica nanoparticles' demands and application have increased drastically in the last decade due to their mesoporous nature, high surface area to volume ratio, etc. Here in the present research work, short rod-shaped, mesoporous silica nanoparticles (MSN) have been synthesized from coal fly ash by using Bacillus circulans MTCC 6811 in two steps. Firstly, CFA was kept with the bacterial culture for bioleaching for 25 days in an incubator shaker at 120 rpm. Secondly, the dissolved silica in the medium was precipitated with the 4 M sodium hydroxide to obtain a short rod-shaped MSN. The purification of the synthesized silica particle was done by treating them with 1 M HCl at 120 °C, for 90 min. The synthesized short rod-shaped MSN were characterized by UV-vis spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Particle size analyzer (PSA), Field emission scanning electron microscopy (FESEM), and transmission electron microscope. The microscopic techniques revealed the short rod-shaped mesoporous silica nanoparticles (MSN) for the final nano-silica, whose size varies from 40 to 80 nm, with an average size of 36 ± 5 nm. The XRD shows the crystalline nature of the synthesized MSN having a crystallite size of 36 nm. The FTIR showed the three characteristic bands in the range of 400-1100 cm-1, indicating the purity of the sample. The energy dispersive X-ray (EDX) showed 53.04 wt% oxygen and 43.42% Si along with 3.54% carbon in the final MSN. The particle size analyzer revealed that the average particle size is 368.7 nm in radius and the polydispersity index (PDI) is 0.667. Such a novel and economical approach could be helpful in the synthesis of silica in high yield with high purity from coal fly ash and other similar waste.


Assuntos
Bacillus , Microbiologia Industrial , Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Dióxido de Silício/economia , Dióxido de Silício/metabolismo , Nanopartículas/química , Nanopartículas/economia , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Cinza de Carvão/metabolismo , Bacillus/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia Eletrônica de Transmissão
2.
Sci Rep ; 10(1): 4456, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157137

RESUMO

Edible nanoparticles (ENPs) are nano-sized vesicles derived from edible plants. These ENPs are loaded with plant derived microRNAs, protein, lipids and phytochemicals. Recently, ginger derived ENPs was shown to prevent inflammatory bowel diseases and colon cancer, in vivo, highlighting their therapeutic potential. Conventionally, differential centrifugation with an ultra-centrifugation step is employed to purify these ENPs which imposes limitation on the cost-effectiveness of their purification. Herein, we developed polyethylene glycol-6000 (PEG6000) based ginger ENP purification (PEG-ENPs) method, which eliminates the need for expensive ultracentrifugation. Using different PEG6000 concentrations, we could recover between 60% to 90% of ENPs compared to ultracentrifugation method. PEG-ENPs exhibit near identical size and zeta potential similar to ultra-ENPs. The biochemical composition of PEG-ENPs, such as proteins, lipids, small RNAs and bioactive content is comparable to that of ultra-ENPs. In addition, similar to ultra-ENPs, PEG-ENPs are efficiently taken up by the murine macrophages and protects cells from hydrogen peroxide induced oxidative stress. Since PEG has been approved as food additive, the PEG method described here will provide a cost-effective alternative to purify ENPs, which can be directly used as a dietary supplement in therapeutic formulations.


Assuntos
Macrófagos/citologia , Nanopartículas/administração & dosagem , Nanopartículas/economia , Polietilenoglicóis/química , Rizoma/química , Zingiber officinale/química , Animais , Proliferação de Células , Células Cultivadas , Análise Custo-Benefício , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Nanopartículas/química
3.
Biol Trace Elem Res ; 196(1): 297-317, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31529241

RESUMO

The purposes of this work are to evaluate the antimicrobial, antibiofilm, anticancer, and antioxidant abilities of anisotropic zinc oxide nanoparticles (ZnO NPs) synthesized by a cost-effective and eco-friendly sol-gel method. The synthesized ZnO NPs were entirely characterized by UV-Vis, XRD, FTIR, HRTEM, zeta potential, SEM mapping, BET surface analyzer, and EDX elemental analysis. Antimicrobial and antibiofilm activities of ZnO NPs were investigated against multidrug-resistant (MDR) bacteria and yeast causing serious diseases like urinary tract infection (UTI). The anticancer activity was performed against Ehrlich ascites carcinoma (EAC). Additionally, antioxidant scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) was observed. The synthesized ZnO NPs exhibited an absorption peak at 385.0 nm characteristic to the surface plasmon resonance (SPR). Data obtained from HRTEM, SEM, and XRD confirmed the anisotropic crystalline nature of the prepared ZnO NPs with an average particle size of 68.2 nm. The calculated surface area of the prepared ZnO NPs was 10.62 m2/g and the porosity was 13.16%, while pore volume was calculated to be 0.013 cm3/g and the average pore size was about 3.10 nm. The prepared ZnO NPs showed promising antimicrobial activity against all tested UTI-causing pathogens. It showed a prominent antimicrobial capability against Candida tropicalis with a zone of inhibition (ZOI) reaching 22.4 mm, 13 mm ZOI for Bacillus subtilis, and 12.5 mm ZOI for Pseudomonas aeruginosa. Additionally, the prepared ZnO NPs showed enhanced biofilm repression of about 79.33%, 72.94%, and 33.68% against B. subtilis, C. tropicalis, and P. aeruginosa, respectively. Moreover, the prepared ZnO NPs had a powerful antioxidant property with 33.0% scavenging ability after applied DPPH assay. Surprisingly, upon ZnO NPs treatment, cancer cell viability reduced from 100 to 58.5% after only 24 h due to their unique antitumor activity. Therefore, according to these outstanding properties, this study could give insights for solving serious industrial, pharmaceutical, and medical challenges, particularly in the EAC and UTI medications.


Assuntos
Antioxidantes/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Nanopartículas/química , Infecções Urinárias/tratamento farmacológico , Óxido de Zinco/farmacologia , Animais , Anisotropia , Antioxidantes/química , Antioxidantes/economia , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/economia , Carcinoma de Ehrlich/economia , Carcinoma de Ehrlich/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Análise Custo-Benefício , Humanos , Nanopartículas/economia , Tamanho da Partícula , Picratos/antagonistas & inibidores , Picratos/economia , Propriedades de Superfície , Infecções Urinárias/economia , Óxido de Zinco/química , Óxido de Zinco/economia
4.
Biosens Bioelectron ; 142: 111594, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31430612

RESUMO

We report a novel anode electrocatalyst, iron carbide nanoparticles dispersed in porous graphitized carbon (Nano-Fe3C@PGC), which is synthesized by facile approach involving a direct pyrolysis of ferrous gluconate and a following removal of free iron, but provides microbial fuel cells with superior performances. The physical characterizations confirm the unique configuration of iron carbide nanoparticles with porous graphitized carbon. Electrochemical measurements demonstrate that the as-synthesized Nano-Fe3C@PGC exhibits an outstanding electrocatalytic activity toward the charge transfer between bacteria and anode. Equipped with Nano-Fe3C@PGC, the microbial fuel cells based on a mixed bacterium culture yields a power density of 1856 mW m-2. The resulting excellent performance is attributed to the large electrochemical active area and the high electronic conductivity that porous graphitized carbon provides and the enriched electrochemically active microorganisms and enhanced activity towards the redox reactions in microorganisms by Fe3C nanoparticles.


Assuntos
Fontes de Energia Bioelétrica , Compostos Inorgânicos de Carbono/química , Grafite/química , Compostos de Ferro/química , Nanoestruturas/química , Fontes de Energia Bioelétrica/economia , Fontes de Energia Bioelétrica/microbiologia , Compostos Inorgânicos de Carbono/economia , Catálise , Condutividade Elétrica , Eletrodos , Desenho de Equipamento , Grafite/economia , Compostos de Ferro/economia , Nanopartículas/química , Nanopartículas/economia , Nanopartículas/ultraestrutura , Nanoestruturas/economia , Nanoestruturas/ultraestrutura , Porosidade
5.
ACS Appl Mater Interfaces ; 11(27): 23909-23918, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31252451

RESUMO

Multifunctional nanoparticles that carry chemotherapeutic agents can be innovative anticancer therapeutic options owing to their tumor-targeting ability and high drug-loading capacity. However, the nonspecific release of toxic DNA-intercalating anticancer drugs from the nanoparticles has significant side effects on healthy cells surrounding the tumors. Herein, we report a tumor homing reactive oxygen species nanoparticle (THoR-NP) platform that is highly effective and selective for ablating malignant tumors. Sodium nitroprusside (SNP) and diethyldithiocarbamate (DDC) were selected as an exogenous reactive oxygen species (ROS) generator and a superoxide dismutase 1 inhibitor, respectively. DDC-loaded THoR-NP, in combination with SNP treatment, eliminated multiple cancer cell lines effectively by the generation of peroxynitrite in the cells (>95% cell death), as compared to control drug treatments of the same concentration of DDC or SNP alone (0% cell death). Moreover, the magnetic core (ZnFe2O4) of the THoR-NP can specifically ablate tumor cells (breast cancer cells) via magnetic hyperthermia, in conjunction with DDC, even in the absence of any exogenous RS supplements. Finally, by incorporating iRGD peptide moieties in the THoR-NP, integrin-enriched cancer cells (malignant tumors, MDA-MB-231) were effectively and selectively killed, as opposed to nonmetastatic tumors (MCF-7), as confirmed in a mouse xenograft model. Hence, our strategy of using nanoparticles embedded with ROS-scavenger-inhibitor with an exogenous ROS supplement is highly selective and effective cancer therapy.


Assuntos
Ditiocarb , Nanopartículas , Neoplasias Experimentais , Nitroprussiato , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1 , Animais , Ditiocarb/química , Ditiocarb/farmacologia , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/economia , Nanopartículas/uso terapêutico , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Nitroprussiato/química , Nitroprussiato/farmacologia , Superóxido Dismutase-1/química , Superóxido Dismutase-1/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mater Sci Eng C Mater Biol Appl ; 92: 489-495, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184774

RESUMO

A novel sensitive electrochemical sensor for microRNAlet-7a detection in normal serum samples, hepatocellular carcinoma patients and human liver cancer cells, has been excellently synthesized. The sensor constructed of carbon paste (CP) amended with silver nanoparticles (AgNPs) and extracted propolis (bee glue). The AgNPs/P modified carbon paste electrode (APCPE) displayed a high electrocatalytic activity in a Britton Robinson (BR) buffer (pH = 7.4). The techniques utilized to prepare this work are square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS). Surface characteristics were achieved using scanning (SEM), Fourier-transform infrared spectroscopy (FTIR), Spectrophotometer, transmission (TEM) electron microscope, energy dispersive X-ray analysis (EDX) and elemental mapping (EM) techniques. Under optimal conditions, the suggested sensor exhibits good rapid and sensible response reaching a very low detection limit of 10-3 femtomolar.


Assuntos
Técnicas Biossensoriais/métodos , MicroRNAs/análise , Nanopartículas/economia , Própole/química , Prata/química , Humanos , MicroRNAs/química
7.
Pharmacoeconomics ; 36(10): 1153-1163, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29600384

RESUMO

As part of the single technology appraisal (STA) process, the National Institute for Health and Care Excellence (NICE) invited Celgene Ltd to submit clinical and cost-effectiveness evidence for paclitaxel as albumin-bound nanoparticles (Nab-Pac) in combination with gemcitabine (Nab-Pac + Gem) for patients with untreated metastatic pancreatic cancer. The STA was a review of NICE's 2015 guidance (TA360) in which Nab-Pac + Gem was not recommended for patients with untreated metastatic pancreatic cancer. The review was prompted by a proposed Patient Access Scheme (PAS) discount on the price of Nab-Pac and new evidence that might lead to a change in the guidance. The Liverpool Reviews and Implementation Group at the University of Liverpool was the Evidence Review Group (ERG). This article summarises the ERG's review of the company's evidence submission for Nab-Pac + Gem, and the Appraisal Committee (AC) decision. The final scope issued by NICE listed three comparators: gemcitabine monotherapy (Gem), gemcitabine in combination with capecitabine (Gem + Cap), and a combination of oxaliplatin, irinotecan, leucovorin and fluorouracil (FOLFIRINOX). Clinical evidence for the comparison of Nab-Pac + Gem versus Gem was from the phase III CA046 randomized controlled trial. Analysis of progression-free survival (PFS) and overall survival (OS) showed statistically significant improvement for patients treated with Nab-Pac + Gem versus Gem. Clinical evidence for the comparison of Nab-Pac + Gem versus FOLFIRINOX and versus Gem + Cap was derived from a network meta-analysis (NMA). Results of the NMA did not indicate a statistically significant difference in OS or PFS for the comparison of Nab-Pac + Gem versus either Gem + Cap or FOLFIRINOX. The ERG's main concerns with the clinical effectiveness evidence were difficulties in identifying the patient population for whom treatment with Nab-Pac + Gem is most appropriate, and violation of the proportional hazards (PH) assumption in the CA046 trial. The ERG highlighted methodological issues in the cost-effectiveness analysis pertaining to the modelling of survival outcomes, estimation of drug costs and double counting of adverse-event disutilities. The AC accepted all the ERG's amendments to the company's cost-effectiveness model; however, these did not make important differences to the incremental cost-effectiveness ratios (ICERs). The company's base-case ICER was £46,932 per quality-adjusted life-year (QALY) gained for the comparison of Nab-Pac + Gem versus Gem. Treatment with Nab-Pac + Gem was dominated both by treatment with Gem + Cap and with FOLFIRINOX in the company's base case. The AC concluded that the most plausible ICER for treatment with Nab-Pac + Gem versus Gem was in the range of £41,000-£46,000 per QALY gained. The AC concluded that Nab-Pac + Gem was not cost effective compared with Gem + Cap or FOLFIRINOX, and accepted that treatment with Nab-Pac + Gem met the end-of-life criteria versus Gem but did not consider Nab-Pac + Gem to meet the end-of-life criteria compared with Gem + Cap or FOLFIRINOX. The AC also concluded that although patients who would receive Nab-Pac + Gem rather than FOLFIRINOX or Gem + Cap were difficult to distinguish, they were identifiable in clinical practice. The AC recommended treatment with Nab-Pac + Gem for patients with untreated metastatic pancreatic cancer for whom other combination chemotherapies were unsuitable and who would otherwise receive Gem.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/economia , Análise Custo-Benefício/estatística & dados numéricos , Desoxicitidina/análogos & derivados , Paclitaxel/economia , Neoplasias Pancreáticas/economia , Avaliação da Tecnologia Biomédica/estatística & dados numéricos , Antimetabólitos Antineoplásicos/economia , Antimetabólitos Antineoplásicos/uso terapêutico , Antineoplásicos Fitogênicos/economia , Antineoplásicos Fitogênicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Capecitabina/economia , Capecitabina/uso terapêutico , Desoxicitidina/economia , Desoxicitidina/uso terapêutico , Intervalo Livre de Doença , Fluoruracila/economia , Fluoruracila/uso terapêutico , Humanos , Irinotecano/economia , Irinotecano/uso terapêutico , Leucovorina/economia , Leucovorina/uso terapêutico , Modelos Econômicos , Nanopartículas/economia , Nanopartículas/uso terapêutico , Oxaliplatina/economia , Oxaliplatina/uso terapêutico , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/secundário , Gencitabina
8.
J Agric Food Chem ; 66(26): 6462-6473, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28535672

RESUMO

Mineral fertilizers are key to food production, despite plant low nutrient uptake efficiencies and high losses. However, nanotechnology can both enhance crop productivity and reduce nutrient losses. This has raised interest in nanoscale and nanoenabled bulk fertilizers, hence the concept of nanofertilizers. Nevertheless, large-scale industrial production of nanofertilizers is yet to be realized. Here, we highlight the science-based evidence and outstanding concerns for motivating fertilizer industry production of nanofertilizers, including the notion of toxicity associated with nanoscale materials; scant nanofertilizer research with key crop nutrients; inadequacy of soil- or field-based studies with nanofertilizers; type of nanomaterials to produce as fertilizers; how to efficiently and effectively apply nanofertilizers at the field scale; and the economics of nanofertilizers. It is anticipated that the development and validation of nanofertilizers that are nondisruptive to existing bulk fertilizer production systems will motivate the industry's involvement in nanofertilizers.


Assuntos
Fertilizantes/análise , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes/economia , Indústrias , Minerais/análise , Minerais/economia , Nanopartículas/análise , Nanopartículas/economia
9.
Mol Pharm ; 14(10): 3480-3488, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28929769

RESUMO

Clofazimine, a lipophilic (log P = 7.66) riminophenazine antibiotic approved by the US Food and Drug Administration (FDA) with a good safety record, was recently identified as a lead hit for cryptosporidiosis through a high-throughput phenotypic screen. Cryptosporidiosis requires fast-acting treatment as it leads to severe symptoms which, if untreated, result in morbidity for infants and small children. Consequently, a fast-releasing oral formulation of clofazimine in a water-dispersible form for pediatric administration is highly desirable. In this work, clofazimine nanoparticles were prepared with three surface stabilizers, hypromellose acetate succinate (HPMCAS), lecithin, and zein, using the flash nanoprecipitation (FNP) process. Drug encapsulation efficiencies of over 92% were achieved. Lyophilization and spray-drying were applied and optimized to produce redispersible nanoparticle powders. The release kinetics of these clofazimine nanoparticle powders in biorelevant media were measured and compared with those of crystalline clofazimine and the currently marketed formulation Lamprene. Remarkably improved dissolution rates and clofazimine supersaturation levels up to 90 times equilibrium solubility were observed with all clofazimine nanoparticles tested. Differential scanning calorimetry indicated a reduction of crystallinity of clofazimine in nanoparticles. These results strongly suggest that the new clofazimine nanoparticles prepared with affordable materials in this low-cost nanoparticle formulation process can be used as viable cryptosporidiosis therapeutics.


Assuntos
Antiparasitários/farmacologia , Clofazimina/farmacologia , Criptosporidiose/tratamento farmacológico , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Desenho de Fármacos , Antiparasitários/economia , Antiparasitários/uso terapêutico , Varredura Diferencial de Calorimetria , Química Farmacêutica , Clofazimina/economia , Clofazimina/uso terapêutico , Cristalização , Dessecação , Portadores de Fármacos/economia , Composição de Medicamentos/economia , Liberação Controlada de Fármacos , Excipientes/química , Liofilização , Nanopartículas/química , Nanopartículas/economia , Tamanho da Partícula , Solubilidade , Fatores de Tempo
11.
Drug Deliv Transl Res ; 6(4): 392-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26912190

RESUMO

Drug nanocrystals have rapidly evolved into a mature drug delivery strategy in the last decade, with almost 16 products currently on the market. Several "top-down" technologies are available in the market for generation of nanocrystals. Despite several advantages, very few bottom-up technologies have been explored for commercial purpose. This short communication highlights a novel, bottom-up, spray drying based technology-NanoCrySP-to generate drug nanocrystals. Nanocrystals are generated in the presence of non-polymeric excipients that act as crystallization inducer for the drug. Excipients encourage crystallization of drug by plasticization, primary heterogeneous nucleation, and imparting physical barrier to crystal growth. Nanocrystals have shown significant improvement in dissolution and thereby oral bioavailability. NanoCrySP technology is protected through patents in India, the USA, and the European Union. NanoCrySP can be utilized for (i) pharmaceutical development of new chemical entities, (ii) differentiated products of existing molecules, and (iii) generic drug products. The aggregation of drug nanocrystals generated using NanoCrySP poses significant challenges in the nanocrystal-based product development. Addition of stabilizers either during spray drying or during dissolution has shown beneficial effects.


Assuntos
Comércio , Portadores de Fármacos/química , Portadores de Fármacos/economia , Nanopartículas/economia , Tecnologia Farmacêutica/economia , Tecnologia Farmacêutica/métodos , Cristalização , Sistemas de Liberação de Medicamentos/economia , Sistemas de Liberação de Medicamentos/métodos , Excipientes/química , Humanos , Nanopartículas/química
12.
Environ Sci Pollut Res Int ; 23(12): 11533-48, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26906002

RESUMO

Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed.


Assuntos
Descontaminação/métodos , Recuperação e Remediação Ambiental/métodos , Nanopartículas/análise , Poluentes do Solo/análise , Descontaminação/economia , Recuperação e Remediação Ambiental/economia , Nanopartículas/economia
13.
Nanoscale ; 7(39): 16146-50, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26394746

RESUMO

Designing of theranostics and dual or multi-modality contrast agents are currently two of the hottest topics in biotechnology and biomaterials science. However, for single entity theranostics, a right ratio of their diagnostic component and their therapeutic component may not always be realized in a composite suitable for clinical application. For dual/multiple modality molecular imaging agents, after in vivo administration, there is an optimal time window for imaging, when an agent is imaged by one modality, the pharmacokinetics of this agent may not allow imaging by another modality. Due to reticuloendothelial system clearance, efficient in vivo delivery of nanoparticles to the lesion site is sometimes difficult. The toxicity of these entities also remains poorly understood. While the medical need of theranostics is admitted, the business model remains to be established. There is an urgent need for a global and internationally harmonized re-evaluation of the approval and marketing processes of theranostics. However, a reasonable expectation exists that, in the near future, the current obstacles will be removed, thus allowing the wide use of these very promising agents.


Assuntos
Meios de Contraste/economia , Marketing de Serviços de Saúde/economia , Modelos Econômicos , Imagem Molecular/economia , Nanopartículas/economia , Nanomedicina Teranóstica/economia , Meios de Contraste/uso terapêutico , Humanos , Marketing de Serviços de Saúde/métodos , Imagem Molecular/métodos , Nanomedicina Teranóstica/métodos
14.
J Agric Food Chem ; 63(16): 4179-89, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25844903

RESUMO

A simple and green method was developed for preparing the stable biopolymer nanoparticles with pH and salt resistance. The method involved the macromolecular crowding Maillard process and heat-induced gelation process. The conjugates of whey protein isolate (WPI) and dextran were produced by Maillard reaction. The nanoparticles were fabricated by heating electrostatic complexes of WPI-dextran conjugate and chondroitin sulfate (ChS) above the denaturation temperature and near the isoelectric point of WPI. Then, the nanoparticles were characterized by spectrophotometry, dynamic laser scattering, zeta potential, transmission electron microscopy, atomic force microscopy, and scanning electron microscopy. Results showed that the nanoparticles were stable in the pH range from 1.0 to 8.0 and in the presence of high salt concentration of 200 mM NaCl. WPI-dextran conjugate, WPI, and ChS were assembled into the nanoparticles with dextran conjugated to WPI/ChS shell and WPI/ChS core. The repulsive steric interactions, from both dextran covalently conjugated to WPI and ChS electrostatically interacted with WPI, were the major formation mechanism of the stable nanoparticles. As a nutrient model, lutein could be effectively encapsulated into the nanoparticles. Additionally, the nanoparticles exhibited a spherical shape and homogeneous size distribution regardless of lutein loading. The results suggested that the stable nanoparticles from proteins and strong polyelectrolyte polysaccharides would be used as a promising target delivery system for hydrophobic nutrients and drugs at physiological pH and salt conditions.


Assuntos
Sulfatos de Condroitina/química , Dextranos/química , Nanopartículas/economia , Proteínas do Soro do Leite/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Reação de Maillard , Eletricidade Estática
15.
J Control Release ; 206: 122-30, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25804872

RESUMO

Pancreatic ductal adenocarcinomas are characterized by the desmoplastic reaction, a dense fibrous stroma that has been shown to be supportive of tumor cell growth, invasion, and metastasis, and has been associated with resistance to chemotherapy and reduced patient survival. Here, we investigated targeted depletion of stroma for pancreatic cancer therapy via taxane nanoparticles. Cellax-DTX polymer is a conjugate of docetaxel (DTX), polyethylene glycol (PEG), and acetylated carboxymethylcellulose, a construct which condenses into well-defined 120nm particles in an aqueous solution, and is suitable for intravenous injection. We examined Cellax-DTX treatment effects in highly stromal primary patient-derived pancreatic cancer xenografts and in a metastatic PAN02 mouse model of pancreatic cancer, focusing on specific cellular interactions in the stroma, pancreatic tumor growth and metastasis. Greater than 90% of Cellax-DTX particles accumulate in smooth muscle actin (SMA) positive cancer-associated fibroblasts which results in long-term depletion of this stromal cell population, an effect not observed with Nab-paclitaxel (Nab-PTX). The reduction in stromal density leads to a >10-fold increase in tumor perfusion, reduced tumor weight and a reduction in metastasis. Consentingly, Cellax-DTX treatment increased survival when compared to treatment with gemcitabine or Nab-PTX in a metastatic PAN02 mouse model. Cellax-DTX nanoparticles interact with the tumor-associated stroma, selectively interacting with and depleting SMA positive cells and macrophage, effects of which are associated with significant changes in tumor progression and metastasis.


Assuntos
Antineoplásicos/administração & dosagem , Carboximetilcelulose Sódica/química , Fibroblastos/efeitos dos fármacos , Nanopartículas/economia , Pâncreas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Taxoides/administração & dosagem , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Docetaxel , Sistemas de Liberação de Medicamentos , Feminino , Fibroblastos/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/patologia , Metástase Neoplásica/prevenção & controle , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Polietilenoglicóis/química , Taxoides/química , Taxoides/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Curr Top Med Chem ; 15(4): 328-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25633209

RESUMO

The current review aims to outline the likely medical applications of nanotechnology and the potential of the emerging field of nanomedicine. Nanomedicine can be defined as the investigation area encompassing the design of diagnostics and therapeutics at the nanoscale, including nanobots, nanobiosensors, nanoparticles and other nanodevices, for the remediation, prevention and diagnosis of a variety of illnesses. The ultimate goal of nanomedicine is to improve patient quality-of-life. Because nanomedicine includes the rational design of an enormous number of nanotechnology-based products focused on miscellaneous diseases, a variety of nanomaterials can be employed. Therefore, this review will focus on recent advances in the manufacture of soft matterbased nanomedicines specifically designed to improve diagnostics and cancer chemotherapy efficacy. It will be particularly highlighted liposomes, polymer-drug conjugates, drug-loaded block copolymer micelles and biodegradable polymeric nanoparticles, emphasizing the current investigations and potential novel approaches towards overcoming the remaining challenges in the field as well as formulations that are in clinical trials and marketed products.


Assuntos
Nanomedicina/economia , Nanomedicina/métodos , Neoplasias/tratamento farmacológico , Neoplasias/economia , Preparações Farmacêuticas/economia , Antineoplásicos/administração & dosagem , Antineoplásicos/economia , Antineoplásicos/uso terapêutico , Humanos , Nanopartículas/química , Nanopartículas/economia , Neoplasias/diagnóstico , Preparações Farmacêuticas/química
17.
J Pharm Sci ; 104(1): 2-14, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25363074

RESUMO

PAMAM (polyamidoamine) dendrimers are commonly considered promising polymers that can be successfully used in various biomedical applications. Nevertheless, direct clinical adaptations of plain unmodified PAMAM dendrimers may be limited at present, mainly because of their toxicity, unpredictable behavior in living organisms, unknown bioavailability, biocompatibility or pharmacokinetic profile, problematic therapeutic dose selection, or high cost of production. On the basis of our studies concerning the possible use of unmodified PAMAM dendrimers as the scavengers of glucose and carbonyl stress in animal models of human pathology, as well as considering available literature on experimental data of other researchers, we have prepared the brief critical review of the biomedical activities of these unmodified compounds and their most alluring derivatives, especially in the context of possible future perspectives of PAMAMs. Thus, on the pages of this review, we made an attempt to briefly summarize obstacles, emerging from experimental, technical, and human limitations, that may, to some extent, restrain our belief in a brighter future of plain amine-terminated PAMAM dendrimers.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Dendrímeros/efeitos adversos , Poliaminas/efeitos adversos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/economia , Materiais Biocompatíveis/uso terapêutico , Dendrímeros/química , Dendrímeros/economia , Dendrímeros/uso terapêutico , Sistemas de Liberação de Medicamentos/efeitos adversos , Sistemas de Liberação de Medicamentos/economia , Sistemas de Liberação de Medicamentos/tendências , Humanos , Nanopartículas/efeitos adversos , Nanopartículas/química , Nanopartículas/economia , Nanopartículas/uso terapêutico , Nanotecnologia/economia , Nanotecnologia/tendências , Poliaminas/química , Poliaminas/economia , Poliaminas/uso terapêutico , Propriedades de Superfície
19.
Curr Drug Targets ; 15(5): 478-85, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24712518

RESUMO

Natural resources are widely used as raw materials by industries. In most cases, abundant byproducts with low economic interest are also generated from agro-industrial supply chains. There are several examples for the rational use of agro-industrial byproducts in the nanobiotechnology field aiming for the development of novel products and high value added processes. Such raw materials include carapaces, pelages, blood, bagasses, and straws. Molecules from such materials (e.g. chitosan, cellulose, and albumin) are used as scaffolds of unprecedented novel nanostructure. Research efforts comprising a combination of sustainability, nanobiotechnology, and nanomedicine have emerged. One major area in nano-biotechnological research of agro-industrial byproducts is represented by the field of drug delivery systems (DDS). Among the main advantages of agro-industrial byproducts used as drug carriers are their abundance; low price; high biocompatibility; good biodegradability; moderate bioresorbability, associated with reduced systemic toxicity or even no toxicity; and often bioactivity. The goal of these efforts includes not only the possibility to characterize and manipulate matter on the nanoscale, but also to develop sustainable products and processes, including the development of platforms for drug delivery aiming for the treatment of pathologies such as cancer and diabetes. Indeed, there is great hope that the use of agro-industrial byproducts in nanobiotechnology will increase not only agricultural and livestock productivity, but will also contribute to other areas such as the development of DDS with new properties and low production costs; and sustainable environmental management due to the reuse of industrial discharged byproducts. This review will compile current findings on the use of byproducts as building blocks for modern drug carrier systems, emphasizing the challenges and promising applications.


Assuntos
Biotecnologia/métodos , Portadores de Fármacos/química , Resíduos Industriais/análise , Nanopartículas/química , Agricultura , Animais , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Portadores de Fármacos/economia , Sistemas de Liberação de Medicamentos/economia , Humanos , Resíduos Industriais/economia , Nanopartículas/economia , Nanotecnologia/métodos
20.
Sci Total Environ ; 466-467: 377-86, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23917380

RESUMO

A combined methodology using life cycle assessment (LCA) and human health risk assessment (HHR) is proposed in order to select the percentage of water in drinking water treatment plants (DWTP) that should be nanofiltered (NF). The methodological approach presented here takes into account environmental and social benefit criteria evaluating the implementation of new processes into conventional ones. The inclusion of NF process improves drinking water quality, reduces HHR but, in turn, increases environmental impacts as a result of energy and material demand. Results from this study lead to balance the increase of the impact in various environmental categories with the reduction in human health risk as a consequence of the respective drinking water production and consumption. From an environmental point of view, the inclusion of NF and recommended pretreatments to produce 43% of the final drinking water means that the environmental impact is nearly doubled in comparison with conventional plant in impact categories severely related with electricity production, like climate change. On the other hand, the carcinogenic risk (HHR) associated to trihalomethane formation potential (THMFP) decreases with the increase in NF percentage use. Results show a reduction of one order of magnitude for the carcinogenic risk index when 100% of drinking water is produced by NF.


Assuntos
Técnicas de Apoio para a Decisão , Água Potável/análise , Filtração/métodos , Purificação da Água/métodos , Qualidade da Água , Análise Custo-Benefício , Meio Ambiente , Filtração/economia , Humanos , Nanopartículas/análise , Nanopartículas/economia , Medição de Risco , Espanha , Purificação da Água/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA