Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.701
Filtrar
1.
PeerJ ; 12: e17324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784398

RESUMO

Anthropogenic climate change and the associated increase in sea temperatures are projected to greatly impact marine ecosystems. Temperature variation can influence the interactions between species, leading to cascading effects on the abundance, diversity and composition of communities. Such changes in community structure can have consequences on ecosystem stability, processes and the services it provides. Therefore, it is important to better understand the role of species interactions in the development of communities and how they are influenced by environmental factors like temperature. The coexistence of closely related cryptic species, with significant biological and ecological differences, makes this even more complex. This study investigated the effect of temperature on species growth and both intra- and interspecific interactions of three species within the free-living nematode Litoditis marina complex. To achieve this, closed microcosm experiments were conducted on the L. marina species Pm I, Pm III and Pm IV in monoculture and combined cultures at two temperature treatments of 15 °C and 20 °C. A population model was constructed to elucidate and quantify the effects of intra- and interspecific interactions on nematode populations. The relative competitive abilities of the investigated species were quantified using the Modern Coexistence Theory (MCT) framework. Temperature had strong and disparate effects on the population growth of the distinct L. marina species. This indicates temperature could play an important role in the distribution of these cryptic species. Both competitive and facilitative interactions were observed in the experiments. Temperature affected both the type and the strength of the species interactions, suggesting a change in temperature could impact the coexistence of these closely related species, alter community dynamics and consequently affect ecosystem processes and services.


Assuntos
Mudança Climática , Temperatura , Animais , Ecossistema , Dinâmica Populacional , Nematoides/fisiologia , Nematoides/crescimento & desenvolvimento
2.
PLoS One ; 19(5): e0303864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758759

RESUMO

Nematodes disperse passively and are amongst the smallest invertebrates on Earth. Free-living nematodes in mountain lakes are highly tolerant of environmental variations and are thus excellent model organisms in dispersal studies, since species-environment relationships are unlikely to interfere. In this study, we investigated how population or organism traits influence the stochastic physical nature of passive dispersal in a topologically complex environment. Specifically, we analyzed the influence of female proportion and body size on the geographical distribution of nematode species in the mountain lakes of the Pyrenees. We hypothesized that dispersal is facilitated by (i) a smaller body size, which would increase the rate of wind transport, and (ii) a higher female proportion within a population, which could increase colonization success because many nematode species are capable of parthenogenetic reproduction. The results showed that nematode species with a low proportion of females tend to have clustered spatial distributions that are not associated with patchy environmental conditions, suggesting greater barriers to dispersal. When all species were pooled, the overall proportion of females tended to increase at the highest elevations, where dispersal between lakes is arguably more difficult. The influence of body size was barely relevant for nematode distributions. Our study highlights the relevance of female proportion as a mechanism that enhances the dispersal success of parthenogenetic species, and that female sex is a determining factor in metacommunity connectivity.


Assuntos
Tamanho Corporal , Lagos , Nematoides , Animais , Feminino , Tamanho Corporal/fisiologia , Nematoides/fisiologia , Masculino , Distribuição Animal/fisiologia , Ecossistema
3.
J Invertebr Pathol ; 204: 108116, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679367

RESUMO

Freshwater snails are integral to local ecosystems as a primary food source for various vertebrate species, thereby contributing significantly to ecological food webs. However, their role as intermediate hosts also makes them pivotal in the transmission of parasites. In Australia, research on freshwater snails has predominantly focused on their role as intermediate hosts for livestock parasites, while there has been limited exploration of the impact of these parasites on snail health and population dynamics. The aim of this study was to determine parasitic infection in freshwater snails. This study was conducted in the south-eastern region of Australia, in 2022. A total of 163 freshwater snails from four different species were collected and examined in the Murrumbidgee catchment area in the southeastern part of Australia during the Southern Hemisphere summer and autumn months (February to May). The species included Isidorella hainesii, Glyptophysa novaehollandica, Bullastra lessoni (endemic species), and Physella acuta (an introduced species). Through the analysis of sequence data from the various regions of the nuclear ribosomal DNA, we determined that the Digenea species in this study belonged to three distinct species, including Choanocotyle hobbsi, Petasiger sp. and an unidentified species belonging to Plagiorchioidea. Additionally, analysis of the sequences from Nematoda found in this study, revealed they could be categorized into two separate taxa, including Krefftascaris sp. and an unidentified nematode closely associated with plant and soil nematodes. This research holds significant implications for the future understanding and conservation of Australian freshwater ecosystems. Most parasites found in the present study complete their life cycle in snails and turtles. As many of freshwater snail and turtle species in Australia are endemic and face population threats, exploring the potential adverse impacts of parasitic infections on snail and turtle health, is crucial for advancing our understanding of these ecosystems and also paving the way for future research and conservation efforts. While none of the native snail species in the present study have been listed as endangered or threatened, this may simply be attributed to the absence of regular population surveys.


Assuntos
Água Doce , Caramujos , Trematódeos , Animais , Caramujos/parasitologia , Austrália , Trematódeos/fisiologia , Trematódeos/genética , Água Doce/parasitologia , Nematoides/fisiologia
4.
Chemosphere ; 358: 142143, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685319

RESUMO

Conventional pest control measures, such as chemical pesticides and nematicides, have limited efficacy and raise environmental concerns, necessitating sustainable and eco-friendly alternatives for pest management. Therefore, to find a complementary eco-friendly pesticide/nematicide, this study investigated the role of fly ash (FA) in managing a notorious pest, Meloidogyne javanica and its impact on the growth and physiology of Abelmoschus esculentus. Molecular characterization using SSU and LSU rDNA gene markers confirmed the identity of Indian M. javanica as belonging to the same species. Biotic stress induced by nematode infection was significantly alleviated (P < 0.05) by FA application at a 20% w/v, regulating of ROS accumulation (44.1% reduction in superoxide anions and 39.7% reduction in hydrogen peroxide content) in the host plant. Moreover, FA enhanced antioxidant defence enzymes like superoxide dismutase (46.6%) and catalase (112%) to combat nematode induced ROS. Furthermore, the application of FA at a 20% concentration significantly improved the biomass and biochemical attributes of okra. Fly ash also upregulated the activity of the important osmo-protectant proline (11.5 µmol/g FW) to mitigate nematode stress in host cells. Suppression of disease indices like gall index and reproduction factor, combined with in-vitro experiments, revealed that FA exhibits strong nematode mortality capacity and thus can be used as a sustainable and eco-friendly control agent against root-knot nematodes.


Assuntos
Abelmoschus , Antinematódeos , Antioxidantes , Cinza de Carvão , Espécies Reativas de Oxigênio , Tylenchoidea , Animais , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Antinematódeos/farmacologia , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/fisiologia , Solo/química , Solo/parasitologia , Praguicidas , Superóxido Dismutase/metabolismo , Nematoides/efeitos dos fármacos , Nematoides/fisiologia , Catalase/metabolismo
5.
J Environ Manage ; 356: 120668, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492419

RESUMO

Grazing causes great disturbances in grassland ecosystems and may change the abundance, diversity, and ecological function of soil biota. Because of their important role in nutrient cycling and as good environmental indicators, nematodes are very representative soil organisms. However, the mechanisms by which grazing intensity, livestock type, duration, and environmental factors (e.g., climate and edaphic factors) affect soil nematodes remain poorly understood. In this study, we collected 1964 paired observations all over the world from 53 studies to clarify the grazing response patterns of soil nematodes and their potential mechanisms. Overall, grazing significantly decreased the abundance of bacterial-feeding (BF) nematodes (-16.54%) and omnivorous-predatory (OP) nematodes (-36.81%), and decreased nematode community diversity indices (Shannon-Weiner index: -4.33%, evenness index: -9.22%, species richness: -5.35%), but had no effect on ecological indices under a global regional scale. The response of soil nematodes to grazing varied by grazing intensity, animals, and duration. Heavy grazing decreased OP nematode abundance, but had no effect on the abundance of other trophic groups, or on diversity or ecological indices. Grazing by small animals had stronger effects than that by large animals and mixed-size animals on BF, fungal-feeding (FF), plant-feeding (PF) and OP nematodes, the Shannon-Wiener index, and the species richness index. The abundance of FF and OP nematodes influenced significantly under short-term grazing. The evenness index decreased significantly under long-term grazing (>10 years). Climate and edaphic factors impacted the effects of grazing on nematode abundance, diversity, and ecological indices. When resources (i.e., rain, heat, and soil nutrients) were abundant, the negative effects of grazing on nematodes were reduced; under sufficiently abundant resources, grazing even had positive effects on soil nematode communities. Thus, the influence of grazing on soil nematode communities is resource-dependent. Our study provides decision makers with grazing strategies based on the resource abundance. Resource-poor areas should have less grazing, while resource-rich areas should have more grazing to conserve soil biodiversity and maintain soil health.


Assuntos
Ecossistema , Nematoides , Animais , Pradaria , Solo , Nematoides/fisiologia , Biodiversidade , Bactérias
7.
J Sci Food Agric ; 104(7): 4383-4390, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323469

RESUMO

BACKGROUND: A variety of environmental factors can disrupt biotic interactions between plants, insects and soil microorganisms with consequences for agricultural management and production. Many of these belowground interactions are mediated by volatile organic compounds (VOCs) which can be used for communication under appropriate environmental conditions. Behavioral responses to these compounds may likewise be dependent on varying soil conditions which are influenced by a changing climate. To determine how changing environmental conditions may affect VOC-mediated biotic interactions, we used a belowground system where entomopathogenic nematodes (EPNs) - tiny roundworm parasitoids of soil-borne insects - respond to VOCs by moving through the soil pore matrix. Specifically, we used two genera of EPNs - Heterorhabditis and Steinernema - that are known to respond to four specific terpenes - α-pinene, linalool, d-limonene and pregeijerene - released by the roots of plants in the presence of herbivores. We assessed the response of these nematodes to these terpenes under three moisture regimes to determine whether drier conditions or inundated conditions may influence the response behavior of these nematodes. RESULTS: Our results illustrate that the recovery rate of EPNs is positively associated with soil moisture concentration. As soil moisture concentration increases from 6% to 18%, substantially more nematodes are recovered from bioassays. In addition, we find that soil moisture influences EPN preference for VOCs, as illustrated in the variable response rates. Certain compounds shifted from acting as a repellent to acting as an attractant and vice versa depending on the soil moisture concentration. CONCLUSION: On a broad scale, we demonstrate that soil moisture has a significant effect on EPN host-seeking behavior. EPN efficacy as biological control agents could be affected by climate change projections that predict varying soil moisture concentrations. We recommend that maintaining nematodes as biological control agents is essential for sustainable agriculture development, as they significantly contribute not only to soil health but also to efficient pest management. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Nematoides , Solo , Animais , Agentes de Controle Biológico , Controle Biológico de Vetores/métodos , Nematoides/fisiologia , Insetos , Terpenos
8.
Trends Plant Sci ; 29(1): 52-63, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37468419

RESUMO

Nematodes are a crucial component of rhizosphere biodiversity, affecting plant health as the most abundant and functionally diverse soil animals. Plant-parasitic nematodes are generally considered harmful, which may overlook their potential benefits to plants when coexisting with free-living nematodes in soil. We provide new insights into nematodes as vital plant partners. Plant root damage by plant-parasitic nematodes creates opportunities for pathogens and beneficial microbiota to colonize the rhizosphere. Free-living nematodes coordinate microbiota to suppress plant diseases, but they are susceptible to mortality from plant pathogens, potentially favoring pathogen release in the root zone. We conclude that the nematode's role in regulating plant pathogens represents a missing link, constraining our ability to predict and control soil-borne diseases in healthy plants.


Assuntos
Microbiota , Nematoides , Animais , Nematoides/fisiologia , Rizosfera , Biodiversidade , Plantas , Solo
9.
Sci Total Environ ; 913: 169417, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38143005

RESUMO

Livestock grazing alters the diversity and composition of plants and soil biota in grassland ecosystems. However, whether and how grazing affects plant-soil biota interactions are limited. Here, we performed a field investigation on the Tibetan grasslands to determine the relationships between plant community properties (biomass, diversity and richness) and soil biota (abundance, diversity and composition of bacteria, fungi and nematodes) in the long-term yak grazing and ungrazed plots, and responses of plant-soil biota linkages to grazing in alpine meadows and alpine swampy meadows were compared. The results found that grazing did not cause significant changes in plant community properties but increased the soil water content. Further, grazing weakened plant-soil microbes/nematode relationships in alpine meadows. The bacterial and fungal abundances were correlated with plant belowground biomass and Simpson index in the ungrazed plots of alpine meadows, while the correlation was not significant under grazing. Bacterial composition was correlated with plant richness only in the ungrazed meadows. Plant-soil nematode linkages were more sensitive to grazing than plant-microbes linkages. Grazing decoupled the relationships between the abundances of nematode trophic groups and plant aboveground biomass, richness and Simpson index in alpine meadows, while the decoupling phenomenon is less evident in alpine swampy meadows. The SEM results indicate that grazing altered the plant above- and belowground biomass to affect the soil nematode community, while influenced soil microbes only through alterations of plant belowground biomass. The findings highlight the importance of grazing in influencing the interactions between aboveground plant communities and soil biological communities in Tibetan grasslands.


Assuntos
Ecossistema , Nematoides , Animais , Pradaria , Solo , Biota , Biomassa , Plantas , Nematoides/fisiologia
10.
ISME J ; 17(11): 1862-1871, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37604917

RESUMO

Symbiotic microorganisms are ubiquitous on the body surface or internal tissues of invertebrates, providing them with benefits. Developing symbiotic relationships requires synchronization of developmental stages and physical proximity of partners. Therefore, the identification of metabolites that coordinate the reproduction of symbiotic partners is essential. This study demonstrates that palmitoleic acid (C16: 1) coordinates bilateral propagation by regulating the synchronization of reproduction between the invasive pinewood nematode (PWN) and its newly associated blue-stain fungus, Sporothrix sp.1. When the PWN fed on Sporothrix sp.1, there was a significant increase in lipid metabolism gene expression and metabolite abundance. Through further investigations, it highlighted a significant enhancement in the reproduction of the PWN through direct acquisition of C16: 1, which was abundantly present in Sporothrix sp.1. Furthermore, the PWN biosynthesized C16: 1 through the involvement of the stearoyl-CoA 9-desaturase gene fat-5 and its hormone nuclear receptor nhr-80, which was clarified to promote the egg-laying capacity of females. Moreover, it is worth noting that the production of C16: 1 was significantly higher by the associated fungus Sporothrix sp.1 to enhance sporulation during the spore formation phase compared to the hypha growth phase. Thus, by coordinating the fecundity and spore production, the key lipid metabolite C16: 1 facilitates the rapid and successful colonization of a mutually beneficial symbiotic relationship between the invasive PWN and the native Sporothrix sp.1 within the host. This finding emphasizes the significant role of metabolite sharing and its function in promoting partner synchronization within symbiotic relationships.


Assuntos
Nematoides , Pinus , Animais , Fungos/fisiologia , Ácidos Graxos Monoinsaturados , Nematoides/fisiologia
11.
Trends Parasitol ; 39(9): 732-738, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37438213

RESUMO

Plant parasites take advantage of host developmental plasticity to elicit profound developmental and physiological changes. In the case of plant-parasitic nematodes (PPNs), these changes can result in the development of new plant organs. Despite the importance of the development- and physiology-altering abilities of these parasites in pathology, research has historically focused on their abilities to suppress immunity. We argue that, given the dramatic changes involved in feeding site establishment, it is entirely possible that development- and physiology-altering abilities of PPNs may, in fact, dominate effector repertoires - highlighting the need for novel high-throughput screens for development- and physiology-altering 'tools'. Uncovering this portion of the nematode 'toolbox' can enable biotechnology, enhance crop protection, and shed light on fundamental host biology itself.


Assuntos
Nematoides , Parasitos , Animais , Interações Hospedeiro-Parasita/fisiologia , Nematoides/fisiologia , Plantas/parasitologia
12.
J Invertebr Pathol ; 199: 107953, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37336478

RESUMO

Entomopathogenic nematodes (EPNs) are soil-dwelling parasitic roundworms commonly used as biocontrol agents of insect pests in agriculture. EPN dauer juveniles locate and infect a host in which they will grow and multiply until resource depletion. During their free-living stage, EPNs face a series of internal and environmental stresses. Their ability to overcome these challenges is crucial to determine their infection success and survival. In this review, we provide a comprehensive overview of EPN response to stresses associated with starvation, low/elevated temperatures, desiccation, osmotic stress, hypoxia, and ultra-violet light. We further report EPN defense strategies to cope with biotic stressors such as viruses, bacteria, fungi, and predatory insects. By comparing the genetic and biochemical basis of these strategies to the nematode model Caenorhabditis elegans, we provide new avenues and targets to select and engineer precision nematodes adapted to specific field conditions.


Assuntos
Nematoides , Animais , Nematoides/fisiologia , Insetos/parasitologia , Agricultura , Solo/parasitologia , Caenorhabditis elegans
13.
Front Immunol ; 14: 1122451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006283

RESUMO

A key aspect of parasitic nematode infection is the nematodes' ability to evade and/or suppress host immunity. This immunomodulatory ability is likely driven by the release of hundreds of excretory/secretory proteins (ESPs) during infection. While ESPs have been shown to display immunosuppressive effects on various hosts, our understanding of the molecular interactions between individual proteins released and host immunity requires further study. We have recently identified a secreted phospholipase A2 (sPLA2) released from the entomopathogenic nematode (EPN) Steinernema carpocapsae we have named Sc-sPLA2. We report that Sc-sPLA2 increased mortality of Drosophila melanogaster infected with Streptococcus pneumoniae and promoted increased bacterial growth. Furthermore, our data showed that Sc-sPLA2 was able to downregulate both Toll and Imd pathway-associated antimicrobial peptides (AMPs) including drosomycin and defensin, in addition to suppressing phagocytosis in the hemolymph. Sc-sPLA2 was also found to be toxic to D. melanogaster with the severity being both dose- and time-dependent. Collectively, our data highlighted that Sc-sPLA2 possessed both toxic and immunosuppressive capabilities.


Assuntos
Nematoides , Fosfolipases A2 Secretórias , Animais , Drosophila melanogaster , Hemócitos , Imunidade Humoral , Interações Hospedeiro-Parasita , Nematoides/microbiologia , Nematoides/fisiologia
14.
Sci Adv ; 9(11): eadf4166, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36921046

RESUMO

The potato cyst nematode (PCN) causes extensive crop losses worldwide. Because the hatching of PCN requires host-derived molecules known as hatching factors (HFs), regulating HF production in host plants may help to control this harmful pest. Solanoeclepin A (SEA), isolated from potato, is the most active HF for PCN; however, its biosynthesis is completely unknown. We discovered a HF called solanoeclepin B (SEB) from potato and tomato root exudates and showed that SEB was biosynthesized in the plant and converted to SEA outside the plant by biotic agents. Moreover, we identified five SEB biosynthetic genes encoding three 2-oxoglutarate-dependent dioxygenases and two cytochrome P450 monooxygenases in tomato. Exudates from tomato hairy roots in which each of the genes was disrupted contained no SEB and had low hatch-stimulating activity for PCN. These findings will help to breed crops with a lower risk of PCN infection.


Assuntos
Nematoides , Solanum lycopersicum , Solanum tuberosum , Animais , Solanum tuberosum/genética , Raízes de Plantas/genética , Melhoramento Vegetal , Solanum lycopersicum/genética , Nematoides/fisiologia
15.
Acta Parasitol ; 68(2): 293-303, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36806112

RESUMO

PURPOSE: The parasites' virulence is labile after jumping to a new host species, and it might derivate in gaining virulence against a new host as a side effect of living in a non-host environment (coincidental evolution of virulence hypothesis). METHODS: To test this hypothesis, we monitored the experimental evolution of the Rhabditis regina nematode for over 290 generations (4 years) in three environments (strains): (1) the natural host, Phyllophaga polyphylla, (2) an alternate host, Tenebrio molitor, and (3) saprophytic medium (beef; the food that may provide evidence for the coincidental evolution of virulence). Each strain was exposed to P. polyphylla, T. molitor, or Galleria mellonella. We compared the host survival and immune response (proPO, PO, and lytic activity) of infected versus uninfected hosts. RESULTS: The saprophytic nematodes gained virulence only against G. mellonella. However, the P. polyphylla strain was more effective in killing P. polyphylla than T. molitor, and the T. molitor strain was more effective against T. molitor than P. polyphylla. Additionally, one dauer larva was sufficient to kill the hosts. Finally, the immune response did not differ between the challenged and control groups. CONCLUSION: The coincidental evolution of virulence partially explains our results, but they might also support the short-sighted hypothesis. Additionally, we found evidence for immunomodulation because nematodes passed unnoticed to the immune response. It is crucial to analyze the virulence of entomopathogens from the point of view of the evolution of virulence to be aware of potential scenarios that might limit biological control.


Assuntos
Mariposas , Nematoides , Tenebrio , Animais , Bovinos , Virulência , Nematoides/fisiologia , Larva
16.
Mol Cell Proteomics ; 22(2): 100479, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481452

RESUMO

Neuropeptides regulate animal physiology and behavior, making them widely studied targets of functional genetics research. While the field often relies on differential -omics approaches to build hypotheses, no such method exists for neuropeptidomics. It would nonetheless be valuable for studying behaviors suspected to be regulated by neuropeptides, especially when little information is otherwise available. This includes nictation, a phoretic strategy of Caenorhabditis elegans dauers that parallels host-finding strategies of infective juveniles of many pathogenic nematodes. We here developed a targeted peptidomics method for the model organism C. elegans and show that 161 quantified neuropeptides are more abundant in its dauer stage compared with L3 juveniles. Many of these have orthologs in the commercially relevant pathogenic nematode Steinernema carpocapsae, in whose infective juveniles, we identified 126 neuropeptides in total. Through further behavioral genetics experiments, we identify flp-7 and flp-11 as novel regulators of nictation. Our work advances knowledge on the genetics of nictation behavior and adds comparative neuropeptidomics as a tool to functional genetics workflows.


Assuntos
Proteínas de Caenorhabditis elegans , Nematoides , Neuropeptídeos , Animais , Caenorhabditis elegans , Nematoides/fisiologia , Espectrometria de Massas
17.
Genes (Basel) ; 13(12)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36553445

RESUMO

Genome-wide association studies (GWAS) have been used as an effective tool to understand the genetics of complex traits such as gastrointestinal parasite (GIP) resistance. The aim of this study was to understand the genetics of gastrointestinal parasite (nematodes, Moniezia spp., Eimeria spp.) resistance in Akkaraman sheep by performing genomic heritability estimations and conducting GWAS to uncover responsible genomic regions. This is one of the first studies to examine the genetic resistance of Akkaraman sheep to the tapeworm parasite. The samples from 475 animals were genotyped using the Axiom 50K Ovine Genotyping Array. Genomic heritability estimates ranged from 0.00 to 0.34 for parasite resistance traits. This indicates that measured phenotypes have low to moderate heritability estimates. A total of two genome-wide significant SNP associated with TNEM3 and ATRNL1 genes and 10 chromosome-wide significant SNPs related with 10 genes namely NELL1, ST6GALNAC3, HIPK1, SYT1, ALK, ZNF596, TMCO5A, PTH2R, LARGE1, and SCG2 were suggested as candidates for parasite resistance traits. The majority of these candidate genes were involved in several basic biological processes that are essential and important for immune system functions and cellular growth; specifically, inflammatory responses, cellular transport, cell apoptosis, cell differentiation, histone de-acetylation, and endocytosis. These results have implications for animal breeding program studies due to the effect that the genetic background has on parasite resistance, which underlies many productive, health, and wellness-related traits.


Assuntos
Nematoides , Parasitos , Ovinos/genética , Animais , Estudo de Associação Genômica Ampla/veterinária , Nematoides/fisiologia , Genótipo , Genômica
18.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499019

RESUMO

A rhabditid entomopathogenic nematode (EPN), Oscheius chongmingensis, has a stable symbiotic relationship with the bacterial strain Serratia nematodiphila S1 harbored in its intestines and drastically reduced viability when associated with a non-native strain (186) of the same bacterial species. This nematode is thus a good model for understanding the molecular mechanisms and interactions involved between a nematode host and a member of its intestinal microbiome. Transcriptome analysis and RNA-seq data indicated that expression levels of the majority (8797, 87.59%) of mRNAs in the non-native combination of O. chongmingensis and S. nematodiphila 186 were downregulated compared with the native combination, including strain S1. Accordingly, 88.84% of the total uniq-sRNAs mapped in the O. chongmingensis transcriptome were specific between the two combinations. Six DEGs, including two transcription factors (oc-daf-16 and oc-goa-1) and four kinases (oc-pdk-1, oc-akt-1, oc-rtk, and oc-fak), as well as an up-regulated micro-RNA, oc-miR-71, were found to demonstrate the regulatory mechanisms underlying diminished host viability induced by a non-native bacterial strain. Oc-rtk and oc-fak play key roles in the viability regulation of O. chongmingensis by positively mediating the expression of oc-daf-16 to indirectly impact its longevity and stress tolerances and by negatively regulating the expression of oc-goa-1 to affect the olfactory chemotaxis and fecundity. In response to the stress of invasion by the non-native strain, the expression of oc-miR-71 in the non-native combination was upregulated to downregulate the expression of its targeting oc-pdk-1, which might improve the localization and activation of the transcription factor DAF-16 in the nucleus to induce longevity extension and stress resistance enhancement to some extent. Our findings provide novel insight into comprehension of how nematodes deal with the stress of encountering novel potential bacterial symbionts at the physiological and molecular genetic levels and contribute to improved understanding of host-symbiont relationships generally.


Assuntos
MicroRNAs , Nematoides , Animais , Análise de Sequência de DNA , Simbiose , Nematoides/fisiologia , Intestinos
19.
PLoS One ; 17(10): e0275342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301967

RESUMO

The entomopathogenic nematode, Heterorhabditis indica, is a popular biocontrol agent of high commercial significance. It possesses tremendous genetic architecture to survive desiccation stress by undergoing anhydrobiosis to increase its lifespan-an attribute exploited in the formulation technology. The comparative transcriptome of unstressed and anhydrobiotic H. indica revealed several previously concealed metabolic events crucial for adapting towards the moisture stress. During the induction of anhydrobiosis in the infective juveniles (IJ), 1584 transcripts were upregulated and 340 downregulated. As a strategy towards anhydrobiotic survival, the IJ showed activation of several genes critical to antioxidant defense, detoxification pathways, signal transduction, unfolded protein response and molecular chaperones and ubiquitin-proteasome system. Differential expression of several genes involved in gluconeogenesis - ß-oxidation of fatty acids, glyoxylate pathway; glyceroneogenesis; fatty acid biosynthesis; amino-acid metabolism - shikimate pathway, sachharopine pathway, kyneurine pathway, lysine biosynthesis; one-carbon metabolism-polyamine pathway, transsulfuration pathway, folate cycle, methionine cycle, nucleotide biosynthesis; mevalonate pathway; and glyceraldehyde-3-phosphate dehydrogenase were also observed. We report the role of shikimate pathway, sachharopine pathway and glyceroneogenesis in anhydrobiotes, and seven classes of repeat proteins, specifically in H. indica for the first time. These results provide insights into anhydrobiotic survival strategies which can be utilized to strengthen the development of novel formulations with enhanced and sustained shelf-life.


Assuntos
Nematoides , Transcriptoma , Animais , Dessecação , Nematoides/fisiologia , Metabolismo dos Carboidratos
20.
Mar Pollut Bull ; 185(Pt A): 114252, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272318

RESUMO

An experiment conducted with 'open microcosm' made by connected sedimentary compartments with different qualities was for 30 days to evaluate the migratory behaviour of nematodes as induced by exposure to pyrene. The nematofauna was collected along with sediment from a reference site in Bizerte lagoon. Following one week acclimatization period, the populated sediments were topped with azoic sediments, with a pyrene concentration of 150 µg kg-1. The concentration of pyrene from sediments was measured on a weekly basis. A stable status of nematode assemblages was reached between the upper and lower compartments in each microcosm, whatever the treatment type. An upward exploratory phase was observed during the first two weeks within the assemblages, possibly induced by the repellent chemodetection of pyrene. This observation was confirmed by the toxicokinetic properties and molecular interactions of pyrene with the germ-line development Protein 3 and sex-determining protein of Caenorhabditis elegans as nematode model.


Assuntos
Nematoides , Poluentes Químicos da Água , Animais , Sedimentos Geológicos , Toxicocinética , Poluentes Químicos da Água/toxicidade , Nematoides/fisiologia , Pirenos/toxicidade , Pirenos/metabolismo , Caenorhabditis elegans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA