Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.818
Filtrar
1.
Pathologica ; 116(2): 104-118, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38767543

RESUMO

Kidneys are often targets of systemic vasculitis (SVs), being affected in many different forms and representing a possible sentinel of an underlying multi-organ condition. Renal biopsy still remains the gold standard for the identification, characterization and classification of these diseases, solving complex differential diagnosis thanks to the combined application of light microscopy (LM), immunofluorescence (IF) and electron microscopy (EM). Due to the progressively increasing complexity of renal vasculitis classification systems (e.g. pauci-immune vs immune complex related forms), a clinico-pathological approach is mandatory and adequate technical and interpretative expertise in nephropathology is required to ensure the best standard of care for our patients. In this complex background, the present review aims at summarising the current knowledge and challenges in the world of renal vasculitis, unveiling the potential role of the introduction of digital pathology in this setting, from the creation of hub-spoke networks to the future application of artificial intelligence (AI) tools to aid in the diagnostic and scoring/classification process.


Assuntos
Rim , Humanos , Rim/patologia , Biópsia , Vasculite Sistêmica/diagnóstico , Vasculite Sistêmica/patologia , Vasculite Sistêmica/classificação , Diagnóstico Diferencial , Nefropatias/patologia , Nefropatias/diagnóstico , Inteligência Artificial
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731887

RESUMO

This study explores olive flounder by-product Prozyme2000P (OFBP) hydrolysate as a potential treatment for age-related kidney decline. Ferroptosis, a form of cell death linked to iron overload and oxidative stress, is increasingly implicated in aging kidneys. We investigated whether OFBP could inhibit ferroptosis and improve kidney health. Using TCMK-1 cells, we found that OFBP treatment protected cells from ferroptosis induced by sodium iodate (SI). OFBP also preserved the mitochondria health and influenced molecules involved in ferroptosis regulation. In aging mice, oral administration of OFBP significantly improved kidney health markers. Microscopic examination revealed reduced thickening and scarring in the kidney's filtering units, a hallmark of aging. These findings suggest that OFBP hydrolysate may be a promising therapeutic candidate for age-related kidney decline. By inhibiting ferroptosis, OFBP treatment appears to improve both cellular and structural markers of kidney health. Further research is needed to understand how OFBP works fully and test its effectiveness in more complex models.


Assuntos
Ferroptose , Rim , Animais , Ferroptose/efeitos dos fármacos , Camundongos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Envelhecimento/efeitos dos fármacos , Linguado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Linhagem Celular , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Nefropatias/patologia
3.
Arch Esp Urol ; 77(3): 235-241, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38715163

RESUMO

OBJECTIVE: The objective of this study was to examine the influence of total intravenous anaesthesia (TIVA) compared to combined intravenous and inhalation anaesthesia (CIIA) in paediatric patients undergoing renal biopsy. METHODS: A total of 86 children with nephrotic syndrome, acute glomerulonephritis, chronic glomerulonephritis, IgG nephropathy, systemic lupus erythematosus and purpura nephritis were selected from January 2018 to January 2023 in our hospital. All children were divided into the total intravenous anaesthesia group and intravenous inhalational anaesthesia group according to the anaesthesia method. The experimental group comprised 46 children with renal diseases who underwent static aspiration compound anaesthesia during renal biopsy at our hospital from January 2018 to January 2023. Conversely, the control group included 40 children with renal diseases who underwent total intravenous anaesthesia during renal biopsy at the hospital within the same period. Hemodynamic parameters, such as mean arterial pressure (MAP), heart rate (HR), and oxygen saturation (SPO2), were assessed at four different time points: Before anesthesia induction (T0), during anesthesia induction (T1), after anesthesia induction (T2), and at the conclusion of the surgery (T3). Puncture success rate, time to renal puncture, time to get out of bed, postoperative recovery from anaesthesia (including time to postoperative awakening and time to return to spontaneous respiration) and incidence of adverse anaesthetic reactions were also included. RESULTS: We observed notable variations in HR and MAP at T2 and T3, as well as SPO2 levels, duration of awakening from anaesthesia and time taken to resume spontaneous respiration between the two groups at T2 (p < 0.05). No statistically significant variances were detected between the two groups concerning adverse reactions to anaesthesia, puncture success rate, duration to renal puncture and time to mobilisation from bed (p > 0.05). CONCLUSIONS: In conclusion, compared with the total intravenous anaesthesia, the implementation of the sedation-aspiration-combined anaesthesia in renal biopsy in children with renal disease features less haemodynamic fluctuation, better postoperative anaesthesia recovery and does not increase the incidence of adverse reactions.


Assuntos
Anestesia por Inalação , Anestesia Intravenosa , Rim , Humanos , Criança , Masculino , Feminino , Anestesia Intravenosa/efeitos adversos , Anestesia por Inalação/efeitos adversos , Rim/patologia , Biópsia/efeitos adversos , Pré-Escolar , Nefropatias/etiologia , Nefropatias/patologia , Adolescente , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia
4.
Sci Rep ; 14(1): 10251, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704512

RESUMO

Mesenchymal stem cells (MSCs) exert their anti-inflammatory and anti-fibrotic effects by secreting various humoral factors. Interferon-gamma (IFN-γ) can enhance these effects of MSCs, and enhancement of regulatory T (Treg) cell induction is thought to be an underlying mechanism. However, the extent to which Treg cell induction by MSCs pretreated with IFN-γ (IFN-γ MSCs) ameliorates renal fibrosis remains unknown. In this study, we investigated the effects of Treg cell induction by IFN-γ MSCs on renal inflammation and fibrosis using an siRNA knockdown system. Administration of IFN-γ MSCs induced Treg cells and inhibited infiltration of inflammatory cells in ischemia reperfusion injury (IRI) rats more drastically than control MSCs without IFN-γ pretreatment. In addition, administration of IFN-γ MSCs more significantly attenuated renal fibrosis compared with control MSCs. Indoleamine 2,3-dioxygenase (IDO) expression levels in conditioned medium from MSCs were enhanced by IFN-γ pretreatment. Moreover, IDO1 knockdown in IFN-γ MSCs reduced their anti-inflammatory and anti-fibrotic effects in IRI rats by reducing Treg cell induction. Our findings suggest that the increase of Treg cells induced by enhanced secretion of IDO by IFN-γ MSCs played a pivotal role in their anti-fibrotic effects. Administration of IFN-γ MSCs may potentially be a useful therapy to prevent renal fibrosis progression.


Assuntos
Fibrose , Indolamina-Pirrol 2,3,-Dioxigenase , Interferon gama , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Linfócitos T Reguladores , Animais , Interferon gama/metabolismo , Linfócitos T Reguladores/imunologia , Células-Tronco Mesenquimais/metabolismo , Ratos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Rim/patologia , Rim/efeitos dos fármacos , Traumatismo por Reperfusão/imunologia , Nefropatias/terapia , Nefropatias/patologia , Ratos Sprague-Dawley
5.
Mol Biol Rep ; 51(1): 613, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704764

RESUMO

BACKGROUND: The non-alcoholic fatty liver disease (NAFLD) is prevalent in as many as 25% of adults who are afflicted with metabolic syndrome. Oxidative stress plays a significant role in the pathophysiology of hepatic and renal injury associated with NAFLD. Therefore, probiotics such as Lactobacillus casei (LBC) and the microalga Chlorella vulgaris (CV) may be beneficial in alleviating kidney injury related to NAFLD. MATERIALS AND METHODS: This animal study utilized 30 C57BL/6 mice, which were evenly distributed into five groups: the control group, the NAFLD group, the NAFLD + CV group, the NAFLD + LBC group, and the NAFLD + CV + LBC group. A high-fat diet (HFD) was administered to induce NAFLD for six weeks. The treatments with CV and LBC were continued for an additional 35 days. Biochemical parameters, total antioxidant capacity (TAC), and the expression of kidney damage marker genes (KIM 1 and NGAL) in serum and kidney tissue were determined, respectively. A stereological analysis was conducted to observe the structural changes in kidney tissues. RESULTS: A liver histopathological examination confirmed the successful induction of NAFLD. Biochemical investigations revealed that the NAFLD group exhibited increased ALT and AST levels, significantly reduced in the therapy groups (p < 0.001). The gene expression levels of KIM-1 and NGAL were elevated in NAFLD but were significantly reduced by CV and LBC therapies (p < 0.001). Stereological examinations revealed reduced kidney size, volume, and tissue composition in the NAFLD group, with significant improvements observed in the treated groups (p < 0.001). CONCLUSION: This study highlights the potential therapeutic efficacy of C. vulgaris and L. casei in mitigating kidney damage caused by NAFLD. These findings provide valuable insights for developing novel treatment approaches for managing NAFLD and its associated complications.


Assuntos
Chlorella vulgaris , Dieta Hiperlipídica , Rim , Lacticaseibacillus casei , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Probióticos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Rim/patologia , Rim/metabolismo , Probióticos/farmacologia , Probióticos/administração & dosagem , Masculino , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças , Fígado/patologia , Fígado/metabolismo , Nefropatias/etiologia , Nefropatias/patologia , Nefropatias/terapia , Antioxidantes/metabolismo
6.
Sci Rep ; 14(1): 10143, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698042

RESUMO

Sirtuin3 (SIRT3), a mitochondrial deacetylase, has been shown to be involved in various kidney diseases. In this study, we aimed to clarify the role of SIRT3 in cyclosporine-induced nephrotoxicity and the associated mitochondrial dysfunction. Madin-Darby canine kidney (MDCK) cells were transfected with Flag-tagged SIRT3 for SIRT3 overexpression or SIRT3 siRNA for the inhibition of SIRT3. Subsequently, the cells were treated with cyclosporine A (CsA) or vehicle. Wild-type and SIRT3 knockout (KO) mice were randomly assigned to receive cyclosporine A or olive oil. Furthermore, SIRT3 activator, honokiol, was treated alongside CsA to wild type mice. Our results revealed that CsA treatment inhibited mitochondrial SIRT3 expression in MDCK cells. Inhibition of SIRT3 through siRNA transfection exacerbated apoptosis, impaired the expression of the AMP-activated protein kinase-peroxisome proliferator-activated receptor gamma coactivator 1 alpha (AMPK-PGC1α) pathway, and worsened mitochondrial dysfunction induced by CsA treatment. Conversely, overexpression of SIRT3 through Flag-tagged SIRT3 transfection ameliorated apoptosis, increased the expression of mitochondrial superoxide dismutase 2, and restored the mitochondrial regulator pathway, AMPK-PGC1α. In SIRT3 KO mice, CsA treatment led to aggravated kidney dysfunction, increased kidney tubular injury, and accumulation of oxidative end products indicative of oxidative stress injury. Meanwhile, SIRT3 activation in vivo significantly mitigated these adverse effects, improving kidney function, reducing oxidative stress markers, and enhancing mitochondrial health following CsA treatment. Overall, our findings suggest that SIRT3 plays a protective role in alleviating mitochondrial dysfunction caused by CsA through the activation of the AMPK-PGC1α pathway, thereby preventing further kidney injury.


Assuntos
Apoptose , Ciclosporina , Camundongos Knockout , Mitocôndrias , Estresse Oxidativo , Sirtuína 3 , Animais , Sirtuína 3/metabolismo , Sirtuína 3/genética , Ciclosporina/efeitos adversos , Ciclosporina/toxicidade , Ciclosporina/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos , Cães , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Células Madin Darby de Rim Canino , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/prevenção & controle , Nefropatias/patologia , Nefropatias/genética , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Transdução de Sinais/efeitos dos fármacos
7.
Ren Fail ; 46(1): 2349139, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38712768

RESUMO

BACKGROUND: NOP2/Sun RNA methyltransferase 5 (NSUN5) is an RNA methyltransferase that has a broad distribution and plays critical roles in various biological processes. However, our knowledge of the biological functions of NSUN5 in mammals is very limited. Therefore, in this study, we investigate the role of NSUN5 in mice. METHODS: In the present research, we built a mouse model (Nsun5-/-) using the CRISPR/Cas9 system to investigated the specific role of NSUN5. RESULTS: We observed that Nsun5-/- mice had a reduced body weight compared to wild-type mice. Additionally, their survival rate gradually decreased to 20% after postnatal day (PD) 21. Further examination revealed the Nsun5-/- mice had multiple organ damage, with the most severe damage occurring in the kidneys. Moreover, we observed glycogen deposition and fibrosis, along with a notable shorting of the primary foot processes of glomeruli in Nsun5-/- kidneys. Furthermore, we found that the kidneys of Nsun5-/- mice showed increased expression of the apoptotic signal Caspase-3 and accumulated stronger DNA damage at PD 21. CONCLUSIONS: In our study, we found that mice lacking NSUN5 died before puberty due to kidney fatal damage caused by DNA damage and cell apoptosis. These results suggest that NSUN5 plays a vital role in preventing the accumulation of DNA damage and cell apoptosis in the kidney.


Assuntos
Apoptose , Rim , Metiltransferases , Camundongos Knockout , Animais , Camundongos , Metiltransferases/genética , Metiltransferases/metabolismo , Metiltransferases/deficiência , Rim/patologia , Modelos Animais de Doenças , Dano ao DNA , Nefropatias/genética , Nefropatias/patologia , Masculino , Camundongos Endogâmicos C57BL , Sistemas CRISPR-Cas , Caspase 3/metabolismo
8.
Commun Biol ; 7(1): 544, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714800

RESUMO

Numerous myofibroblasts are arisen from endothelial cells (ECs) through endothelial to mesenchymal transition (EndMT) triggered by TGF-ß. However, the mechanism of ECs transforms to a different subtype, or whether there exists an intermediate state of ECs remains unclear. In present study, we demonstrate Midkine (MDK) mainly expressed by CD31 + ACTA2+ECs going through partial EndMT contribute greatly to myofibroblasts by spatial and single-cell transcriptomics. MDK is induced in TGF-ß treated ECs, which upregulates C/EBPß and increases EndMT genes, and these effects could be reversed by siMDK. Mechanistically, MDK promotes the binding ability of C/EBPß with ACTA2 promoter by stabilizing the C/EBPß protein. In vivo, knockout of Mdk or conditional knockout of Mdk in ECs reduces EndMT markers and significantly reverses fibrogenesis. In conclusion, our study provides a mechanistic link between the induction of EndMT by TGF-ß and MDK, which suggests that blocking MDK provides potential therapeutic strategies for renal fibrosis.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Fibrose , Midkina , Midkina/metabolismo , Midkina/genética , Animais , Camundongos , Humanos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Transição Epitelial-Mesenquimal , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/genética , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fator de Crescimento Transformador beta/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Rim/metabolismo , Rim/patologia , Camundongos Knockout , Transição Endotélio-Mesênquima
9.
Toxicon ; 243: 107743, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38701903

RESUMO

The estrogen-like mycotoxin zearalenone (ZEA) was popularly occurred in several food and feeds, posing threats to human and animal health. ZEA induced renal toxicity and caused oxidative stress. In the current study, the protecting effect of kefir administration against ZEA-induced renal damage in rats was explored. Rats were divided into 4 groups, each consisting of 5 animals. For the initial 7 days, they were orally administered sterile milk (200 µL/day). Subsequently, during the second week, the groups were exposed to kefir (200 µL/day), ZEA (40 mg/kg b.w./day) and a combination of kefir and ZEA. The biochemical parameters, kidney histological changes and ZEA residue were assessed. Kefir supplementation enhanced the antioxidant enzymes in the kidney, such as superoxide dismutase, catalase and glutathione peroxidase activities, which increased by 1.2, 4 and 20 folds, respectively, relative to the ZEA group. Remarkably, the concomitant administration kefir + ZEA suppressed ZEA residues in both serum and kidney. Additionally, serum levels of blood urea nitrogen, uric acid and renal malondialdehyde decreased by 22, 65 and 54%, respectively, in the kefir + ZEA group; while, the creatinine content increased by around 60%. Rats co-treated with kefir showed a normal kidney histological architecture contrary to tissues alterations mediated in the ZEA group. These results suggest that kefir may showed a protective effect on the kidneys, mitigating ZEA-induced acute toxicity in rats.


Assuntos
Kefir , Rim , Estresse Oxidativo , Ratos Wistar , Zearalenona , Animais , Zearalenona/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Feminino , Ratos , Rim/efeitos dos fármacos , Rim/patologia , Superóxido Dismutase/metabolismo , Antioxidantes/farmacologia , Catalase/metabolismo , Malondialdeído/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Nefropatias/patologia
10.
Sci Rep ; 14(1): 10963, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745066

RESUMO

MicroRNAs (miRNAs) are sequence-specific inhibitors of post-transcriptional gene expression. However, the physiological functions of these non-coding RNAs in renal interstitial mesenchymal cells remain unclear. To conclusively evaluate the role of miRNAs, we generated conditional knockout (cKO) mice with platelet-derived growth factor receptor-ß (PDGFR-ß)-specific inactivation of the key miRNA pathway gene Dicer. The cKO mice were subjected to unilateral ureteral ligation, and renal interstitial fibrosis was quantitatively evaluated using real-time polymerase chain reaction and immunofluorescence staining. Compared with control mice, cKO mice had exacerbated interstitial fibrosis exhibited by immunofluorescence staining and mRNA expression of PDGFR-ß. A microarray analysis showed decreased expressions of miR-9-5p, miR-344g-3p, and miR-7074-3p in cKO mice compared with those in control mice, suggesting an association with the increased expression of PDGFR-ß. An analysis of the signaling pathways showed that the major transcriptional changes in cKO mice were related to smooth muscle cell differentiation, regulation of DNA metabolic processes and the actin cytoskeleton, positive regulation of fibroblast proliferation and Ras protein signal transduction, and focal adhesion-PI3K/Akt/mTOR signaling pathways. Depletion of Dicer in mesenchymal cells may downregulate the signaling pathway related to miR-9-5p, miR-344g-3p, and miR-7074-3p, which can lead to the progression of chronic kidney disease. These findings highlight the possibility for future diagnostic or therapeutic developments for renal fibrosis using miR-9-5p, miR-344g-3p, and miR-7074-3p.


Assuntos
Fibrose , Rim , Células-Tronco Mesenquimais , Camundongos Knockout , MicroRNAs , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Ribonuclease III , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Rim/patologia , Rim/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Transdução de Sinais , Nefropatias/genética , Nefropatias/patologia , Nefropatias/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Masculino
11.
Rev Assoc Med Bras (1992) ; 70(4): e20230990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716935

RESUMO

OBJECTIVE: We aimed to investigate the effect of coenzyme q10 on cyclophosphamide-induced kidney damage in rats. METHODS: A total of 30 female Wistar-Albino rats were utilized to form three groups. In group 1 (control group) (n=10), no drugs were given. In group 2 (cyclophosphamide group) (n=10), 30 mg/kg intraperitoneal cyclophosphamide was administered for 7 days. In group 3 (cyclophosphamide+coenzyme q10 group) (n=10), 30 mg/kg cyclophosphamide and 10 mg/kg coenzyme q10 were given for 7 days via intraperitoneal route. Right kidneys were removed in all groups. Blood malondialdehyde levels and activities of catalase and superoxide dismutase were measured. Histopathological damage was evaluated by examining the slides prepared from kidney tissue using a light microscope. RESULTS: Tissue damage was significantly higher in the cyclophosphamide group than in the cyclophosphamide+coenzyme q10 group (p<0.05). The malondialdehyde levels were significantly higher and the activities of superoxide dismutase and catalase were lower in the cyclophosphamide group than in the cyclophosphamide+coenzyme q10 group (p<0.05). CONCLUSION: Coenzyme q10 may be a good option to prevent cyclophosphamide-induced kidney damage.


Assuntos
Catalase , Ciclofosfamida , Malondialdeído , Ratos Wistar , Superóxido Dismutase , Ubiquinona , Animais , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ciclofosfamida/toxicidade , Ciclofosfamida/efeitos adversos , Feminino , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Ratos , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Nefropatias/patologia , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos
12.
Ren Fail ; 46(1): 2332491, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38584145

RESUMO

OBJECTIVE: Lipoprotein glomerulopathy (LPG) is a rare disorder characterized by the development of glomerular lipoprotein thrombosis. LPG exhibits familial aggregation, with mutations in the apolipoprotein E (APOE) gene identified as the leading cause of this disease. This study aimed to investigate APOE gene mutations and the clinicopathological features in eleven LPG patients. METHODS: Clinicopathological and follow-up data were obtained by extracting DNA, followed by APOE coding region sequencing analysis. This study analyzed clinical and pathological manifestations, gene mutations, treatment and prognosis. RESULTS: The mean age of the eleven patients was 33.82 years. Among them, five had a positive family history for LPG, ten presented with proteinuria, four exhibited nephrotic syndrome, and six presented with microscopic hematuria. Dyslipidemia was identified in ten patients. In all renal specimens, there was evident dilation of glomerular capillary lumens containing lipoprotein thrombi, and positive oil red O staining was observed in frozen sections of all samples. APOE gene testing revealed that one patient had no mutations, while the remaining ten patients exhibited mutations in the APOE gene, with three patients presenting with multiple mutations simultaneously. Following the confirmation of LPG diagnosis, treatment with angiotensin-converting enzyme inhibitor (ACEI)/angiotensin receptor blocker (ARB) was initiated, and the disease progressed slowly. CONCLUSION: LPG is histologically characterized by lamellated lipoprotein thrombi in glomeruli, and kidney biopsy is essential for diagnosis. Mutations in the APOE gene are the leading cause of LPG. This study revealed clinicopathological characteristics and APOE gene mutations in patients with LPG, which helps us better understand the disease.


Assuntos
Antagonistas de Receptores de Angiotensina , Nefropatias , Humanos , Adulto , Inibidores da Enzima Conversora de Angiotensina , Nefropatias/patologia , Mutação , Apolipoproteínas E/genética
13.
Ren Fail ; 46(1): 2334406, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38575341

RESUMO

A critical event in the pathogenesis of kidney fibrosis is the transition of macrophages into myofibroblasts (MMT). Exosomes play an important role in crosstalk among cells in the kidney and the development of renal fibrosis. However, the role of myofibroblast-derived exosomes in the process of MMT and renal fibrosis progression remains unknown. Here, we examined the role of myofibroblast-derived exosomes in MMT and kidney fibrogenesis. In vitro, transforming growth factor-ß1 stimulated the differentiation of kidney fibroblasts into myofibroblasts and promoted exosome release from myofibroblasts. RAW264.7 cells were treated with exosomes derived from myofibroblasts. We found purified exosomes from myofibroblasts trigger the MMT. By contrast, inhibition of exosome production with GW4869 or exosome depletion from the conditioned media abolished the ability of myofibroblasts to induce MMT. Mice treatment with myofibroblast-derived exosomes (Myo-Exo) exhibited severe fibrotic lesion and more abundant MMT cells in kidneys with folic acid (FA) injury, which was negated by TANK-banding kinase-1 inhibitor. Furthermore, suppression of exosome production reduced collagen deposition, extracellular matrix protein accumulation, and MMT in FA nephropathy. Collectively, Myo-Exo enhances the MMT and kidney fibrosis. Blockade of exosomes mediated myofibroblasts-macrophages communication may provide a novel therapeutic target for kidney fibrosis.


Assuntos
Exossomos , Nefropatias , Animais , Camundongos , Miofibroblastos/metabolismo , Exossomos/metabolismo , Exossomos/patologia , Macrófagos/metabolismo , Nefropatias/patologia , Rim/patologia , Fibrose
14.
Sci Rep ; 14(1): 7667, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561447

RESUMO

Renal involvement is common in monoclonal gammopathy (MG); however, the same patient may have both MG and non-paraprotein-associated renal damage. Accordingly, distinguishing the cause of renal damage is necessary because of the different clinical characteristics and associated treatments. In this multicenter retrospective cohort study, we described the clinicopathological characteristics and prognosis of 703 patients with MG and renal damage in central China. Patients were classified as having MG of renal significance (MGRS), MG of undetermined significance (MGUS), or hematological malignancy. 260 (36.98%), 259 (36.84%), and 184 (26.17%) had MGRS, MGUS, and hematological malignancies, respectively. Amyloidosis was the leading pattern of MGRS (74.23%), followed by thrombotic microangiopathy (8.85%) and monoclonal immunoglobulin deposition disease (8.46%). Membranous nephropathy was the leading diagnosis of MGUS (39.38%). Renal pathological findings of patients with hematological malignancies included paraprotein-associated lesions (84.78%) and non-paraprotein-associated lesions (15.22%). The presence of nephrotic syndrome and an abnormal free light chain (FLC) ratio were independently associated with MGRS. The overall survival was better in patients with MGUS than in those with MGRS or hematological malignancies.


Assuntos
Neoplasias Hematológicas , Nefropatias , Gamopatia Monoclonal de Significância Indeterminada , Paraproteinemias , Humanos , Estudos Retrospectivos , Nefropatias/diagnóstico , Nefropatias/etiologia , Nefropatias/patologia , Paraproteinemias/complicações , Paraproteinemias/diagnóstico , Gamopatia Monoclonal de Significância Indeterminada/complicações , Gamopatia Monoclonal de Significância Indeterminada/diagnóstico , Prognóstico , Neoplasias Hematológicas/complicações
15.
J Zhejiang Univ Sci B ; 25(4): 341-353, 2024 Apr 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38584095

RESUMO

Kidney fibrosis is an inevitable result of various chronic kidney diseases (CKDs) and significantly contributes to end-stage renal failure. Currently, there is no specific treatment available for renal fibrosis. ELA13 (amino acid sequence: RRCMPLHSRVPFP) is a conserved region of ELABELA in all vertebrates; however, its biological activity has been very little studied. In the present study, we evaluated the therapeutic effect of ELA13 on transforming growth factor-ß1 (TGF-ß1)-treated NRK-52E cells and unilateral ureteral occlusion (UUO) mice. Our results demonstrated that ELA13 could improve renal function by reducing creatinine and urea nitrogen content in serum, and reduce the expression of fibrosis biomarkers confirmed by Masson staining, immunohistochemistry, real-time polymerase chain reaction (RT-PCR), and western blot. Inflammation biomarkers were increased after UUO and decreased by administration of ELA13. Furthermore, we found that the levels of essential molecules in the mothers against decapentaplegic (Smad) and extracellular signal-regulated kinase (ERK) pathways were reduced by ELA13 treatment in vivo and in vitro. In conclusion, ELA13 protected against kidney fibrosis through inhibiting the Smad and ERK signaling pathways and could thus be a promising candidate for anti-renal fibrosis treatment.


Assuntos
Nefropatias , Obstrução Ureteral , Camundongos , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Nefropatias/patologia , Transdução de Sinais , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Fator de Crescimento Transformador beta1 , Rim/metabolismo , Fibrose , Biomarcadores/metabolismo
17.
Mol Biol Rep ; 51(1): 529, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637422

RESUMO

BACKGROUND: TGF-ß1 and SMAD3 are particularly pathogenic in the progression of renal fibrosis. AIM: This study aimed to evaluate the kidney protective potentials of silymarin (SM) and exosomes of mesenchymal stem cells against the nephrotoxin thioacetamide (TAA) in rats. METHODS: 32 female rats were randomly assigned into four groups: the control group, the TAA group, the TAA + SM group, and the TAA + Exosomes group. The kidney homogenates from all groups were examined for expression levels of TGF-ß receptors I and II using real-time PCR, expression levels of collagen type I and CTGF proteins using ELISA, and the expression levels of nuclear SMAD2/3/4, cytoplasmic SMAD2/3, and cytoplasmic SMAD4 proteins using the western blot technique. RESULTS: Compared to the control group, the injection of TAA resulted in a significant increase in serum levels of urea and creatinine, gene expression levels of TßRI and TßRII, protein expression levels of both collagen I and CTGF proteins, cytoplasmic SMAD2/3 complex, and nuclear SMAD2/3/4 (p-value < 0.0001), with significantly decreased levels of the co-SMAD partner, SMAD4 (p-value < 0.0001). Those effects were reversed considerably in both treatment groups, with the superiority of the exosomal treatment regarding the SMAD proteins and the expression levels of the TßRI gene, collagen I, and CTGF proteins returning to near-control values (p-value > 0.05). CONCLUSION: Using in vitro and in vivo experimental approaches, the research discovered a reno-protective role of silymarin and exosomes of BM-MSCs after thioacetamide-induced renal fibrosis in rats, with the advantage of exosomes.


Assuntos
Exossomos , Nefropatias , Silimarina , Ratos , Feminino , Animais , Fator de Crescimento Transformador beta/metabolismo , Tioacetamida/toxicidade , Tioacetamida/metabolismo , Silimarina/farmacologia , Exossomos/metabolismo , Fibrose , Fator de Crescimento Transformador beta1/metabolismo , Nefropatias/patologia , Colágeno Tipo I/metabolismo , Proteínas Smad/metabolismo
18.
Genes (Basel) ; 15(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38674390

RESUMO

The Adriamycin (ADR) nephropathy model, which induces podocyte injury, is limited to certain mouse strains due to genetic susceptibilities, such as the PrkdcR2140C polymorphism. The FVB/N strain without the R2140C mutation resists ADR nephropathy. Meanwhile, a detailed analysis of the progression of ADR nephropathy in the FVB/N strain has yet to be conducted. Our research aimed to create a novel mouse model, the FVB-PrkdcR2140C, by introducing PrkdcR2140C into the FVB/NJcl (FVB) strain. Our study showed that FVB-PrkdcR2140C mice developed severe renal damage when exposed to ADR, as evidenced by significant albuminuria and tubular injury, exceeding the levels observed in C57BL/6J (B6)-PrkdcR2140C. This indicates that the FVB/N genetic background, in combination with the R2140C mutation, strongly predisposes mice to ADR nephropathy, highlighting the influence of genetic background on disease susceptibility. Using RNA sequencing and subsequent analysis, we identified several genes whose expression is altered in response to ADR nephropathy. In particular, Mmp7, Mmp10, and Mmp12 were highlighted for their differential expression between strains and their potential role in influencing the severity of kidney damage. Further genetic analysis should lead to identifying ADR nephropathy modifier gene(s), aiding in early diagnosis and providing novel approaches to kidney disease treatment and prevention.


Assuntos
Modelos Animais de Doenças , Doxorrubicina , Nefropatias , Animais , Doxorrubicina/efeitos adversos , Camundongos , Nefropatias/induzido quimicamente , Nefropatias/genética , Nefropatias/patologia , Masculino , Camundongos Endogâmicos C57BL , Predisposição Genética para Doença , Podócitos/metabolismo , Podócitos/patologia , Podócitos/efeitos dos fármacos
19.
Iran J Kidney Dis ; 18(2): 99-107, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38660698

RESUMO

INTRODUCTION: We recently discovered that microvesicles (MVs)  derived from mesenchymal stem cells (MSCs) overexpressing  miRNA-34a can alleviate experimental kidney injury in mice. In  this study, we further explored the effects of miR34a-MV on renal  fibrosis in the unilateral ureteral obstruction (UUO) models.  Methods. Bone marrow MSCs were modified by lentiviruses  overexpressing miR-34a, and MVs were collected from the  supernatants of MSCs. C57BL6/J mice were divided into control,  unilateral ureteral obstruction (UUO), UUO + MV, UUO + miR-34aMV and UUO + miR-34a-inhibitor-MV groups. MVs were injected  to mice after surgery. The mice were then euthanized on day 7  and 14 of modeling, and renal tissues were collected for further  analyses by Hematoxylin and eosin, Masson's trichrome,  and Immunohistochemical (IHC) staining.  Results. The UUO + MV group exhibited a significantly reduced  degree of renal interstitial fibrosis with inflammatory cell infiltration,  tubular epithelial cell atrophy, and vacuole degeneration compared  with the UUO group. Surprisingly, overexpressing miR-34a enhanced  these effects of MSC-MV on the UUO mice.  Conclusion. Our study demonstrates that miR34a further enhances  the effects of MSC-MV on renal fibrosis in mice through the  regulation of epithelial-to-mesenchymal transition (EMT) and  Notch pathway. miR-34a may be a candidate molecular therapeutic  target for the treatment of renal fibrosis. DOI: 10.52547/ijkd.7673.


Assuntos
Micropartículas Derivadas de Células , Nefropatias , Rim , Células-Tronco Mesenquimais , MicroRNAs , Animais , Masculino , Camundongos , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/transplante , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Rim/patologia , Rim/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , Transdução de Sinais , Obstrução Ureteral
20.
J Hazard Mater ; 470: 134129, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565019

RESUMO

Butylparaben, a common endocrine disruptor in the environment, is known to be toxic to the reproductive system, heart, and intestines, but its nephrotoxicity has rarely been reported. In order to study the nephrotoxicity and mechanism of butylparaben, we examined the acute and chronic effects on human embryonic kidney cells (HEK293T) and zebrafish. Additionally, we assessed the potential remedial effects of salidroside against butylparaben-induced nephrotoxicity. Our in vitro findings demonstrated oxidative stress and cytotoxicity to HEK293T cells caused by butylparaben. In the zebrafish model, the concentration of butylparaben exposure ranged from 0.5 to 15 µM. An assortment of experimental techniques was employed, including the assessment of kidney tissue morphology using Hematoxylin-Eosin staining, kidney function analysis via fluorescent dextran injection, and gene expression studies related to kidney injury, development, and function. Additionally, butylparaben caused lipid peroxidation in the kidney, thereby damaging glomeruli and renal tubules, which resulted from the downregulation of the PI3K-AKT signaling pathway. Furthermore, salidroside ameliorated butylparaben-induced nephrotoxicity through the PI3K-AKT signaling pathway. This study reveals the seldom-reported kidney toxicity of butylparaben and the protective effect of salidroside against toxicological reactions related to nephrotoxicity. It offers valuable insights into the risks to kidney health posed by environmental toxins.


Assuntos
Rim , Parabenos , Transdução de Sinais , Peixe-Zebra , Animais , Humanos , Regulação para Baixo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Glucosídeos/farmacologia , Células HEK293 , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/patologia , Nefropatias/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Parabenos/toxicidade , Fenóis/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA